Session Types for Object-Oriented Languages
Dedicated to Giuseppe Longo at the occasion of his 60th déyh

Mariangiola Dezani-CiancaglifiSophia Drossopouldu
Dimitris Mostrous® Nobuko Yoshid&

aDipartimento di Informatica, Universit di Torino
bDepartment of Computing, Imperial College London

Abstract

A session takes place between two parties; after estatdjshiconnection, each party in-
terleaves local computations and communications (senaiimgceiving) with the other.
Session types characterise such sessions in terms of the ¢ypalues communicated and
the shape of protocols, and have been developed far-ttedculus, CORBA interfaces, and
functional languages. We study the incorporation of sessipes into object-oriented lan-
guages through MosSE a multi-threaded language with session types, thread ripgw
iterative and higher-order sessions. Our design aims tgistmtly integrate the object-
oriented programming style and sessions, and to be abledb\tarious case studies from
the literature. We describe the design obMISE its syntax, operational semantics and type
system, and develop a type inference system. After provibgest reduction, we establish
the progress property: once a communication has been isbiathl well-typed programs
will never starve at communication points.

1 Introduction

Object-based communication oriented software is commonplemented using
either sockets or remote method invocation, such as JavadRMIIC# remoting.
Sockets provide generally untyped stream abstractionge wémote method in-
vocation offers the benefits of standard method invocatioa distributed setting.
However, both have shortcomings: socket-based code esqaisignificant amount
of dynamic checks and type-casts on the values exchangedjento ensure type
safety; remote method invocation does ensure that methredssad as mandated
by their type signatures, but does not allow programmergpoass design patterns
frequently arising in distributed applications, wheeguenceesf messages of dif-
ferent types are exchanged through a single connectioowoly fixed protocols.
A natural question is the seamless integration of tractdeseriptions of type-safe
communication patterns with object-oriented programmahigms.

Preprint submitted to Elsevier Science 28 August 2008

A sessions such a sequence of interactions between two partiesaartssifter a

connection has been established. During the session, @atshrpay execute its
own local computation, interleaved with several commutoces with the other

party. Communications take the form of sending and recgivadues over a chan-
nel. Additionally, throughout interaction between the tparties, there should be
a perfect matching of sending actions in one with receiviatpas in the other,

and vice versa. This form of structured interaction is foumanany application

scenarios.

Session typelsave been proposed in [32], aiming to characterise suchossssn
terms of the types of messages received or sent by a partgxaarple, the session
typebegin. lint.!lint.?bool . end expresses that twat -values will be sent, then a
bool -value will be expected to be received, and then the protwdbbe complete.
Thus, session types specify the communication behavioarméce of software,
and can be used to verify the safety of communication prdsdeetween two par-
ties. Session types have been studied for several diffesgtingsj.e., T-calculus-
based systems [6, 7,11-13,18, 27, 28, 32, 34, 35, 48], mplutesses [43], boxed
ambients [26], CORBA [49], functional languages [29], ardantly, for CDL, a
W3C standard description language for web services [1¥71,352].

In this paper we study the incorporation of session types afject-oriented lan-
guages. To our knowledge, except for some of our earlier |&k19, 21, 23], such
an integration has not been attempted so far. We proposaiigadge MOSE a
multi-threaded object-oriented core language augmenitisession types, which
supports thread spawning, iterative sessions, and higloer- sessions.

The design of MbOosSEwas guided by the wish for the following properties:

object oriented style We wanted MbOSE programming to be as natural as possi-
ble to people used to mainstream object oriented languagesder to achieve
an object oriented style, Boseallows sessions to be handled modularly using
methods.

expressivity We wanted to be able to express common case studies fromehe li
ature on session types and concurrent programming idio#}s44 well as those
from the WC3 standard documents [13, 52]. In order to achexyeessivity, we
introduced conditional, and iterative sessions, the it spawn new threads,
and to send and receive sessiares,(higher-order sessions).

type preservation The guarantee that execution preserves typesthe subject
reduction property, proved to be an intricate task. In faetjeral session type
systems in the literature fail to preserve typability afisduction of certain sub-
tle configurations, which we identified through a detailedlgsis of how types
of communication channels evolve during reduction. Typssprvation requires
linear usage of live channels; in order to guarantee this ageth prevent alias-
ing of channels, manifested by the fact that running sedsioes (.e., the types
of live channels) cannot be assigned to fields. We claim #sgiction is quite

natural since channels are not objects. Note that aliasitess problematic in a
functional setting like that one considered in [51] than mimperative setting
like the one we are dealing with here.

progress We wanted to be able to guarantee that once a session haslstarta
connection has been established, threads neither stardeadlock at the points
of communication during the session. Progress is a highdyralele property in
communication-based programs. Establishing this prgpeas an intricate task
as well, and, to the best of our knowledge, no other sessjom system in the
literature, but those in [4,10, 15, 18, 21, 23], can ensuréhe combination of
higher-order sessions, spawn and the requirement to preleadlock during
sessions posed the major challenge for our type system.

This work is an extended version of [20], with complete déifoms, more expla-
nations, detailed proofs and more comparisons with relata#. Furthermore, we
introduced minor differences in order to deal with smallcdepancies which we
discovered while developing the more detailed proofs.

The paper is organised as follows: 82 illustrates the basas through an exam-
ple. 83 defines the syntax of the language. 84 presents thatmpal semantics. 85
describes design decisions, such as the restriction omehahasing, that ensured
type preservation and progress. 86 illustrates the typystesn. 87 gives basic the-
orems on type safety and communication safety. 88 desctypesinference. 89
discusses the related work, and 810 concludes. More examploOSE can be
found in [42]. The proofs are given in the appendices.

2 Business Protocol Example

We describe a typical collaboration pattern that appeansany web service busi-
ness protocols [11-13, 35, 52] usingddsE This simple protocol contains essen-
tial features by which we can demonstrate the expressivity 0OSE it requires

a combination of session establishing, higher-order segsssing, spawn, condi-
tional sessions, and deadlock-freedom during the session.

In Fig. 1 we show the sequence diagram for the protocol, whodlels the pur-
chasing of items. We show the participants, the sessiongeleet them, and the
program variables whose value is communicated on each ehdirst, theSel | er
andBuyer participants initiate interaction over channel then, theBuyer sends
a product id to theSel | er, and receives a price quote in return; finally, Buger
may either accept or reject this price. Thus, here we shovitdtecase of a condi-
tional session. If the price received is acceptable, thesdh er connects with the
Shi pper over channet2. First theSel | er sends to thehi pper the details of the
purchased item. Then ti8el | er delegates its part of the remaining activity with
theBuyer to theshi pper, that is realised by sending overc2. Now theshi pper

S w N =

Buyer Seller Shipper

S L L "
cl: prodiD R
v C
cl : price Aw--4B: connect over c
. c: X
cl: accept > c2 A —> B : send value of x over ¢
pronnrse e ! cl:c2
c2 : prodDetails A'—»»B : send channel c2 over cl
c2:cl

cl : custAddress
cl : delivDate

A

Fig. 1. Sequence diagram for item purchasing protocol.

sessi on BuyProduct =
begin.!String. ?doubl e. ! <! Address. ?Del i veryDetai |l s. end, €. end>
sessi on RequestDelivery =
begin.!ProductDetails.!(?Address.!DeliveryDetails.end).end

Fig. 2. Session types for the buyer-seller-shipper example

will await theBuyer 's address, before responding with the delivery date. Ifithee
is not acceptable, then the interaction terminates.

In Fig. 2 we declare the necessary session types, and in fig.ehcode the given
scenario in MDOSE using one class per protocol participant. The sessionstype
BuyProduct andRequest Del i very describe the communication patterns between
Buyer andSel | er, andSel | er andsShi pper , respectively. The session typ&/Pr oduct
models the sending of & ri ng, then the reception of @ubl e, and finally a con-
ditional behaviour, in which @ool is (implicitly) sent before a branch is fol-
lowed: the first branch requires that address is sent, then @el i veryDetails
received, and finally that the session is closed; the secamtb models an empty
communication sequence and the closing of the session. \We BuyProduct

for the dual type, which is constructed by takirgyyProduct and changing oc-
currences of ! to ? and vice versa; these types represenwthedmplementary
behaviours associated with a session, in which the sendiagvalue in one end
corresponds to its reception at the other. In other wadgr oduct is the same as
begi n. ?String. ! doubl e. ?<?Addr ess. ! Del i veryDet ai | s. end, end>. Note that in the
case of the conditional, the thread with ! in its type deciddsch branch is to
be followed and communicates the boolean value, while therdghread passively
awaits the first thread’s decision. The session Bgogest Del i ver ydescribes send-
ing aProduct Detai | s instance, followed by sending a ‘live’ session channel of
remaining type?Address. ! Del i veryDetai | s. end.

Sessions can start when two compatitdenect statements are active. In Fig. 3,
the first component ofonnect is the shared channel that is used to start commu-

© o] ~ o [&] £ w N [

A D DWW W W W W W W W W NN NN NN DNNNDN R PR R R B P R R
N [o ©o [s] ~ o (5] S w N = o © =<} ~ (=] ol S w N = o ©o [e] ~ (=] [&] = w N = o

IS
[~}

class Buyer {
Address addr;

void buy(String prodl D, double nmaxPrice) {
connect ¢l BuyProduct {
cl.send(prodlD);
cl.sendl f(cl.receive <= maxPrice) {
cl.send(addr);
DeliveryDetails delivDetails := cl.receive;
H null; /+ buyer rejects price, end protocol =/ }
} /+ End connect =/
} /= End nmethod buy =/

}

class Seller {
void sell() {
connect c1 BuyProduct {
String prodlD := cl.receive;
doubl e price := getPrice(prodiD); // inplem omtted
cl.send(price);
cl.receivelf { // buyer accepts price
Product Details prodDetails := new ProductDetails();
[l ... init prodDetails with prodlD, size, etc
spawn { connect c2 RequestDelivery {
c2.send(prodDetails); c2.sendS(cl);} }
H null; /* receivelf : buyer rejects =/ }
} /+ End connect =/
} /= End nmethod sell =*/

}

cl ass Shipper {
voi d delivery() {
connect c2 RequestDelivery {
Product Details prodDetails := c2.receive;
c2.receiveS(x) {
Address cust Address := X.receive;
DeliveryDetails delivDetails := new DeliveryDetails();
[l... set state of delivDetails
x.send(delivDetails); }
} /+ End connect =/
} /= End nethod delivery =/

Fig. 3. Code for the buyer, seller and shipper.

nication, the second is the session type, and the third is¢ksion bodywhich
implements the session type. The methog of classBuyer contains aconnect
statement that implements the session ®pe&r oduct , while the methodel | of
classSel | er contains aonnect statement over the same channel and the dual ses-
sion type. When &uyer and aSel | er are executing concurrently their respective
methods, they can engage in a session, which will result heshfchannel being
replaced for occurrences of the shared channalithin both session bodies; fresh-
ness guarantees that the new channel only occurs in thedbreeals, therefore the
objects can proceed to perform their interactions withbatgossibility of external
interference.

Once the session has started in the body of methgd the product identifier,
prodl D, is sentusingl. send(pr odl D) and the price quote is received usirigr ecei ve.
If the price is acceptableg., if c1.recei ve <= maxPrice, thentrue is sent and the
first branch of the conditional is taken, starting on linerftHhis case, the customer’s
addressaddr , is sent and an instancedi i ver yDet ai | s is received. If the price is
not acceptable, theral se is sent and the second branch of the conditional starting
on line 11 is taken, and the connection closes.

The body of methodel | implements behaviour dual to the above. Note that in
cl.receivelf{...}{...} the branch to be selected depends on the boolean value
received from the other end, which will execute the completay expression
cl.sendl f(..){...}{...}. The first branch of the&el | er’s conditional contains

a nestedonnect in line 25, via which the product details are sent to Shiepper ,
followed by the actual runtime channel that was substitibed1 when the outer
connect took place; the latter is sent through the constafzckendS(cl), which
realiseshigher-order session communicatidwotice that the code in lines 25-26 is
within a spawn, which reduces to a new thread with the enclosed expressids a
body.

The methodiel i very of classshi pper should now be clear, with the exception
of c2.receiveS(x){..} which is dual toc2. sendS(c1) . In the first expression, the
received channel is bound to the variable

The above example shows howddseachieves deadlock-freedom: whenever we
havec. send(v), eventually an expression of the shapeecei ve will appear in
some other thread, unless the thread diverges, or a nuligg@rception is thrown,
or there is a nested connect instruction waiting for the dwaainect instruction.
Likewise for the other communication expressions. By th@aegressconditions,
no session will remain incomplete; see Examples 5.4, 5&b5af. For the precise
definition of progress see Theorem 7.10.

(type) t 1= C| bool |s | (s,5)
(class) class = class Cextends C{ft M}
(method) M == tm (tx,py) {e}

(expression) this | x | v | e;e|efi=e|ef|em(é)| newC

o
Il

| spawn{e } | new (s,5)| connectus{e}

| u.receive | u.send(e)

| u.receiveS (x){e} | u.sendS (u)

| u.receivelf {e }{e} |u.sendIf (e){e}{e}

| u.receiveWhile {e } | u.sendWhile(e){e} | NullExc

(channel) u = ¢ x
(value) v = c| null | true| false| o
(thread) P = e|P|IP

Fig. 4. Syntax, where syntax occurring only at runtime app shaded .

3 A Concurrent Object Oriented Language with Sessions

In Fig. 4 we describe the syntax ofdbSsE We distinguistuser syntax.e., source
level code, anduntime syntaxwhich includes null pointer exceptions, threads and
heaps. The syntax is based on FJ [37] with the addition of ratpe and communi-
cation primitives similar to those from [3, 6, 21, 32, 34, BAf designed MOSEas

a multi-threaded concurrent language for simplicity ofgaetation; note however
that MoosEcan easily be extended to model distribution; see 8§ 9.

Channels We distinguishshared channelsand live channels Shared channels
have not yet been connected; they are used to decide if twadBrcan commu-
nicate, in which case they are replaced by fresh live chanidter a connection
has been created the channel is live; data may be transrthiti@agh such active
channels only. The types of & seenforce the condition that there are exactly two
threads which contain occurrences of the same live chamretall it bilinearity
condition This is proved in Lemma 7.8.

User syntax The metavariable ranges over types for expressiopsanges over
running session types; ranges over class names anthnges over shared session
types. Each shared session tgpeas one correspondirdpal, denoted, which is

obtained by replacing each ! (output) by ? (input) and viasaeWe introduce the
full syntax of types in § 6, Fig. 8. Class and method declarstiare as expected.

The first nine productions for expressionse’, are standard for concurrent object
oriented programming, and represent the receivi@s)(a method parametex)(

a value (), a sequence of expressiorse(), field assignmente(f = ¢’), field ac-
cess ¢€.f), method call €. m(€)), object creationrew C), and spawning of a new
thread épawn { e }). The remaining productions are related to session creatio
and communication: first, the channel construatew (s,s), which builds a fresh
shared channel used to establish a private session; nexftimunication expres-
sions i.e,, connect us{e} and all the remaining session expressions. The reason
for declaring boths ands in the channel constructor is that we want to stress that
the fresh created channel can replace two variables of typesls, respectively,

in order to establish a private communication, see Examfle 4

The values are channelsyll, and the literalgrue andfalse. Thread creation is
declared usingpawn { e }, in which the expressioa is called thethread body

The expressiormonnect us{e} starts a session: the channehppears within the
term{e} in session communications that agree with sessiondypée remaining
eight expressions, which realise the exchanges of dataadiexl session expres-
sions and start with ti._"; we call u the subjectof such expressions. In Fig. 4 and
in the explanations below, session expressions are paimaspled: we say that
expressions in the same pair and with the same subjedual¢o each othere.g,
c3.send(true) andc3. recei ve are dual expressions.

The first pair is for exchange of values (which can be sharedhicbls):u.receive
receives a value via, while u.send (e) evaluateg and sends the result over The
second pair expresses live channel exchangeu: receiveS (x){e} the received
channel will be bound ta within the expressiomr, in which x is used for com-
munications. The expressiansendS (u’) sends the channel overu. The third
pair is forconditionalcommunicationu .receivelf {e }{e’} receives a boolean value
via channels, and if it is true continues withe, otherwise withe’; the expression
u.sendlf (e){e’}{e”} first evaluates the boolean expressiothen sends the result
via channebl and if the result wasrue continues withe’, otherwise withe”. The
fourth is foriterativecommunication: the expressianreceiveWhile {e } receives a
boolean value via channe| and if itistrue continues withe and iterates, otherwise
ends; the expressiansendWhile (e){e'} first evaluates the boolean expressign
then sends its result via channeblnd if the result wasrue continues withe’ and
iterates, otherwise ends.

We do not define the standard iteration and conditional steigs, as these can

be straightforwardly encoded in our calculus. For exampide(e){e'} can be

simulated byc.sendWhile (e){e’}, assuming a session overand the expression
c.receiveWhile {null } in another thread. Similarly for the conditional usingendIf (e){e'}{e"}.

Also the general branch/select constructors are easilgdgttin MOOSE and so
we left them out to avoid syntactic sugar.

Finally, we do not include primitives for recursive sessiomhis allows a simpler
presentation, and more importantly, it enables us to foateutheprogresgproperty
of our calculus based on a non-interleaving restrictiore (8€5); with recursion,
simply nested sessions, which we allow, would clearly teisuinterleaved traces
after unfolding in the inner scope.

Runtime syntax The runtime syntax (shown shaded in Fig. 4) extends the user
syntax: it extends values to allow for object identifierswvhich denote references

to instances of classes; adisllExc to expressions, denoting the null pointer er-
ror; finally, introduces threads running in parallel. Smgind multiplehreadsare
ranged over by, P’. The expressioR | P’ says thaP andP’ are running in parallel.

4 Operational Semantics

This section presents the operational semanticsobBE which is inspired by the
standard small step call-by-value reduction of Featheghtelava [46], extended
with imperative features, asg, in [45], and following the style of [3] and mainly
that of [21]. We only discuss the more interesting rulesstRire list the evaluation
contexts.

E:= []|Ef|Ee|Ef:=e|o.f :=E|E.m(€)|o.m(V,E,§E)
| c.send (E) | c.sendlf (E){e}{e’}

Notice thatconnect c s{E}, c.receiveS (x){E}, c.sendIf (e){E}{e}, c.sendlf (e){e }{E},
c.receivelf {E}{e}, c.receivelf {e }{E}, c.receiveWhile {E}, andc.sendWhile (e){E}
are not evaluation contexts: the first would allow sessiodidsto run before the
start of the session; the second would allow execution ok@anession waiting for

a live channel before actually receiving it; the remainingwd allow parts of a
conditional or iterative session to run before determinatgch branch should be
selected, or whether the iteration should continue.

Fig. 5 defines auxiliary functions used in the operationalaetics and typing rules.
As in [37] we assume a fixed, global class table. The d@sfectdoes not have
fields/methods and his declaration does not occur in the tddde. The decoration
© € {6,®} in the functionmtype will be motivated in Example 5.5.

Objects and channels are storedheaps whose syntax is given by:

Field lookup

fields(D) = 't/ class C extends D {fAt/I\7I} eCT

fields(Object) = o ——
fields(C) =f't’,ft

Method lookup

methods(D) = M/ class C extends D {ft M} € CT
methods(C) = M’,M

methods(Object) = o

Method type lookup

class C extends D {ft M} €CT tm (Tx) {e} €M

mtype(m,C) =% 2t

class C extends D {ft M} €CT m ¢ M
mtype(m,C) = mtype(m,D)

Method body lookup

cIassCextendsD{fAt/IVI}eCT tm (Tx) {e}eM
mbody(m,C) = (X,e)

class C extends D {fAt/I\7I} eCT m ¢ M
mbody(m,C) = mbody(m, D)

T is eithert orp.

Fig. 5. Lookup Functions

h == []] h::[o»—>(C,fA:§)] | h:c.

Heaps ranged oveh, are built inductively using the heap composition operatpr
and contain mappings of object identifiers to instancesagsgs, and channels. In
particular, a heap will contain the set tvéshobjects and channels, both shared
and live, that have been created since the beginning of égecand the shared
channels appearing free in the initial user program. The fpraduced by com-
posingh::[o — (C,f :v)] will map o to the object(C,f :v), whereC is the class
name and :v is a representation for the vector of distinct mappings frioeid
names to their values for this instance. The heap producedtmposind::c will
contain the fresh channel Heap membership for object identifiers and channels
is checked using standard set notation, we therefore wréso € h andc € h,
respectively. Heap update for objects is writtéo — (C,f :v)], and field update is
written (C,m)[f — v|. Heap composition is undefined if the added object’s iden-
tifier (or the channel) is already in the heap; heap updatedefined if the updated

10

Fid FIdAss

h(o) = (C.frv) S°d ' = hlo — h(o)[f > v]]

————————~ v;e,h—e,h P

o.fi,h—v;.,h of:=v,h—v.,h

NewC N NewS Cong
fields(C)=ft o ¢h céh e,h—e' K

—~—

new C,h—>0,h::[oH(C,fiinit(t))] new (Svg)vh_”:vh::c E[e],h—>E[e’],h’

Meth
h(o) =(C,...) mbody(m,C)=(%,e) NullProp

0.m(¥),h — e[/this][Vk],h E[NullExc],h — NullExc,h
NullFIdAss NullFid NullMeth

null.f :=v,h— NullExc,h null.f ;h— NullExc,h null.m (V),h — NullExc,h

In NewC, init(bool) = false otherwiseinit(t) = null.

Fig. 6. Expression Reduction

object’s identifier is not in the heap.

An object identifiefo (channek) is said to bdreshin heaph wheno ¢ h (c € h).
This condition, formalised in Lemma 7.5, guarantees thatlypereated objects
and channels are not already used anywhere in a well-typa&thooation.

Expressions Fig. 6 shows the rules for execution of expressions whichiecor
spond to the sequential part of the language. These areasthits 22, 37], ex-
cept for the addition of a fresh shared channel to the hedp awS. In rule
NewC the auxiliary functionfields(C) examines the class table and returns the
field declarations foC. The method invocation rule isleth; the auxiliary func-
tion mbody(m,C) looks upm in the classC, and returns a pair consisting of the
formal parameter names and the method’s code. The resuieisnethod body
where the keywordhis is replaced by the receiver’s object identifierand the
formal parameterg are replaced by the actual parameterdlote that the replace-
ment ofthis by o cannot lead to unwanted behaviours since the receiver tanno
change during execution of the method body.

Threads The reduction rules for threads are shown in Fig. 7. Ratieict gives
standard structural equivalence rules of thealculus [41], written=. This equiv-

alence is used in rulStr. We definemulti-stepreduction as: 2 (—u=)~.

11

Struct
Plnull =P P|Py= P[P P|(P1|P)= (P|P)|P; P=P = P|Pi=P|P

Str
Pi=PL PLh—P,h P,=P}

P,h— P, K

Par
Spawn Ph P H
Elspawn{ e }|,h— E[null]|e,h ’ - -
P|Po,h — P'|Po,h

Connect
E1[connect c s{e1}] | Ez[connect c5{ez}],h — Ejles[c/c]]| Ezlez[c/c]],h::c’
c'¢&h
ComS
Es[c.send (v)]| Ez[c receive],h — E4[null][Ez[v],h
ComSS
Eafc.sendS (¢)] | Ez[c receiveS (x){e}],h — Ex[null] | e[c/x] | Ez[null],h
ComSilf-true
Ea[c.sendlf (true){e1}{e2}] | Ez[c receivelf {ea}{es}],h — Esle1]|Ezfes],h
ComSilf-false
Ea[c.sendIf (false){e1}{e2}]| Ez[c.receivelf {e3}{es}],h — Ei[e2]|Ezfes],h
ComSWhile
Ea[c.sendWhile (e){e1}]| Ex[c.receiveWhile {e2}],h —
Ea[c.sendIf (e){e1;c.sendWhile (e){e1} } {null}]
| Eg[c.receivelf {e; c.receiveWhile {2} }{null}], h

Fig. 7. Thread Reduction

12

In rule Spawn, whenspawn { e } is the active redex within an arbitrary evaluation
context, thehread body becomes a new thread, and the original spawn expression
is replaced bywll in the context.

Rule Connectdescribes the opening of sessions: if two threads requisssian
on the same channel namavith dual session types, then a new fresh chanhisl
created and added to the heap. The freshnessgfarantees privacy and bilinear-
ity of the session communication between the two threadsllfyj the two connect
expressions are replaced by their respective sessiondyadiere the shared chan-
nelc has been substituted by the live chantieNote that all channels which occur
in a well-typed thread occur also in any well-formed heapchhagrees with the
thread, see Lemma 7.5.

Rule ComSgives simple session communication: the valus sent by one thread
and received by another. RuBomSSformalises the act of delegating a session.
One thread awaits to receive a live channel, which will berfabto the variable
within the expression, and another thread is ready to send such a channel. Notice
that when the channel is exchanged, the receiver spawns thresxd to handle the
consumption of the delegated session. This strategy isseapein order to avoid
deadlocks in the presence of circular paths of session atéteg see Example 4.4.

In rulesComSilf-true and ComSif-false, depending on the value of the boolean,
execution proceeds with either the first or the second brarRake CommSWhile
simply expresses the iteration by means of the conditidrtak operation allows
to repeat a sequence of actions within a single sessionhwiconvenient when
describing practical communication protocols (see [1121)).

The following examples justify some aspects of our operaticemantics.
Example 4.1 motivates the inclusion of new channel creation in the laggu

We extend the example of Fig. 3 with this extra functionalttye Buyer should
receive notification when — after the session finishes — tleelg@re dispatched
from the warehouse.

This requires a call-back session, a reversal of roles irclwthe service decides
when to establish a connection with the waiting client. Beseathe call-back con-
tinues a previous session, it should be established ovaradichannel agreed by,
and unique to, the original participants. This, in turn,uees the ability to generate
fresh shared channels, which can be distributed beforentheithe initial session.

ThesShi pper can be modified, with the following code inserted at line 4lerding
the original protocol:

13

40 x.send(delivDetails); // }

41 /|l Create call-back channel with
a2 /!l s = begin.!DeliveryDate. end
a3 (s,S) y :=new(s,3);

a4 /1 send y to "Warehouse" over c3, uses s
45 connect c¢3 begin.!DeliveryDetails.!s.end {

46 c3.send(delivDetails); c3.send(vy); }

a7 x.send(y); } // send y to "Buyer", uses s

48

In the above, a new fresh channel is created at line 43, witssien type allow-
ing the exchange of Bel i ver yDat e object. This channel is then distributed to the
War ehouse (code not shown), at lines 45 and 46, auger, at line 47. Now, the
Buyer can walit for thenar ehouse to connect, at some point, and provide the exact
delivery date, over the channel shared uniquely by the two.

Example 4.2 demonstrates how server objects can be modelled usingesssid
thread creation viapawn.

Again, we extend the example of Fig. 3, enablinggl er object to serve multiple
Buyer requests concurrently. This is shown below, wherepresents the original
session body of Fig. 3, lines 19 to 27:

16 |class Seller {

17 void sell() {

18 while(true) {

19 connect c1 BuyProduct {

20 spawn{ e }; // Thread with original
21 /'l session body

2 } /= End connect =*/

23 } [+ End while =/

2 } /= End nethod sell =*/

5 |}

In the above, we first placed the body of metheatll inside a non-terminating
loop, allowing clients to be served in sequence. Howevegr afconnection with a
Buyer has been established, we do not want other buyers to haveitonti the
previous session is complete. Instead, we allocate a neadtior each connection,
by placing the original session bodywithin a spawn at line 20. Using this code,
after a connection is made, a new thread is dispatched tatx#te session body,
and theSel | er 's code can iterate and connect with another client immebjiat

Example 4.3 demonstrates the use of iterative sessions.

14

As before, we extend the example of Fig. 3, this time to all@war to order more
than one product per invocation of methidy. The code replacing the original
from line 5 onwards is as follows:

void buy(String[] prodl D, double[] maxPrice) {
connect ¢l BuyProduct {
int i :=0;
cl.sendWile(i++ < prodlD.length) {
cl.send(prodliDi]);

© o N o O

10 /1 was price accepted?

1 cl.send(cl.receive <= maxPrice[i]); }
12 /1 Now send address, and get delivery
13 /1l details, as done originally ...

14 } /+ End connect =/

15 |} /* End nethod buy =*/

First, the signature ofuy is changed to expect array arguments — we use arrays
and other language features which are not defined in our &Eggwut which are
orthogonal to sessions. Second, at lines 8 to 11 we impleareiterative session
part: at line 8, we require that the session part iteratesrag és there are products

in the array given as argument; at line 9, we send the curnadyet identifier,
based on the index then, at line 11, we receive a price quote, compare it to the
maximum acceptable price for the item, and send the boolkesuitrback to the

Sel | er, so that the item can be added to, or ignored from, the ordéenthe
iterations are finished, after line 11, the protocol wouldtatue along the same
lines as the original — but we omit this code.

Example 4.4 demonstrates the reason for the definition of @eMSSwhich cre-

ates a new thread out of the expression in which the sent ehaeplaces the
channel variable. A more natural and simpler formulatiothes rule would avoid
spawning a new thread:

Eq[c.receiveS (x){e}] | Ez[c.sendS (c)],h — Ex[e[c//]] | Ez[null],h
However, using the above version of the rule, and assumsgi@etypes1 ands2,
defined as1=begi n. ?i nt. end, ands2=begi n. ?(!i nt. end). end, parallel execution
of the thread$; andP, shown below reduces to

c’.send (5); c}.receive | null, h:c)
Wherec’1 is the fresh live channel that replacegdwhen the connection was estab-

lished. Notice that both ends of the session are in one thserithe last configura-
tion is stuck.

15

1 |connect cl sl { 1 |connect ¢l sl {
2 | connect c2 s2 { 2 | connect s2 {
3| c2.receiveS(x) { x.send(5)} }; s | c2.sendS(cl)
4 cl.receive 4|}
5 |} s |}
P P

5 Motivating the Design of the Type System

This section discusses the key ideas behind the type systesduced in § 6 with
some examples, focusing on type preservation and progress.

Type preservation In order to achieve subject reduction, we need to ensure that
at any time during execution, no more than two threads havessdo the same live
channel, and also, that no thread has aliasesfiore than one reference) to a live
channel.

Example 5.1 demonstrates that bilinearity is required for type preagon, and
that in order to guarantee bilinearity we need to restricsas on live channels.
Assume in the following, that we allowed live channels to twrexd in fields, and
that in the threadBs, P, andPs the field accesses; .f 1, 02.f 2, ando3.f 3 all point
to the same live channelin heaph.

Py P>

01.f1.5end (3);01.f1.send (true)\ | 02.f2.5end (4);02.f 2.send (false}

| 03.f3.receive;o3.f3.receive, h

Py

It is clear thatP; expects to receive first an integer and then a boolean vianehan
c; butP; could communicate first witR; and then with? (or vice versa) receiving
two integers, destroying the intended sequence of comratiaicbetween the two
original partners of the session. To avoid the creation iafsak on live channels,
we do not allow live channel types to be used as the types dtfiabr do we allow
more than one live channel parameter in methods.

Example 5.2 demonstrates that guaranteeing bilinearity requiregicéisns on

sending/receiving live channels. In the following, assugrihat the three threads,
P1, P> andP; could be typed, for some; andso,

16

1| connect ¢l sq { 1| connect cl s7 {
2 connect ¢2 sy { 2 cl.receive;
3 c2.sendS(cl) }; 3 cl. send(3)
4 cl.receive } a| }
] P,

1| connect c2 53 {

2 c2.receiveS(x){ x.send(4) }

s |}

Ps

then, starting with a heam the above three threads in parallel reduce to:

c).receive | c/.receive ; cj.send (3) | cj.send (4), hichich

wherec’ andc), are the fresh live channels that replaced respectivelgndc,
when the sessions began. Clearly, this configuration waslte bilinearity condi-
tion.

We therefore need a notion of whether a live channel has beasumedi.e.,
whether it cannot be further used for the communication dfies There is no
explicit user syntax for consuming channels. Instead, clknare implicitly con-
sumed 1) at the end of a connection, 2) when they are sent amrarmel, and 3)
when they are used withispawn. However, types do distinguish consumed chan-
nels using thend suffix; this condition originates from [34, 51]. This allows to
know if a live channel passed as parameter in a method cdlb@itonsumed or
not by the execution of the method body. In § 6.1 we showPha type incorrect
for anys1 ands».

Progress in MOOSE means that indefinite waiting may only happen at the point
where a connection is required, and in particular when thed dfia connect is
missing. In other words, there will never be a deadlock atttmamunication points
on live channels. This can only be guaranteed if the comnatioits are always
processed in a given orde., if there is no interleaving of sessions.

Example 5.3 shows how a well-behaved program can be rejected by our fygpe s
tem, to ensure general progress.

17

connect cl begin.!int.end { 1| connect cl begin.?int.end {
connect c2 begin.?int.end 2 connect c¢2 begin.!int.end
{ {
cl.send(3); c2.receive} 3 cl.receive; c2.send(5)}
} al}
Py P,

In the above the interleaved communications on channendc, would reach
completion; however, as the next example shows, a smallfloation in the or-
der of communications — which is undetected at the type levehn result in a
deadlocked state.

Example 5.4 demonstrates how session interleaving may cause deadlocks

connect cl begin.!int.end { 1| connect cl begin.?int.end {
connect c¢2 begin.?int.end 2 connect c¢2 begin.!int.end
{ {
cl.send(3); c2.receive} 3 c2.send(5); cl.receive}
} a4}
Py P,

In the above example we have indefinite waiting after ethblg the connection,
becausé; cannot progress unless reaches the statemeti.receive, andP, can-

not progress unleds; reaches the statemetys.receive, and so we have a dead-
lock at a communication point. A similar deadlock betweer thannels has been
investigated in the context of linear and behavioural typkesobile processes,
e.g, [38, 53]. Note thahestingof sessions does not affect progress. Let us consider
the following processes:

P; = connect c1begin.?int.end{cy.receive ; connect c, begin.lint.end{c2.send (5)}}
P, = connect c1begin.lint.end{c1.send (3);connect c, begin.?int .end{c.receive } }

P; = connect c1 begin.lint.end{connect c;begin.?int.end{cy.receive };c1.send (3)}

Parallel execution oP; andP; does not cause deadlock, while parallel execution
of Py with P; does, but it does so at the connection pointder However, such
deadlock is acceptable, since it would disappear if we placsuitableconnect in
parallel.

In order to avoid interleaving at live channels, we requivat twithin each “scope”
no more than one live channel can be used for communicatiercal this the “hot
set.” The formal definition can be found in 8 6. The hot setrsfie simpler typing
system than those based on behavioural types [38, 53] wiaieti to keep track of
dependencies between channels.

18

~ [=2] (& e w N [

In 8 6.1, we will show thaP; andP, are type incorrect.

The following, similar, example justifies the requiremenatt also spawned pro-

cesses use the current hot channel for communication.

connect cl begin.!int.end { 1| connect cl begin.?int.end {
connect c¢2 begin. ?int. end{ 2 connect c¢2 begin.!int.end{
spawn { cl.send(3); 3 spawn { c2.send(5);
spawn { c2.receive } 4 spawn { cl.receive }
} 5 }
} 6 }
} 7|}
Ps Py

Namely, execution oP; | P, starting with a heap leads to

null | cj.send (3);spawn { c5.receive } | null | c5.send (5);spawn{ cj.receive }, h:ici::

which is deadlocked. As we will see, the type system m&kegpe incorrect.

Example 5.5 demonstrates that in order to avoid deadlocks, we also retke
into account the live channels used to send and receiveatseimethod bodies.
Consider a methoeh of classC with a parametek of type?int.end and body
x. recei ve. In this case, the two threa® andP, below in parallel, starting with a
heaph, reduce to

ch.send (3);c’.send (5) |cy.receive;ch.receive, h:ic):iich

o o e w N [

connect cl begin.!int.end { 1 [connect ¢l begin.?int.end {
connect c¢2 begin.!int.end { 2 connect c2 begin.?int.end {
c2.send(3) 3 new C nm(cl);
b 4 c2.receive
cl. send(5) 5 }
} s |}
Py P,

In order to avoid problems like the above, we require thaothig channel used for
sending and receiving in the method body to be the first cHgarameter, if any,

and we decorate the method type with the superseérifat indicate that the method
body may send or receive on the first channel parametercatadndicate that the

method body does not send or receive on any of the channehpéaes.

Example 5.6 demonstrates that allowing live channels in the body of achbre-

ceive expression may destroy progress. We assume sess@stybegi n. !i nt . end
andso=begin.! (!int.end).end.

19

connect ¢l s1 {
connect c¢2 s {
c2.sendS(cl) };

connect cl s7 {
connect c¢2 57 {
c2.receiveS(x){
X.send(3);
connect ¢3 s {
c3.sendS(cl)

S w N [

Py

© o N o 0o »~ W N B

P>

Starting with a heajh, the two threads above reduce to a deadlock at a communi-
cation point

c’.send (3);connect cgs{cz.sendS(cy)}, h:iciich

Discussion In this section we showed how the aim to guarantee progressedr
the design of the type system, and how this aim imposed somdit@ms on the
use of live channels.

We believe that these conditions are not that restrictiirst fve can represent most
of the communication protocols in the session types liteeatas well as traditional
synchronisation [42, § 3], while at the same time ensuringss. Secondly, since
these conditions are only essential for progress, if we kentmt sets from typing
judgements, and we allow multiple live channel parametemriéthods, we will
obtain a more relaxed type system which allows deadlockwachannels, but still
preserves type safety.

6 Type System

Types The full syntax of types is given in Fig. 8.

Partial session typeganged over by, represent sequences of communications,
whereeg is the empty communication, anmd.m, consists of the communications
in Ty followed by those inmp. We use T as a convenient abbreviation that ranges
over{!,?}. The partial session types &nd ? express respectively the sending and
reception of a value of type.

Theconditionalpartial session type has the shaget m). When tis!, {m ,m)
describes sessions which send a boolean value and procded; wi the value is
true, orty, if the value is false; when 1 is ?, the behaviour is the samegpx

20

T o= 117 direction

n o= ¢ || tt|Hem | T(m | T(n) partial session type
n = Tend| n,n)| 1N ended session type
p = T |n running session type
s = begin.n | sch shared session type
@ = p| beginp| | session type

t = C/| bool |s] (s,5) standard type

Fig. 8. Syntax of types

that the boolean that determines the branch is to be recanstelad. Thatera-

tive partial session type(ty* describes sessions that respectively send or receive a
boolean value, and if that value is true continue withterating, while if the value

is false, continue to the following partial session typéany.

The partial session typegn)) and 7n) represent the exchange of a live channel,
and therefore of an active session, with remaining comnatioios determined by
the ended session typeNote that typing the live channel lyinstead oftensures
that this channel is no longer used in the sending threacctrefach successive use
of the channel should concatengtevith a not empty running session type, but this
concatenation is not allowed, see Definition 6.1. Examp?esbows why this is
necessary.

An ended session typg, is a partial session type concatenated either warithor
with a conditional whose branches in turn are both endedmsesges. It expresses
a sequence of communications with its terminatian, no further communications
on that channel are allowed at the end. A conditional endssice type allows to
type spawns or connects in the branches. For example, tmmeha in the body
of methodsel | in Fig. 3 cannot be typed by

begi n. ?String. ! doubl e. ?<! Address. ?Del i veryDetails, €>. end
because the branching in line 23 contains a spawn.

We usep to range over both partial session types and ended sesgies: tye call
it a running session type

A shared session type, starts with the keywordlegin and has one or more end-
points, denoted bynd. Between the start and each ending point, a sequence of
session parts describe the communication protocol. Theedisession typsch is

used for those shared channels that are free in a thread, lsiod van be used ac-
cording to any type respecting the (dynamic) duality chdekile Connect(Fig. 7).

21

The typing rules ensure that this type cannot be used djrextlescribe a session,
but it is necessary for definingeshnes®f channels.

A session typ@® is a running session type, possibly prefixedbagin, so possibly
a shared session type, brWe use| when typing threads, to indicate the type of a
channel which is being used by two threads in complementagsw

Standard types, are either class identifier€}, or booleanst{ool), or shared session types
(s), or pairs of shared session types with their duass, ((s,5s)).

Each session typ@ except for] has a correspondindual, denotedd, which is
obtained as follows:

21 T—2

begin.p = begin.p
Ttend =Ttend TUT(N1,N2) = i, N2)
g=¢ Tt="1t t(n)=Tn

Hm,) = KM, ™) T =T mMe=Tm

~—

Note that, in the fourth line, the type of the value to be sestdived) in output
(input) is not dualised, as it should be the same for bothssafea session. The
same applies to the communication of live channels. Alssgoke that duality is

an involution,i.e., 6 = 0.

Type System We type expressions and threads with respect to a fixed, lgloba
class tableT, as reflected in the rules of Fig. 9 which define well-formexhgard
types. By?D(CT) we denote the domain of the class ta@itei.e, the set of classes
declared inCT. We assumeT satisfies some usual sanity conditions as in FJ [37].
1 In the same figure we also define subtypiag, on class names: we assume that
the subtyping between classes is acyclic as in [37]. In axiditve haves,s) <:s
and(s,s) <:§, as in standard-calculus channel subtyping rules [33]: a channel on
which both communication directions are allowed may alangmit data following
only one of the two directions.

The typing judgement for threads has two environmergs has the shape:
M2 F P:thread

where thestandard environment associates standard typesttas, parameters,
objects, and shared channels, while gslegsion environmeitcontains only judge-
ments for live channel names and channel variables. FigiBedawell-formedness

1 Note, that we could easily have extended the syntax to aljovauhic class creation, but
this is orthogonal to session typing.

22

Well-formed Standard Types

Class Wi-Session Pair Bool
C € D(CT)
FC:tp Fs:tp F(s,5):tp Fbool:tp
Subtyping
CeD(CT) C<:D D<E
(s,5) <:s (s,5)<:s C<:C C<E

class C extends D {ft M} € CT
C<:D

Standard Environments, and Well-formed Standard Environments

M= 0|l,this:C | Mx:t |[,0:C|Tl,c:sch

Emp Ethis EVar
MFok CeD(CT) this¢g D(I) Mok Ft:itp xg&D()
O+ ok I, this : CF ok Mx:thFok
EQid ECha
NFok CeD([CT) og DN FEok c¢g D)
o:Ckok [,c :schF ok

Session Environments, and Well-formed Session Environmés

Z2=0|%u:0

SEmp SERC
Skok udD(Z)
0 ok Y.u:0F ok

Fig. 9. Standard Types, Subtyping, and Environments

of standard and session environments, where the domain@fwaronment is de-
fined as usual and denoted BY).

As we already discussed in Example 5.4, in order to avoid@egsterleaving, we

need to distinguish the unique (if any) channel identifierexntly used to commu-
nicate data. Therefore we record a third set,libesets, which is either empty, or
contains a single channel identifier belonging to the sessmwvironment. Thus the

23

typing judgement for expressions has the shape:
M2 S5ke:t
wheres is either0 or {u } withu € D(Z).

We adopt the convention that typing rules are applicablg @rfien the session
environments in the conclusions are defined.

Expressions The typing rules for expressions are given in Fig. 10 and Fig.
Looking at these rules two observations on hot sets are inateed

e in all rules excepConn, Receive$ Weak and WeakB the hot sets of all the
premises and of the conclusion coincide;

¢ inall rules whose conclusion is a session expression thediatf the conclusion
is the subject of the session expression.

These two conditions ensure that if réeakB is not applied in deriving the type
of an expression or thread, then all communications usedime $ive channel, and
therefore sessions are not interleaved. This is proved mrha 7.9.

In rule Conn the ended session type becomes shared, and therefore iarttie-c
sion the hot set is empty.

The conditionn # €.end in rulesSendSandReceiveSensures that the exchanged
channels have not yet been consumed. This requirementieéspghe progress
proof, since it guarantees that all live channels have adyfferent frome.end (see
Lemma B.2(1)). Since .receiveS (x){e} in rule ReceiveSreceives along the live
channel a channel that will replace, the hot set of the premise{s }, while that

of the conclusion iu }. Example 5.6 justifies the requirement thais the only
live channel ofe.

Lastly, ruleWeak replaces an empty hot set by a set containing an arbitrary ele
ment.

Notice that, in the derivation of a judgment of the sh&p@; S+ e :t (i.e, where
the session environment is empty) the type MeakB has never been used. Thisis
S0, because after using riliéeakB the session environment will contain a premise
whose predicate is a session type starting w#gin, and rulesConn, ReceiveS
cannot discharge such a kind of premises. See the discussithre typing of Ex-
ample 5.4 in Subsection 6.1.

The session environments of the conclusions are obtainettfrose of the premises
and possibly other session environments usingctirecatenatioroperator,o, de-
fined below. The typing rules concatenate the session enmieats to take into
account the order of execution of expressions.

24

Typing Rules for Values

Chan Null Oid
[',c:sch ok N=ok Ft:itp Mo:Ckok
[,c:sch;0;0Fc:(s,s) 0,0 null : t Mo:C;0,0Fo0:C
True False
I+ ok I+ ok

[:0;0F true : bool :0;0F false : bool

Typing Rules for Standard Expressions

Var This
Mx:tFok IM,this: CF ok
Mx:t;0,0Fx:t IM,this:C;0F this: C
Fid Seq
MZSke:C ft cfields(C) MESket MY,Ske it/
M Skef it Moy Skee :t’
FIdAss

[SSke:C 3Ske':t ft e fields(C)
MSoY;Skef:=e':t

NewC NewS
ok CeD(CT) [+ ok
M0;0 new C:C ;0,0 new (s,5):(s,s)
Spawn NullPE
MZ,Ske:t ended) NFok Ft:tp

%5 spawn{ e }:Object ;0,0 NullExc : t

MethMinus
20, Ske:C IM;Z;Skeiity ie{l...n}
mtype(m,C):tl,...,tn,pl,...,pmgt
[2Z00%1...0Zp0{u1:P1,...,um:PmpSHe.m(eq,...,enu1,...,um) : t

MethPlus
M20;{ui}te:C TI;Z;{ui}kei:t;y ief{l...n}
mtype(m,C) :tl,...,tn,pl,...,pmgt
F;Zoozl...oZno{ul:pl,...,um:pm};{ul}I—e.m(el,...,en,ul,...,um) ot

Fig. 10. Typing Rules for Expressions |

25

Typing Rules for Communication Expressions
Conn
0,0 u:beginn T\u;Zu:n;{u}Fe:t
;2,0 connect u begin.n{e}:t

Send Receive

M2 {ulke:t Mok Ft:tp
M Zo{ult};{u} Fu.send(e):Object M {u:?t};{u} F u.receive :t

SendS
MN-ok n#c¢€end
M {u :n,u:t(n)};{u} F u.sendS(u’) : Object

ReceiveS
F\x;{x:n}{x}Fe:it n#ecend
M {u:?2(n)};{u} - u.receiveS (x){e} : Object

SendIf
M 20;{u} Fe:bool MZu:p;{utteiit 1€{1,2}
M 2002, u l{p1,p2);{u} Fu.sendlf (e){e; }{e2}:t

Receivelf
MZu:p;{utkeiit 1€{1,2}
M Z,u?(p1,p2); {u} Fu.receivelf {e; }{ea }:t

SendWhile
[;0;0+ e :bool M {u:m;{u} ket
M {u 3(m*}; {u} - u.sendWhile (e){e’} :t

ReceiveWhile
M{u:m};{u} Fe:t
M5 {u 2 };{u} F u.receiveWhile {e } :t

Non-structural Typing Rules for Expressions

WeakES

WeakE Consume
M ZSkeit ugDEZ) MZu:mcSke:t MZ,u:cend;Ske:t
M 2,u:g;Ske:t M2,u:Ttend; SHe:t MZul;Ske:t
Sub Weak WeakB
M<:Ske:t ¢ <ot/ MZ0Fe:it ueDX) M Zcip;{cthre:t
rs:ste:t’ ' M {ulte:t

I; Z,c:begin.p;0Fe:t

Fig. 11. Typing Rules for Expressions Il

26

The concatenation of two channel typg@sand &' is the unique channel type (if

it exists) which prescribes all the communicationstofollowed by all those of

©’. The concatenation only existséfis a partial session type possibly prefixed by
begin, and@’ is a running session type. The concatenation cancels nuasss,

so for exampleo [=]. The extension to session environments is straightforward
As usual, L stands for undefined.

Definition 6.1 (Concatenation)

(

0 if 0=¢
o’ if 6=c¢
0.end if 8 =¢.endand
000/ 0 is a partial session type possibly prefixeddagin
[] @) =
begin.0/ if 8= begin.e and® is a running session type
0.0/ if Ois a partial session type possibly prefixeddagin

and®’ is a running session type

\ 1 otherwise

o I\ = {u:Z(u)|ueDE)\DE)}

I\ UZ\ZU{u:Z(u)oZ(u) | ueD(Z)ND(Z")}
o 30 = if YueD(E)ND(Z'): Z(u)oX'(u)#L;

1 otherwise

In the above definition we avoided the occurrence of meaessg| e.g, we never
create the session typkdol .€. This is why the definition considers several differ-
ent cases. An alternative would allow the occurrence of nmggesse, and would
consider session types which differ fooccurrences as equivalent.

In the following we discuss the most interesting typing sui@r expressions.

Rule Spawnrequires that all sessions used by the spawned thread alfg Goa-
sumedj.e., they are all ended session types. This is necessary in trgeeserve

the bilinearity conditione.g, avoid configuartions such ggawn { c.send (1) };c.send (true).
To guarantee the consumption we define:

endedX) =VYu:0 € Z. Bis an ended session type.

For example.ended{c :?bool.end,c’1{?bool.end,!bool.end)}) holds, while, on
the other han@nded{c :?bool }) doesnot hold.

27

MMinus-ok
mtype(m,C):tl,...,tn,pl,...,pmgt {this:C,x:t}; {y:p}; OFe:t
tm (tx,py) {e}:okinC

MPIlus-ok
mtype(m,C) =t1,...,tn,PL---.Pm 2t {this:C,x1t}; {yip}; {ys} Fe:t
tm (tx,py) {e}:okinC

C-ok

mtype(m,D) defined = mtype(m,C) = mtype(m,D) M:okinC
class C extends D {ft M} : ok

CT-ok

class C extends D {ft M} : ok D = Object or D defined inCT CT: ok
CT,class C extends D {ft M} : ok

Fig. 12. Well-formed Class Tables

RulesMethMinus andMethPlus retrieve the type of the methad from the class
table using the auxiliary functiomtype(m,C). The session environments of the
premises are concatenated witln; : p1,...,um: Pm}, Which represents the com-
munication protocols of the live channels,...,uy during the execution of the
method body. RuldethMinus requires the hot sets of all the premises and of the
conclusion to be the same. RiNEethPlus expects the actual parameterto be a
channel identifier that will be used within the method bodgdily as if it was part

of an open session. Therefore the hot sets of all the prerarstsf the conclusion
must be{u1}. We callu 1 thesubject of the method catbo a call of methods whose
type is decorated bg has a subject, while a call of methodséyhas no subject.

Rule Conn ensures that a session body properly uses its unique chaceeaiding
to the required session type. The first premise says thatizene! identifier used
for the sessionu) can be typed with the appropriate shared session tygggn(n).
The second premise ensures that the session body can beityfiesrestricted
environment” \ u with a session environment containing n and with hot set

{u}.

Lastly, in rulesReceivelFandSendIFbothp; andp, are either partial session types
or ended session types — this is guaranteed by the syntaxnoitmmal session
types (see Fig. 8).

We discuss the non-structural rules in Subsection 6.1.

28

Class Tables Fig.12 defines well-formed class tables. Note that we exjbect
selection of thes in the method type lookup functiomtype(..,..) to correctly
pick betweers and® so as to satisfy ruleIMinus — ok andMPlus — ok, which
type-check the method bodies with respect to a clagaking as environments
the association between formal parameters and their type$hee association be-
tweenthis andC. These rules differ in the hot sets used to type the methoakbpd
thus MPlus — ok allows a receive or send on the first channel parameter, while
MMinus — ok does not allow any send or receive on the channel parameters.

In keeping with [37], we leave implicit the requirement tina¢thods are not over-
loaded,i.e., that no method is defined more than once in a class body, ahdoh
field is declared more than once in a class hierarchy. Alscegpkng with [37],
we explicitly require that method overriding preserves tyyge of the overridden
method.

Start Par
MIke:t M2 - R:thread i€{1,2}
>+ e:thread %122 Py| P2:thread

Fig. 13. Typing Rules for Threads

Thread Inthe typing rules for threads, we need to take into accdwtithe same
channel can occur with dual types in the session environsredittvo premises. For
this reason we compose the session environments of theggsmmsing thparallel
composition|.

Definition 6.2 We define parallel compositioft, on session types and on session
environments as follows:

1 if 8=9¢

1 otherwise.

08’ =

I\ UZ\NZUA{u:Z(u)|Z(u)|ueD(Z)ND(Z)}
XY = if YueD(E)ND(E): Z(u)||Z'(u) # L
1 otherwise.
Note that] |6 =6| [= L.
Using the operatdf the typing rules for processes are straightforward (seeliBg

Rule Start promotes an expression to the thread level; and PPaletypes a com-

29

0;0;0+ true:bool
0;{c:€};0+ true:bool
0;{c:e};{c} F true:bool
0;{c bool };{c} I c.send (true) : Object
Fig. 14. A Type Derivation using RulédeakESandWeak

position of threads if the composition of their session smvnents is defined.

In writing session environments we assume the followingafee precedence:o,
|. For exampleo, ¢ : T 2> is short for((Zo, ¢ : M)oZ1)||Z>.

6.1 Justifying Examples

In this subsection we discuss the typing of the threads slo®B and we also give
examples justifying the non-structural rules, except tde Sub which is obvious.

Example 5.1:The thread; | P, is not typable since the parallel composition of the
corresponding session environments is undefined.

Example 5.2: The threadP; cannot be typed since:

e the expression in line 3 can only be typed by r8lendSwhich requires for the
sent channet; a live channel type terminating bynd in the session environ-
ment;

¢ the expression in line 4 can only be typed by rRleceivewhich requires also a
live channel type different frora for the channet in the session environment;

e to type the composition of these two expressi@exjrequires the concatenation
of the corresponding session environments to be definedhisut false since a
type terminating byend cannot be concatenated to a live channel type different
frome.

Examples 5.3 and 5.4Neither thread can be typed. For example, to type the ex-
pressions in line 3 ifP, using rulesSend andReceive {c1} and{c,} should be

the hot sets, respectively. Notice that r8eqrequires the premises to share the
same hot set. We could use ruM&akES andWeakB to force the hot set of the
first premise to bgcz}, but then ruleConn would not be applicable to type the
whole expressior;.

Example 5.5:1t is clear from rulesMethMinus andMethPlus that the hot sets
of the receivers, of the actual parameters and of the metbdb cannot be two
different live channels.

Use of non-structural rules.

30

S w N [

Rule WeakES, whereES stands for empty session, is necessary to add a channel
to a session environment and riléeak is used to specify an hot set. Look for
example at the typing af.send (true), as shown in Fig. 14.

With rule WeakESwe can derivé®; {c:€}; O+ null:thread and then with ruleStart
andPar we can derived; {c :] } F null|null: thread. Sincenull|null = null, in order
to have type preservation under structural equivalence eeel to be able to also
derive tha®; {c :] } I null:thread. This gives the motivation for rul€onsume The
derivation works as follows: use rul®tull, WeakES andWeakE to obtain®; {c :
€.end}; OF null: Object Then, applyConsumeand obtair®; {c:] }; 0} null: Object
Then, applyStart and obtair®; {c :[} - null:thread.

The design of rul€onsumeis delicate, and we considered several alternatives. We
chose to start from the predicatend for the same subject, since this simplifies
the proof of Lemma 7.2 (see Appendix A). Moreover, we choseédsign rule
Consumefor expressions (and not for processes) since this giveBaiproperty
thatl; Z e :thread impliesl™; Z; S e :t for somes,t. This property significantly
simplifies the proof of subject reduction.

Rule WeakE, whereE stands forend, allows us to obtain ended session types as
predicates of session environments, as required in ordee table to apply rules
Conn, Spawn, ReceiveS For example, through application dfue, Weak, Send

we obtain®; {u :'bool };{u} - u.send(true) : bool. Then, through application of
WeakE we obtain0; {u :'bool.end};{u} F u.send(true) : bool. Then,Spawn is
applicable, and giveB; {u :!bool.end}; {u } F spawn { u.send (true) }:Object

Rule WeakB, whereB stands for begin, is necessary for type preservation under
execution. For example, consider the threBdandP, defined as follows:

connect cl begin.!bool.end {
connect c2 begin.!bool.end {
c2.send(true) };
cl.send(fal se) }

connect cl begin.?bool.end {
connect c2 begin.?bool.end {
c2.receive }
cl.receive }

A woN e

Py P>

Clearly, we can deriv®; 0+ Py |P,: thread.
Starting with a heap, the above two threads in parallel reduce to:
c’.send (true); c5.send (false) | c}.receive ; ch.receive, h:ichiich

wherec’ andc), are the fresh live channels, that replaced respectivelgndc,
when the sessions began. Fig. 15 shows a typing/feeceive ; c’.receive; the first
rule on the right isNVeakB.

31

0; {c’,?bool };{c’} I c’.receive :bool

0; {c’:begin.?bool }; 0 - c}.receive :bool
0; {c’ ool };{c’} I c].receive :bool 0;{c5:begin.?bool };{c’} - c5.receive : bool

0; {c’ ool ,c5:begin.?bool }; {c}} - c}.receive ; c5.receive : bool

Fig. 15. A Type Derivation using RuM/eakB

HCha HNull
ceDh) (s,5)<:s’ C e D(CT) HTrue HFalse
htc:s’ htnull:C ht true : bool hF false : bool
HObj wfobj B
h(o)=(C,...) C'<C h(o)=(C,f:v) fields(C)=ft hivj:t;
hto:C hEo
WfHeap

Yo e D(h): hto YVoeD(l): ht-o:T (o)
Ve e D(NHUDE): ceh DM)ND(E) =0
2Fh

Fig. 16. Types of Runtime Entities, and Well-formed Heaps

7 Type Safety and Communication Safety

We will consider only reductions of well-typed expressiamsl threads. We define
agreement between environments and heaps in the standprahave denote it
by ;2 h. The judgment is defined in Fig. 16. The judgmbhtv : t guarantees
that the runtime value has typet. In rule HCha we use<: in order to write only
one rule, which allows to derive types of both shapess() ands). For objects we
take subclasses into consideration in rhl@®bj. The judgment - o guarantees
that the object is well formed,i.e,, that its fields contain values according to the
declared field types i@, the class of that object. The judgmé&nt - h guarantees
that the heap is well formed fdr andZ, i.e,, that all objects are well formed, all
objects in the domain df have a class which is a superclass of their declared class
in h, all channels in the domain éfand ofZ are channels ih.

We definel™; ;S - e;h, as a shorthand fdr; ;S e : t for somet andl"; > h.
Similarly I'; 2+ P;hmeand ;2 + P : thread andl;Z+ h.

32

7.1 Subject Reduction

In this section, we outline the proof of subject reductiohjlevwe give full details
and proofs in Appendix A.

As usual, we use Generation Lemmas. The Generation Lemntassiwork are
somewhat unusual, because, due to the non-structura) wites an expression is
typed, we only can deducsmeinformation about the session environment and
hot set used in the typing. For example; S - x :t doesnotimply thatZ = 0;
instead, it implies thaR (¥) C {¢g,e.end, begin.€.end, begin.€}, whereR () is the
range ofZ.

In order to express the Generation Lemmas, we define theaparder< among
pairs of session environments, and hot sets, which bagiedlects the differences
introduced through the application of nonstructural rules

Definition 7.1 (Weakening Order <) (1) ;S < ¥';$" is the smallest partial or-
der such that:

52X uigsS ifugDE),

2,u TGS <2,u :Ttend;S,

Zu:eend; S <X u:l;S,

0<% {u},

Zc:p;{c} =X Z c:begin.p;0.

(2 2<% ifZ;$=<x%;5 forsomes, S’

For example{c :?bool }; {c } =< {c :begin.?bool,c’:]};0.

Lemma 7.2 states that the ordering relatigrpreserves the types of expressions,
and is proven in Appendix A.

Lemma7.21f25<3:8 andrl;Z;SFe:t, then I;¥:;5Fe:t.

Generation Lemmas for standard expressions, communmoatjaressions, and pro-
cesses are given in Appendix A (see Lemmas A.1, A.2, and A8)rmake use
of the relation=. For example[;%; 5 - u.send(e):t impliest = Objectand
M2;{u}kFe:t andZofu:lt};{u} <Z;S.

Lemma 7.3 states that the typingBfe| can be broken down into the typing ef
and the typing oE[x|. FurthermoreZ, the environment used to tyfige], can be
broken down into two environmentg,= 21025, whereZ; is used to type:, and
2, is used to typd|x]. The proof is given in Appendix A.

Lemma 7.3 (Subderivations)

If [;Z; 5+ E[e]:t, then there exiski, 2, t’, such that for allk fresh in ET,
3 =7310%p andl;Z;;SHe:t/;andlM x 1t/ 20, S - E[x]:t.

33

On the other hand, Lemma 7.4 allows the combination of theaggoof E[x] and
the typing ofe, provided that the contex&; andX, used for the two typings can
be composed through and that the type of is the same as that afin the first
typing. The proof is given in Appendix A.

Lemma 7.4 (Context Substitution) If [;Z1;SFe:t’, andl x :t'; 52, S - E[x]:t,
andX;oX; is defined, thel; 21035; S+ Ele] :t.

Lemma 7.5 establishes a desirable property of freshnesa: vieell-typed expres-
sion (thread) and an associated well-formed heap, if a ecdanrobject identifier
occurs in the expression (thread), then it occurs in the e@ap

Lemma 7.5 (Fresh Name) (1) If I';Z; S Fe; h, then
(@) oce=o0ch;
(b) cee=o0€h.
(2) If;ZF P;h, then
(@ oeP=o0c¢ch;
(b) ceP=o0¢€h.

We now state the Subject Reduction theorem:

Theorem 7.6 (Subject Reduction) (1) I';Z;S+e :t,andl; 2+ h, ande,h —
e/ ,himplyl;Z;Ste’:t,andlM; Z+h, with[C T,
(2) T;Z+P;hand Ph— P .0 imply ;2 - P, with C " andz C &',

The proof, givenin Appendix A, is by structural inductionthe derivatiore,h —

e/, orPh— P’ . It uses the Generation Lemmas, the Subderivations Lemma,
and the Context Substitution Lemma, as well as further lemystated and proven

in the appendix, and which deal with properties of the relat, of the operations

o, and||, and substitutions.

7.2 Communication Safety

Even more interesting than subject reduction, are thewiotig properties:

P1 (communication error freedom) no communication error cacuo, i.e., there
cannot be two sends or two receives on the same channel itheparawo dif-
ferent threads;

P2 (progress) typable threads can always progress unlessfdine fllowing sit-
uations occurs:
¢ anull pointer exception is thrown;

e there is a connect instruction waiting for the dual connestruction.

P3 (communication-order preserving) after a session hasrb#ggrequired com-

munications are always executed in the expected order.

34

In order to staté®1, we add a new constabmmErr (communication errorto the
syntax and the following rule to the operational semantics:

Eile]|E2[e’] — CommErr

if e ande’ are session expressions with the same subject and are raifdrech
other, — dual expressions were defined on page 8. We can now firat we never
reach a state containing such incompatible expressions.

Corollary 7.7 (CommErr Freedom) Assumd ;2 -~ P;h and PO — P’,i. Then
P’ does not contai@ommeEtr, i.e., there does not exist Q such thatPRQ | CommeErr.

The proof of the above corollary follows from the fact thataronunication error
only happens if two threads contain, in evaluation posgj@ession expressions
with the same subject, which are not dual of each other, aaidthie parallel con-
catenation of such threads is not well typed. The rest isgsttforward from the
subject reduction theorem.

7.3 Progress

This subsection states the main result of this paper — thgggss property?2 holds
in our typing system. A summary of the proof is given here;ftiieproof is rele-
gated to Appendix B.

Propertied?2 andP3 hold for a thread obtained by reducing a well-typed (from an
empty session environment) closed thread in which all esgpoms are user expres-
sions.

We write [To<i<n €i foreo| ez | ... | en—1. We say a threa@ is I'-initial if ;0

P : thread is derivable and the domain 6f contains all and only shared channels
andP = [Mo<i<n €i Wheree; is a user expression. We denotetipythe heap which
contains only the shared channels in the domain dfotice thatP I"-initial implies
0+ P;hr, i.e, the heaghr agrees witH -initial threads.

We start by formalising two crucial properties assured biytgpe system. The first
property is the bilinearity of live channels.

Lemma 7.8 Assume Ris I -initial and By, hr — P, h. Then each live channel oc-
curs exactly in two threads in P.

The second property assures that sessions are not inedlledven ruleWeakB

is never applied. For stating this property contexts aredfiaAs usual we add the
hole]] to the syntax of expressions and we say that a context is aassipn which
contains one hole (notati@ |). Clearly evaluation contexts (as defined at page 9)

35

are particular contexts.

Lemma 7.9 If connect us{e} is an expression which is well typed without using
rule WeakB ande = Cle’], wheree’ is a session expression or a method call with
subjectu’, then one of the following conditions holds:

(1) u=u;
(2) C[] =Ca[connect u’s"{Cy[]}
(3) C[]=Ca[u”.receiveS (x){C2[]}] andu’ = x.

Theorem 7.10 (Progress)Assume gis I-initial and By, hr —— P,h. Then one of
the following holds.

In P, all expressions are values, i.e.7P[(o<j<n Vi;

Ph— P H;

P contains a null pointer exception, i.e.=PNullExc | Q; or

P stops with a connect waiting for its dual instruction,,jR= E[connect cs{e }] | Q.

Proof Outline We show that execution of initial processes preserves ti@yimg
properties

e each live channel occurs in exactly two threads;

e if e precedes’ in some threadife., e will be executed before’), then all live
channels ire are more recent than the live channelgiffwe assume that chan-
nels created at runtime have a “time stamp” and can be digghgd according
to how recent they are).

We then argue that execution of initial processes leads tonfiguration which
is either a sequence a values, or contains a null pointempérce or is waiting
for a connect, or has at least one live channel. In the lasisecwe chose the
most recent one, and find the two threads in which the chasnlela. Because
execution preserves well-typedness, we know that the eldmas dual types in the
two threads. Because of this, if the threads are sessioregsipns, we can show
that they can communicate. Otherwise, they can execut@amdiently.

Appendix B contains the detailed proof.

Note that the Progress Theorem shows thegads can always communicate at live
channelsFrom the above theorem, immediately we get:

Corollary 7.11 (Completion of Sessions)Assume gis I-initial and Ry, hr —
P, h. Suppose B [o<;<n ei and irreducible. Then either adl; are valueg0 <i <n)
or there is som¢ (0 <j < n) such that; € {NullExc, E[connect cs{e}]}.

Finally we state the main properti?3) of our typing system. For this purpose, we
define the partial order on session types as follows.

36

Definition 7.12 (Evaluation Order) 6 C €' is the smallest partial order such that:

eCLp;
pLTLP;
T C T(m, ™) (i € {1,2});
T.p C T, 2).p (i € {1,2});
ni E t(n1,n2) (i € {1,2});
T (m*,) C < ",
T (m*,).p C (m".p;

pCp |mpI|esbeg|n p C begin.p’.

The partial orderC takes into account reduction as formalised in the following
theorem: any configuratioi[eo] | Q, h reachable from the initial configuration and
containing the irreducible session expressignif it proceeds, then either

(1) itdoes so in the sub-thre& or
(2) Q contains an expressia, (dual ofeg), which
(a) interacts witkeg, and
(b) has a dual type at, and
(c) then the type of channelin the resulting process “correctly shrinks” as
g Co.

Theorem 7.13 (Communication-Order Preservation)Let Ry bel -initial. Assume
that Ry, hr —— Eleo]|Q,h — P’,h/ whereeg is an irreducible session expression
with subjectkc. Then:

(1) P =Eleo]|Q, or

(2) Q= E'[eg]|R withep dual ofeg and
(@) Eleo] |E/[eh][Rh— e|e/|R.
(b) I;Z,c:0F Eleq] : thread andl;Z/,c : O+ E'[ef)] : thread; and
(c) r;i,c @' F e : thread andF,Z’,c -0 F e’ : thread with @ C 6.

8 Inference of Session Environments, Hot Sets, and SessioypEs for connect

Although the type system is flexible enough to express istarg protocols, typing
as described so far is somewhat inconvenient, in that itiregjthe hot sets and the
session environments to be assumed (or “guessed”). In ¢oisos, we develop
inference rulegor expressions and threads which have the shape

NFeit |58 and I+ P:thread || =

and which express that session environments and hot setieaved rather than
assumed.

37

Extension of session environment schemes
Z(u) ifueDZ),

Z(u) = .
€ otherwise

Ending of running session type schemes and of session enwiroent schemes

(

t(ml,ml), if p=1(m, ™) for somem, 1,
g mt (ml,m]), if p=T101(m, ™) for somer, y, T,
PL= p, if pis an ended session type scheme
| P-end otherwise.

2l ={u:Z(u)] JueD(E)}
Union of hot sets

S1USy ifeither§g =S o0orS=00rS =0,

S1HS8 =
1502 {L otherwise

Fig. 17. Auxiliary Operators for Inference

For simplicity we only consider typing of initial threadsychtherefore we do not
allow to use ruleNeakB. This is enough, since by the Subject Reduction Theorem
we know that all threads obtained by reducing well-typecallis are well typed
too.

We extend the syntax of types with tlséandard type variableganged over by
@, which stand for standard types, and thertial session type variablesanged
over by, which stand for partial session types. In this way, for eanh of the
syntactic categories in Fig. 8, we obtain a correspondinggray ofschemesand
similarly for the environments. We use for them the sametimial conventions.
Notice that, since we do not allow to use rileakB, all predicates in session
environment schemes for typing expressions are runnirgj@esype schemes.

Fig. 17 gives some auxiliary operators on session enviroiraehemes and hot
sets. Theending operator,, appends if meaningfudnd to running session type
schemes, propagates inside the final branches of condipanizal session types,
and does nothing otherwise. The ending operator genesaissession environ-
ment schemes in the expected way (see Fig.17).

The more interesting inference rules for the expressiodgfaeads occupy Fig. 18.

Other rules are left to Appendix C. The rules are applicalolly @ all sets in the
conclusion are defined.

38

MethMinusl
NFe:C|Z0;8% Thkeiity[] Z;85 ie€{l...n}
mtype(m,C):tl,...,tn,pl,...,pmgt
FEem(eq,...,enut,...,um)it [| Z00Z1...0Zno{u1:P1,.- ., Um:Pm}; SoWS1W... WS
MethPlusl
NFe:C|Z0;850 20C{u1} Trkeitti[] 285 SC{ui} ie{l...n}
mtype(m,C):tl,...,tn,pl,...,pmgt
Ne.m(eq,....enU1,...,um):t [ZooZ;...0Zno{u1:P1,- -, Um:Pm};{us}
Connl

_ if u is a variabld (u) <:s
MNube:it]S Z(u)=p s=beginopl) SC{u}

if uisanamd (u) =sch
I+ connectus{e}:o(t)[] 0(X)\u;0

Sendl Receivel
NFeit |28 SC{u} I ok

INFu.send(e):Object|] Zo{ult};{u} T Fu.receive:@[] {u:?p};{u}

SendSl
I ok

[+ u.sendS(u’): Object[] {u’:W.end,u:!(P.end)}; {u}

ReceiveSl
MNxFe:t [{x:p}S SC{x} p#e
I F u.receiveS (x){e } :Object[] {u:?(pl)};{u}

Sendlfl

Me:tg H 205 T Fej:t; |:| 558 Zi(u) =pi Sj € {u} i € {1,2} kS {0,1,2}
0 =E({(t1;t2), {to;bool)} U{(Z1(u’);Za(u’)) | Vu' £ u.u’ € D(Z1) ND(Z,)}U
{(Zi(u");e.end) |Vu' #u.u' € D(Z) & u' & D(Z;)i,j € {1,2}})

,) pil if pjisanended session type scheme . . .
'“ 1o otherwise Al ieh
S={u":eend |Vu' £ u.u' € D) & u' & D(Z;)}

[u.sendlf (e){e1 }{eox }:0(t) [] 0(Zo)o(0(Z1\ u,u {p|,p5))UZ);{u}

Fig. 18. Selected Inference Rules for Expressions

As usual, the inference rules are structura, depend on the structure of the ex-
pression being typed; typically, the inference system do¢bave rules lik&\Veak.

Therefore, the inference rules must play also the role ohtbre structural typing
rules.

Rule MethMinusl uses the union of hot sets to check if all hot sets are eitleer th

39

Startl Parl
FFe:it [| %8 [+P:thread [£ TP :thread [| &

[e:thread [| Z [=P|P:thread [| Z||| Y

Fig. 19. Inference Rules for Threads

same or empty. In rulMethPlusl all hot sets of the premises must be either empty
or just contain the running channe.

RuleReceivelintroduces a standard type variable, since we do not knowyieeof
the data that will be received. RugendSlintroduces a partial session type vari-
able, since we do not know the type of the channel that will d&r&.9We always
assume the introduced variables to be fregh,they cannot occur elsewhere in the
current deduction.

In rule Connl we do not know if the session environment inferreddarontains a
premise foru, for this reason we use the extension of session environscéeimes
defined in Fig. 17.

An inference substitutigo, maps standard type variables to standard type schemes,
and partial session type variables to partial session tgperses. We use an infer-
ence substitution in rul€onnl in order to unify the shared session typeavith
begin.p |, wherep | being inferred may contain variables. That is, we require

s = begin.o(p]). We prescribe the domain ofto be the set of type variables which
occur inp.

We need some definitions for combining session environneh@rses.

Given afinite set of pairs of standard type schemes and rgreg@ssion type schemes
E={(tit)) |1<i< m}u{(pj;p’j> | 1< j <n}, anequality solverof = is an in-
ference substitutiow such that we have(t;) = o(t{) for 1 <i < mand either
o(pj) = a(pj), o(pj 1) = o(p}) or a(pj) = o(p] |) for 1 < j < n. Themost gen-
eral equality solveof =, E(Z), is the solveio such that ifo’ is a solver of=, then
there is an inference substitutia{ such thato = o’ o ¢”. It is routine to show
that if a set has a solver, then it also has the more generalFame=xample the
most general equality solverof {(@; bool), (?%p.end;) } is defined byo () = bool
ando () =?bool, while there is no solver fof (@; bool), (?p.end; Zint) }. The most
general equality solver is used in rul8endlIfl (and Receivelfl which is left to
Appendix C) in order to unify the types of the two branches.

Given afinite set of pairs of running session type scheined (pi;p{) | 1 <i<n},
a duality solverof = is an inference substitutioo such that for 1<i < n, we
have eithero(p;i) = a(p;), a(pi |) = o(p{), or a(pi) = a(p;). Themost general

40

0F5:int [| 0;0
0+ x.send (5):Object|] {x :lint};{x}
O+ co.receiveS (x){x.send (5) } : Object|] {c2:?(lint.end)};{c2}
1+ e:Object[] 0;0 Fite @[] {c1:20};{c1}
Mke;e @[{c1:?20};{c1}
[I connect c1 begin.?int.end{e;e’}:int [] 0;0

wheree = connect cpbegin.?(lint.end).end{c.receiveS (x){x.send (5)}},
e’ =cy.receive, [= {cy:sch,ca:sch}, 1 = {c2:sch}.

Fig. 20. An Example of Inference

duality solverD(=) is defined similarly to the most general equality solver. For
example the most general duality soh@pf {(?g;!bool), (!¢@.end; P)} is defined
by o(¢) = bool anda(y) =?bool.

We use the most general duality solver to defineghieallel composition of session
environment schemes:

Y =0(Z\DE))uc(Z\DE)U{ullueDE)NDE)}

wherea = D({(Z(u); Z'(u)) |u € D(Z)ND(Z')}). ThereforeZ|||Z" is undefined
if there is no duality solver of (Z(u);Z'(u)) |u € D(Z)ND(Z')}. We use the
parallel composition of session environment schemes mRall. Notice that by
construction in the premises of this rule the set of typealdds which occur ix
and inY’ are disjoint.

Note that the inference & does not rely ons, so that we can obtain the same
result for the system without.

As an example we show the inference for the threadf Example 4.4 in Fig. 20.

We can show that inference computes the least session emards and hot sets,
as stated in the following theorem, whose proof is given ipé&mpdix C. We first
need to introduce an order on session types and on sessignreanents which
takes into account the absence of weakening rules in thanjgence. This order
is a restriction of the weakening order of Definition 7.1.

Definition 8.1 (Inference Order)

(1) 6 € &' is the smallest partial order such that
e TIE Tlend, and
e cend €.
(2) ze¥ iff VueD(Z):Z(u) €Z'(u),andVueD(ZN\D(Z): Z'(u) €.

41

Clearly ~ € ¥’ impliesZ < ¥/, but the vice versa is not true. For examgle:
?bool } € {c ?bool.end,c’:]}, but{c ?bool } & {c:begin.?bool,c’:]}, also if{c:
?bool };{c} < {c :begin.?bool,c’:]};0.

Theorem 8.2 (1) IfI";Z; S+ e:t without using ruléNeakB, thenl -e:t’ [| Z';.5

whereo(t’) =t ando(¥’) € Z for some inference substitutianand s’ C .

(2) fr'ke:t [] Z;8, then for all inference substitutiors such thato(X) is a
session environment amt) is a type, we get;0(%); S e:o(t).

(3) If I'; 2+ P:thread without using ruléWeakB, thenl” - P:thread [] £’ where
o(') € Z for some inference substitutian

(4) IfI - P:thread || Z, then for all inference substitutiomssuch thato(X) is a
session environment, we gét:.o(X) - P:thread.

Note that the above theorem assures that the present tyjgensgajoys the princi-
pal type property in the classical sense of [31].

9 Related work

Systems for processes, Subject Reduction and Progress

Session types for the-calculus are the subject of many works [6,7,11-13, 18,
27,28, 32,34, 35, 48]. More recently, sessions were ingatpd into boxed ambi-
ents [26], and higher-order processes supporting codelityddi3].

In all previously mentioned papers on session types, tyipaguarantees the ab-
sence of run-time communication errors. However, not aliheim have the sub-
ject reduction property: the problem emerges when sendidgrestantiating a live

channel to a thread which already uses this channel to comcatenas in Exam-
ple 4.4. This example can be translated into the calculiistuoh [6, 28, 34, 51],

and this issue has been discussed with some of the authdrssaf papers [1]. The
recent work [54] analyses this issue in detail, compaririiedint reduction rules
and typing systems appeared in the literature [6, 28, 34, 51]

MoOSE has been inspired by the previously mentioned papers, hewee be-

lieve that it has been the first calculus which guaranteesratesof starvation on
live channels also in presence of delegation (progressowitdelegation is only
considered in [21]). For example, we can encode the couatisopExample 5.4 in
the calculi of [6, 28, 34, 51]. In the language of [51] we capeyhe parallel of the
following processes (obtained by translating the threddsxample 5.4):

42

[l funl x y = /[l fun2 x y =
let u = request x in let u = accept x in
let w=request y in let w=accept yin

let i =receive uin send 5 on w,

let | =receive win send 6 on u;
close u; close w, close u; close w,

[=2] o S w N [
o 00 A W N P

Note that in the above two interleaved sessions are edtablifiowever no session
can proceed, because the progress of each is dependentmaghess of the other:

before line 4 of the left hand process can reduce, line 5 ofitjle hand process

must be made available in parallel; a similar dependencyrsdmetween lines 4 and
5 of the right and left hand processes, respectively. Furibee, observe that such
deadlocks can also occur due to interdependencies ama®dhmore processes,
in which case they cannot be detected easily. We believestitht configurations

are clearly undesirable, and for this reason our typingesystejects interleaved

sessions.

The same problem arises in the calculi of [6, 28, 34], wheeepievious example
is written as follows:

accept x(u)
accept y(w
W [5];
ut[6];

request x(u) in
request y(w) in
u?(i);
we(j)

AW ON P
A W N R

Note that by simply dropping the hot set, we can flexibly abt@iversion of the
typing system which preserves the type safety and typeantar results, but allows
deadlock on live channels like the above mentioned liteeatin this sense, our
system is not only theoretically sound, but also modular.

Clearly, allowing asynchronous communication enhancegress: for example the
processes of Example 5.4 would not be stuck any more. Sesgies which take
advantage of asynchronous communication are studied]ridd& suitable variant
of MoosE There the conditions for progress are relaxed, allowitgtieary (non-
blocking) outputs to appear inside nested sessions.

In recent work by some of the present authors [18], more flextionditions for

progress are studied in the context of a process languagieinsystem, inter-
leaving is allowed by permitting hot sets to contain morentbae element, and
progress is ensured using a causality partial order, ieguh a significantly more
fine-grained analysis. For instance the translation of Ep{ar.3 is typable in the
type discipline of [18].

43

Advanced session types

An issue that arises with the use of sessions is how to grodplistinguish differ-
ent behaviours within a program or protocol. In [34] and stheently in [29] the
authors utilise labelleranchingandselection the first enables a process to offer
alternative session parts indexed by labels, and the sesasgd dually to choose
a part by selecting one of the available labels. In [27,2858% branching and
selection are considered as an effective way to simulat@adstof objects. Our
conditional constructs are a simplification of branchingd aalection, therefore the
same behaviour realised by branching types can also bessqueising our types.
A different branching mechanism is proposed in [19, 23], glte choice on how
to continue a session is made on the basis of the class of jbet sent/received.

Session subtyping systems range from simple session sngtyg8] to more com-
plex bounded session polymorphism [27], which enablespatiac polymorphism
of session types. Inspired by [27], [19] enhances the esprigg of session types
in objects, by allowing bounded polymorphism for a suitadieension of MOSE

As another study on the enrichment of basic session typ¢6€] the authors inte-
grate thecorrespondence assertion$ [30] with standard session types to reason
about multi-party protocols comprising of standard irgaxled sessions.

In this work, our purpose was to produce a reliable and exténsbject-oriented

core, and not to include everything in the first attempt; hasvesuch richer type

structures are attractive in an object-oriented framewbf®OSsEcan be used as a
core extensible language incorporating other typing syste

Linear typing systems

Session types for the-calculus relate to linear typing systems [33, 39], whosexma
aim is to guarantee that a channel is used exactly or at mastwithin a term.

In the context of programming languages, [25] proposes a system for check-
ing protocols and resource usage in order to enforce lityeafivariables in the
presence of aliasing. They implemented the typing systeaint [17], a low
level C-like language. The main issue that they had to addseshat a shared
component should not refer to linear components, sincsiatieof the shared com-
ponent can result in non-linear usage of any linear elementghich it provides
access. To relax this condition, they proposed operationsdfe sharing, and for
controlled linear usage. In our system non-interferencensured by operational
semantics in which substitution of shared with fresh chéstakes place when re-
ducingconnect, and therefore we do not need explicit constructs for thippse.
Finally, note that the system of [25] is not readily appliea a concurrent setting,
and hence in channel-based communication.

44

Programming languages and sessions

In [51] the authors define a concurrent functional languaigle session primitives.
Their language supports sending of channels and higherealues that do not
contain running sessions, and incorporates branchingeledt®n, along with re-
cursive sessions and channel sharing. Moreover, it inecatps the multi-threading
primitive fork, whose operational semantics is similar to thasgfwn. Finally,
their system allows live channels as parameters to fungtiand tracks aliasing of
channels; as a result, their system is polymorphic.

In [49], the authors formalise an extension to CORBA inteefabased on session
types, which are used to determine the order in which availaberations can
be invoked. The authors defipgotocolsconsisting ofsessionsand use labelled
branches and selection to model method invocation withah ession. Labelled
branches are also used to denote exceptions, and theimsiysterporates recursive
session types. However, run-time checks are consideredlar to check protocol
conformance, and there is no formalisation in terms of dpmral semantics and
type system.

More recently, a similar approach has been used in the SingulOS [24]. Be-
haviour in this system is defined oontracts that contain definitions that form a
state machine of desired message exchange patterns. Msssagppsulate asyn-
chronous method invocation, and consist of information dmctv method should
be invoked, along with the actual arguments to use, when #ssage is received.
Messages are exchanged using bidirectional channelsewlaeh channel has two
explicit endpoints. At the endpoints, the specific methedmired for each state of
the contract are defined. Asynchronous transmission issmehted using message
gueues at each endpoint. In our system, channels have geaad and receive op-
erations, and communication is synchronous. Their systamtlhe property that
each endpoint can only be used by a single thread at a timehwbrresponds to
our property of bilinearity, and this ensures that messagélse endpoint queues
are always ordered. Also, they allow to send channel endgoihich corresponds
to live channel communication in our system. When differaessages can be re-
ceived, they use a form of switch to group the program behasiéor each case,
similarly to [49]. However, in contrast to the latter, caatts are verified statically.

We developed our formalism building upon previous expex@with Lyoos[21], @
distributed object-oriented language with basic sessagabilities. In the present
work we have chosen to simplify the substrate to that of a gorat calculus,
and focus on the integration of advanced session typeslln 42 in all previous
papers on session types, shared channels could only beaedowith a single
session type each, and therefore runtime checks were nateddor connections;
however, this assumption is not necessary, and it is orthalgo the essence of our
system which is the typing of a session body against a sesgien In particular,
in an open environment we cannot assume that the types edcshhannels can be

45

fixed in advance, and the runtime cost of checking compaégibd low, requiring
one check of session duality (and possibly subtype chegking

In our new formulation we chose not to model RMI, and in fact,iateresting
question is whether we can encode RMI as a form of degenearsseos in the spirit
of [49]. Also, we have now introduced more powerful primés/for thread and
(shared) channel creation, along with the ability to dele¢iae sessions via method
invocation and higher-order sessions. None of these feafare considered in [21].
We discovered a flaw in the progress theoremiggys[21], and developed the new
type system with hot sets in order to guard against the oifgnconfigurations.

More recently, [23] suggests an amalgamation of the sesgmmand the object
oriented paradigm whereby sessions are amalgamated wittod®e class defini-
tions contain therefore fields and session/method demasatGeneric classes and
union types for the calculus of [23] are discussed in [10] gijgrespectively.

Behavioural types and Service-oriented computing

Behavioural types for processes (see [38]) have some siti@awith sessions, but
describe communications as types that resemble CCS pescd$snce, these sys-
tems capture the precise interleavings, and using addittags (annotations) they
achieve a fine-grained analysis of deadlock and livenessp@ced to our progress
guarantee, the behavioural analysis is more detailed,thsitniot straightforward
how to adapt such techniques compositionally in a claseehabject language
without losing the appeal of being sufficiently simple foagtical implementa-
tions.

In [2] a process language for service oriented computingimélised, using a
system of types similar, but simpler, to the behaviouraétypf [38]. Their system
ensures a progress property for service clients, which semgtural since their
sessions take place in nested scopes, and are not intetleave

Objects implementing services are studied in [9] in an dbpased formalism
where communication is realised as a form of remote methedcation. Their
system uses a language of spatial-behavioural types thag)qaess sequencing
and parallelism of usages on objects, recursive behaviangsdynamic capabili-
ties through owned types.

A different approach to the description of communicatiootpcols is based on the
notion of contract [8, 14]. The theory of contracts formetighe compatibility of
a client to a service and the safe replacement of a servicenbther service by
using behavioural equivalencies. An interesting comparisetween contracts and
session types is developed in [40].

46

Implementations

An early implementation of session types in Haskell is tHdéd] where session
types are mapped to existing type constructs, which caefiver be implemented
without extending the language.

More recently, in [16], session types are consideredFtgran implementation of
a ML dialect. The work describes a system for ensuring sgcafimulti-role ses-

sions in the absence of trust. Session types are compileggtographic protocols
in a way such that during execution every party is guarantequlay their role.

Runtime verification is used to detect behaviour incompatiith a session.

The most relevant implementation is that of [36]. In this ke language Java
is extended with basic session primitives for creating isestyped sockets and
for performing communications governed by sessions basadiowork [20], and
also [19] and [15]. Sessions are defined by means of “protatmlarations and
static type checking is used to ensure safety, in combinatith a dynamic agree-
ment of session types between parties that are connectieigaogession-typed
socket. At the level of types our conditional types are repthwith the more gen-
eral label-indexed branching and selection types fountienliterature (see [34]),
and the implementation also supports our session iter&yjes, session delega-
tion, and subtyping. Communication is asynchronous andntipbementation has
been measured to have a very small performance overheadacethip untyped
socket communication.

10 Conclusion and Future Work

This paper proposes the language®kE a simple multi-threaded object-oriented
language augmented with session communication primigwestypes. MOSE
provides a clean object-oriented programming style farcdtiral interaction pro-
tocols by prescribing channel usages as session types. Wgde typing system
for MoosEand prove type safety with respect to the operational seosgaiVe also
show that in a well-typed MosE program, there will never be a communication
error, starvation on live channels, nor an incorrect corihebetween two party in-
teractions. These results demonstrate that a consistegtation of object-oriented
language features and session types is possible wheraypetiness can guaran-
tee the consistent composition of communication protoctbsour best knowl-
edge, MbosEis the first application of session types to a concurrentatipeented
class-based programming language, apart from [21]. Furibee, type inference
of session environments (Theorem 8.2), and the progregsepyoon live chan-
nels with delegation (Theorem 7.10) have never been prog&ddin any work on
session types including those in treealculus.

47

Exceptions and timeout

One feature not considered in our system, although impbirngsractice, is excep-
tions; in particular, we did not provide any way for a sesdigpe to declare that
it may throw acheckedexception, so that when this occurs both communicating
processes can execute predefined error-handling code. livaus way to encode
an exception would be to use a branch as in [49]. In additidrerwa thread be-
comes blocked waiting for a session to commence, in our tipaed semantics, it
will never escape the waiting state unless a connectionrsctiupractice, this is
unrealistic, but it could have been ameliorated by intradga ‘timeout’ version of
our basic connection primitive such asnect (tineout)u s {e}. However, con-
trolling exceptions during session communication andiseda timeout would be
non-trivial since we wish to preserve the progress propamtiive channels. There-
fore we plan to investigate these issues.

Acknowlegments Eduardo Bonelli, Adriana Compagnoni, Kohei Honda, Simon
Gay, Pablo Garralda, Elsa Gunter, Antonio Ravara and Vasszoncelos, dis-
cussed with us subject reduction and progress for systertis s@ssions types.
Vasco Vasconcelos and the ECOOP reviewers gave useful stimage Alexander
Ahern contributed to the initial design part which forms &isaf MOOSE Mario
Coppo pointed out a mistake in a previous progress proof aggested a way out.
Discussions with Marco Carbone, Kohei Honda, Robin Milned éhe members
of W3C Web Services Choreography Working Group for theidaimbration on
[13, 52] motivated the example in Section 2. Finally, we wislhank the anony-
mous reviewers of the present submission for their feedbabich has lead to a
strongly improved version. The work is partially supporlscdEPSRC GR/T03215,
EPSRC GR/T03208, EPSRC EP/F003757 and 1IST2005-015905 M®BI

References

[1] Personal Communication by E-mails between the authbj§, @8, 34, 51].

[2] Lucia Acciai and Michele Boreale. A Type System for Cliétrogress in a Service-
Oriented Calculus. In Pierpaolo Degano, Rocco De Nicolal dmsé Meseguer,
editors, Concurrency, Graphs and Modelgolume 5065 ofLNCS pages 642—658.
Springer-Verlag, 2008.

[3] Alexander Ahern and Nobuko Yoshida. Formalising JavalRiith Explicit Code
Mobility. In Ralph Johnson and Richard P. Gabriel, edit@QPSLA '05 pages 403—
422. ACM Press, 2005.

[4] Lorenzo Bettini, Sara Capecchi, Mariangiola Dezaruiaglini, Elena Giachino,
and Betti Venneri. Session and Union Types for Object Ogi@énProgramming.

48

In Pierpaolo Degano, Rocco De Nicola, and José MeseguiorgdConcurrency,
Graphs and Modelsvolume 5065 o NCS pages 659—-680. Springer-Verlag, 2008.

[5] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. Mt Imperative Core
Calculus for Java and Java with Effects. Technical Repdst &hiv. of Cambridge
Computer Laboratory, 2003.

[6] Eduardo Bonelli, Adriana Compagnoni, and Elsa Guntenr€spondence Assertions
for Process Synchronization in Concurrent Communicatiaf@mirnal of Functional
Programming 15(2):219-248, 2005.

[7] Eduardo Bonelli, Adriana Compagnoni, and Elsa Guntgpethecking Safe Process
Synchronization. In Julian Rathke, edit&iGUC’'04, volume 138 ofENTCS pages
3-22. Elsevier, 2005.

[8] Mario Bravetti and Gianluigi Zavattaro. A Theory for 8trg Service Compliance. In
Amy L. Murphy and Jan Vitek, editorSSOORDINATION’07volume 4467 oLNCS
pages 96-112. Springer-Verlag, 2007.

[9] Luis Caires. Spatial-Behavioral Types, Distributeghices, and Resources. In Ugo
Montanari, Donald Sannella, and Roberto Bruni, editdi&C’'06, volume 4661 of
LNCS pages 98-115. Springer-Verlag, 2006.

[10] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Céaytini, Sophia Drossopoulou,
and Elena Giachino.
Amalgamating Sessions and Methods in Object Oriented Lagegi with Generics.
http://www.di.unito.it~dezani/papers/ccddg.pdf. Submitted, 2008.

[11] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A Qakof Global Interaction
Based on Session Types. In Jean-Pierre Jouannaud and l&reMaditors, DMC’06,
volume 171 oENTCS pages 127-151. Elsevier, 2007.

[12] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Stmect Communication-
Centred Programming for Web Services. In Rocco De NicoléoedESOP’'07
volume 4421 oLNCS pages 2-17. Springer-Verlag, 2007.

[13] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Theamake Aspects of
Communication-Centred Programming. In Catuscia Palassidand Frank D.
Valencia, editorsl.IX’06, volume 209 oETNCS pages 125-133. Elsevier, 2008.

[14] Giuseppe Castagna, Neil Gesbert, and Luca Padovanhetrl of Contracts for Web
Services. In Philip Wadler, editoBOPL’'08 pages 261-272. ACM Press, 2008.

[15] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Ni&b Yoshida. Asynchronous
Session Types and Progress for Object-Oriented Langudgeédarcello Bonsangue
and Einar Broch Johnsen, editoRMOODS’07 volume 4468 oLNCS pages 1-31.
Springer-Verlag, 2007.

[16] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournkarthikeyan Bhargavan, and
James Leifer. Secure Implementations for Typed Sessiotrddi®ns. In Riccardo
Focardi, editorCSF'07, pages 170-186. IEEE Computer Society, 2007.

49

[17] Robert DeLine and Manuel Fahndrich. Enforcing Higével Protocols in Low-Level
Software. In Michael Burke and Mary Lou Soffa, editot,DI'01, volume 36(5) of
SIGPLAN Noticespages 59-69. ACM Press, 2001.

[18] Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, aNobuko Yoshida. On Progress
for Structured Communications. In Gilles Barthe and C&Bournet, editorsTGC’'07,
volume 4912 oLNCS pages 257-275, 2008.

[19] Mariangiola Dezani-Ciancaglini, Sophia Drossopayl&lena Giachino, and Nobuko
Yoshida. Bounded Session Types for Object-Oriented Lagegialn Frank de Boer
and Marcello Bonsangue, editoAMCO’06, volume 4709 oL NCS pages 207-245.
Springer-Verlag, 2007.

[20] Mariangiola Dezani-Ciancaglini, Dimitris Mostrouslobuko Yoshida, and Sophia
Drossopoulou. Session Types for Object-Oriented Languiage Dave Thomas,
editor, ECOOP’06 volume 4067 ot NCS pages 328-352. Springer-Verlag, 2006.

[21] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, RleAhern, and Sophia
Drossopoulou. A Distributed Object Oriented Language v@8#ssion Types. In
Rocco De Nicola and Davide Sangiorgi, editof$;C’'05 volume 3705 ofLNCS
pages 299-318. Springer-Verlag, 2005.

[22] Sophia Drossopoulou. Advanced Issues in Object Cetthanguages Course Notes.
http://www.doc.ic.ac.uk/"scd/Teaching/AdvOO.html.

[23] Sophia
Drossopoulou, Mario Coppo, and Mariangiola Dezani-Ciglina Amalgamating
the Session Types and the Object Oriented Programming igarad InMPOOL'07,
2007. http://homepages.th-regensburgsaepool/mpool07/programme.html.

[24] Manuel Fahndrich, Mark Aiken, Chris Hawblitzel, Onddodson, Galen C. Hunt,
James R. Larus, , and Steven Levi. Language Support for RddRaliable Message-
based Communication in Singularity OS. In Willy Zwaenepeelitor, EuroSys2006
ACM SIGOPS, pages 177-190. ACM Press, 2006.

[25] Manuel Fahndrich and Robert DeLine. Adoption and BodRractical Linear Types
for Imperative Programming. In Laurie J. Hendren, ediRitDI'02, volume 37(5) of
SIGPLAN Noticespages 13-24. ACM Press, 2002.

[26] Pablo Garralda, Adriana Compagnoni, and Mariangiokz@hi-Ciancaglini. BASS:
Boxed Ambients with Safe Sessions. In Michael Maher, edRBDP’'06 pages 61—
72. ACM Press, 2006.

[27] Simon Gay. Bounded Polymorphism in Session Typeaithematical Structures in
Computer Scienge 8(5), 2008. to appear.

[28] Simon Gay and Malcolm Hole. Subtyping for Session Tyipetbie Pi-CalculusActa
Informatica 42(2/3):191-225, 2005.

[29] Simon Gay, Vasco T. Vasconcelos, and Antonio Ravarassi®n Types for Inter-
Process Communication. TR 2003-133, Department of Comgputiniversity of
Glasgow, 2003.

50

[30] Andrew D. Gordon and Alan Jeffrey. Typing CorresponckenAssertions for
Communication Protocols. In Stephen Brooks and Michaelldvés editors,
MFPS’01, volume 45 ofENTCS pages 379—-409. Elsevier, 2001.

[31] J. Roger Hindley. The Principal Type Scheme of an ObjecCombinatory Logic.
Transactions of the American Mathematical Sogi&g6:29—60, 1969.

[32] Kohei Honda. Types for Dyadic Interaction. In Eike Bestlitor, CONCUR’93
volume 715 ofLNCS pages 509-523. Springer-Verlag, 1993.

[33] Kohei Honda. Composing Processes. In Guy L. Steeléore@OPL'96 pages 344—
357. ACM Press, 1996.

[34] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. guage Primitives
and Type Disciplines for Structured Communication-basesgfmming. In Chris
Hankin, editor,ESOP’98 volume 1381 ofLNCS pages 22-138. Springer-Verlag,
1998.

[35] Kohei Honda, Nobuko Yoshida, and Marco Carbone. WebiSes, Mobile Processes
and Types. The Bulletin of the European Association for Theoreticalnfpater
Science91:165-185, 2007.

[36] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Sessaset Distributed
Programming in Java. In Jan Vitek, edit&lCOOP’08 volume 5142 o NCS pages
516-541. Springer-Verlag, 2008.

[37] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadld-eatherweight Java: a
Minimal Core Calculus for Java and GACM TOPLAS$S23(3):396—-450, 2001.

[38] Naoki Kobayashi. A New Type System for Deadlock-Freedesses. In Christel Baier
and Holger Hermanns, editotSONCUR’06 volume 4137 oL.NCS pages 233-247.
Springer-Verlag, 2006.

[39] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turnkinearity and the Pi-
Calculus.ACM TOPLAS21(5):914-947, 1999.

[40] Cosimo Laneve and Luca Padovani. The Pairing of Cotdraod Session Types.
In Pierpaolo Degano, Rocco De Nicola, and José MeseguiorgdConcurrency,
Graphs and Modelsvolume 5065 of NCS pages 681-670. Springer-Verlag, 2008.

[41] Robin Milner, Joachim Parrow, and David Walker. A Cdiiof Mobile Processes,
Parts | and Il.Information and Computatiqri00(1), 1992.

[42] Dimitris Mostrous. Moose: a Minimal Object Orientedriguage with Session Types.
Master’s thesis, Imperial College London, 2005.

[43] Dimitris Mostrous and Nobuko Yoshida. Two Session TgpiSystems for Higher-
order Mobile Processes. In Simona Ronchi Della Rocca, editocCA’07, volume
4583 of LNCS pages 321-335. Springer-Verlag, 2007.

[44] Matthias Neubauer and Peter Thiemann. An Implemeariatif Session Types. In
Bharat Jayaraman, editdPADL’04, volume 3057 ofLNCS pages 56—70. Springer-
Verlag, 2004.

51

[45] Nathaniel Nystrom, Stephen Chong, and Andrew C. Mye8galable Extensibility
via Nested Inheritance. In Doug Schmidt, editoOPSLA'04 pages 99-115. ACM
Press, 2004.

[46] Benjamin C. PierceTypes and Programming LanguagegIT Press, 2002.
[47] Stephen Sparkes. Conversation with Steve Ross-TaftoM Queue4(2), 2006.

[48] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Int¢iaebased Language and
its Typing System. In C. Halatsis, D. Maritsas, G. Philolyprand S. Theodoridis,
editors,PARLE’'94 volume 817 olLNCS pages 398-413. Springer-Verlag, 1994.

[49] Antonio Vallecillo, Vasco T. Vasconcelos, and AntoriRavara. Typing the Behavior
of Objects and Components using Session Types. In AntorogiBmd Jean-Marie
Jacquet, editorsdfOCLASA'02 volume 68(3) ofENTCS pages 439-456. Elsevier,
2002.

[50] Vasco Vasconcelos. Typed Concurrent Objects. In Maokoro and Remo Pareschi,
editors, ECOOP’94 volume 821 oLLNCS pages 100-117. Springer-Verlag, 1994.

[51] Vasco T. Vasconcelos, Simon Gay, and Antébnio Ravara. ypethecking a
Multithreaded Functional Language with Session Tydémorical Computer Science
368:64-87, 2006.

[52] Web Services Choreography Working Group. Web Servi€dsoreography
Description Language. http://www.w3.0rg/2002/ws/chor/

[53] Nobuko Yoshida. Graph Types for Monadic Mobile Proesss In Vijay Chandru
and V. Vinay, editorsFSTTCS’96number 1180 in LNCS, pages 371-386. Springer-
Verlag, 1996.

[54] Nobuko Yoshida and Vasco T. Vasconcelos. Languageitireés and Type Disciplines
for Structured Communication-based Programming Rewsita Maribel Fernandez
and Claude Kirchner, editorsSecReT’06volume 171 ofENTCS pages 73-93.
Elsevier, 2007.

A Proof of Subject Reduction

A.1 Generation Lemmas

We will prove in Lemma 7.2 thak preserves the types of expressions. In Lemma
A.6 we will show that=< preserves also the types of threads.

Lemma7.21fZ;§ <38 andTl;Z;Ske:t, then I;¥:S8Fe:t.
Proof By induction on the number of basic steps to establish < 3'; §’ (in the

sense of Definition 7.1), and application of the non-stradtrules.

52

Lemma A.1 (Generation for Standard Expressions) (1) I';Z; S+ x :t implies
0;0=<7%;Sandx:t’ e[for somet’<:t.

(2) I;Z; S Fc:t impliesd;0 < %; S andc:sche " andt = (s,5) ort =s.

(3) I';Z; S null it impliesd;0 < Z; 5.

(4) T, %, S F vt withv € {true,false} impliesd;0 < Z;.§ andt = bool.

(5) I';Z; S Fo:t impliesd;0 < %; 5 ando :Ce I for some & t.

(6) I';Z; S NullExc :t implies0;0 < %; S.

(7) T;Z; S Fthis:t impliesd; 0 < Z;.§ and andthis:C € " for some C<: t.

(8) IN';Z;SFeq;en:t impliesZ = X103, andt =t, andl; %j; S F ej:t, for some
Zi,t, (i€{1,2}).

(9) I Z;Ske.fi=e':t impliesZ = %1035, andlM; 2 ;SFe:Candlr; 2o, SHe’:t
with ft € fields(C) for somex,2,,C.

(10) I'; £, S Fe.f it impliesl; ;S Fe:C andft € fields(C) for some C.

1) r;Z;S+e.m(eq,...,en):t impliesl;Zo; 8’ Fe:C, andl; Zj; 5 e : t;j for
1<i<n—m,andep_mj=ujforl<j<m,andZpo;...0Zn_mof{uy:
P1,---,Um:Pm};S’ < Z;5 and mtype(m,C) :tl,...,tn_m,pl,...,pmg t,
forsome m@<m<n), 5, Z,tj,uj,p;,CA<i<n—-m1<j<m).

(12) I;Z;SFe.m(eq,...,en) t impliesl; Zo; {u1} Fe:C,andl; Zi; {u1} Fej:t;
for1<i<n—m,anden_m+j=ujfor1<j<m,andXgoX;...0%n_mofus:
pl,...,um:pm};{ul}jZ;Sandmtype(m,C):tl,...,tn_m,pl,...,pmgt,
forsome mI<m<n), %, t;,uj,p;,CA<i<n—m,1<j<m).

(13) I';Z; S+ new C:t implies®;0 < Z; S and C<: t.

(14) T';Z; S F new (s,5):t implies®;0 < %; 5 and(s,s) <: t.

(15) I';Z; S Fspawn{ e }:t implies¥’;$’ < Z;, and ende(®’) andt = Object
andlr;¥; §' et/ forsomex’, s t'.

Proof By induction on typing derivations, then case analysis édershape of the
expression being typed, and then case analysis over theulaesipplied. We just
show two paradigmatic cases of the inductive step.

(12) If the expression being typed has the shape(es,...,en), then the last rule
applied isMethPlus, MethMinus or one of the structural rules. We only consider
the case where the last applied rul€isnsume thenMethPlus:

MZ,u:eend;SHe.m(eq,...,en):t
M2 ul;SFe.m(eq,...,en)'t

By induction hypothesis we gét;Zp; S e :C, andlM; Z;; S Fej:tj for 1 <i <
n—m, andep_mej =uj for 1 < j<m andZpoZ;...oZn_mo{u1:P1,...,um:
Pm}i{u1} X Z,u:€.end; S and mtype(m,C) =t1,....,th_m,P1s---,Pm L ¢, for
somem (1 <m<n), Zj,tj,uj,P;,C (1 <i<n—m, 1< | <m). By definition
we also have that,u :€.end;$ < Z,u :];S, and from transitivity of< we obtain
thatXgoX1...0Zn_mo{u1:P1,-.-,um:Pm}p;{us} 2 Z,u];S.

53

(15) If the expression being typed has the shggpsvn { e }, then the last rule
applied is eithe6Spawn or one of the structural rules.
If last applied rule is3NeakB, then

MZ,c:p;{c}tspawn{e }:t
[Z,c:begin.p;OF spawn{e }:t

By induction hypothesis there exist, 5, sothat’; §' < Z,c:p; {c}, andended’)
andt = Objectandrl’;2’; §’ e :t’. The rest follows from the fact that, by definition,
2, c:p;{c} 2 Z c:begin.p;0, and from transitivity of<.

Lemma A.2 (Generation for Communication Expressions) (1) I';Z; S+ connectus {e}:
t impliess = begin.n, andl;0;0+ u :begin.nandl\u;Z,u:n;{u} Fe:t,
andX’;0 < Z; S for somen, 2.

(2) T;%; S F u.receive :t implies{u: 2t };{u} <Z;§.

() IN;Z;SHu.send(e):t impliest = Object andl';2’;{u}te:t’ andX'o{u:
It};{u} < Z;5 for someX’,t’.

(4) T'; %5 F u.receiveS (x){e} : t impliest = Objectand \x; {x:n};{x}te:
t"and{u:?(n)};{u} X Z;$ for somet’,n # €.end.

(5) I; Z;SFu.sendS(u’) : t impliest = Objectand{u’:n,ul(n)};{u} <Z;8
for somen # €.end.

(6) T;Z;8 F u.receivelf {e1 }{e2} :t impliesI; 2" u:pi;{u} Fei:t (i € {1,2})
andX’ u:?(p1,p2);{u} X Z; S forsomex’ p1,ps.

(7) T;Z; 85 u.sendlf (e){e1 }{e2 } :t impliesl;Z1;{u} e :bool andl;2z,u:
pi;{u}beiit (ie{l,2})andZioZy, ul(p1,p2);{u} X Z; 5 forsomey, %y, p1,P2.

(8) I';%; St u.receiveWhile{e }:t impliesl; {u:1t};{u} Fe:t and{u:?(T)*};{u} <
2, S for somert

(9) I;Z; S Fu.sendWhile(e){e’}:t impliesl; 0;0+ e :bool andl™; {u :1t};{u} +
e’:t and{u 1(m)*};{u} < Z;§ for somert

Proof Similar to the proof of Lemma A.1.

Lemma A.3 (Generation for Threads) (1) I';Z+ e:thread impliesl';Z; S e
t for somet.

(2) T; 2+ Py|Py:thread impliesZ = 23|22 andl"; % - R :thread (i € {1,2}) for
somexq, 2.

Proof Similar to the proof of Lemma A.1.

A.2 Types Preservation under Structural Equivalence, ardkuSubstitutions

As a convenient shorthand, for any two entitesndy which belong to a domain
that includesL, we use the notation= y to indicate thak is defined if and only if
yis defined, and ik is defined, thex=y.

54

In Lemma A.7 we show that structural equivalence of termsgmees types. To
prove this, we first prove in Lemma A.4 the neutrality of elert® and associativ-
ity and commutativity of parallel composition of sessiowviesnments. Moreover
we show in Lemma A.5 various properties6f|, ando which easily follow from
their definitions.

Lemma A4 (1) Z1]|0 =%, =0|Z;.
(2) Z1]|Z2 & 2|23
(3) Z1[[(22]|Z3) = (1] Z2)|Zs.

Proof Note that for anyz, ¥', if |2’ is defined, the(Z|Z') = D(Z) U D(Y)).

(1) follows from definition ofi|.

For (2) showVu € D(Z1)UD(Z2) : Z1(u)||Z2(u) £ Zo(u)||Z1(u). For (3) show
Yu€ D(Z1)UD(Z2)UD(Z3) = Za(u)|[(Z2(u)|[Za(u)) = (Za(u)][Z2(u)) [Za(u).

The next Lemmai.e., A.5, characterizes small modifications on operations that
preserve well-formedness of the session environment ceitipo, | and o, and
also the preservation of the relationship It will be used in the proof of Subject
Reduction.

We define:
H !/
Z[u |—>9](u'):{e Ifu_u-,
>(u’) otherwise

Lemma A5 (1) 0<%, and X1||X defined imply 2y < %4|/2>.
(2) Z1]Z2 < Z, implies that there ar&/, X} such that’; < X7 and>; < %), and

> g, =2
3) Zi < X}, and Xj03; defined, imply 21035 defined, andj03) < Xj03).
(4) endedz;) and(Z1UZX})oZ, defined imply

(a) 2o, defined,

(b) (ZlU Z&)OZQ = leZS_OZZ'
(5) ;5 <%;S" implies

(@ Z\u;0=<x%'\u;s,

(b) Z\u;S <\ u;S5" whens # {u}.
(6) {u:6};5 <X Z;$" implies

(@) Z(u) € {6,6.end, begin.B, begin.B.end, |} and

R (Z\u) C {¢&,€e.end, begin.€, begin.c.end,] };

(b) {u:0};0=<Z[u— 0];5 forall &;

(©) {u:n};S < '[u — begin.n]; S for all n.
(7) {u:0}; 8 <%, 8 andzoX’ defined imply

(@) Z[u — 1o’ defined for allr,

(b) Z[u — begin.TjoX’ defined for all,

(€) T8 X Z[u — gloT; .
(8) Z10%||Z30Z4 defined, and{u: 1} <% and{u:1} < Zzimply:

(a) m=Tr;

55

(b) Z1[u — T[”]oZzHZg[u — W]OZ4 = 210_22H23024, for all ’;
(€) Z1[u — begin."|oZy||Z3[u — begin.Tl"[oZ4 = F10%5|| 23024, for all 17".

Proof For (1) notice tha® < X; implies® (21) C {&,€.end, begin.€, begin.€.end, | }
and thatx1||2, defined implie1(u) = (Z2(u)) forall u € D(Z1) ND(Z2).

For (2) one can obtail} andX, by applying toX; andX, the same transformations
which buildZ from % || 2.

(3) follows easily from the definitions ok and ofo.

(4a) is immediate. For (4bndedZ;) and (21U X))oZ, defined imply that
D(Z1)ND(Z2) =0.

(5a) and (5b) follow from the definition of. The condition$ # {u} is necessary
since for exampldu bool }; {u} < {u:begin.!bool }; 0, but®; {u} A 0;0.

(6a) follows from the definition oK and (6b), (6¢) are consequences of (6a).
(6a) implies (7a), (7b) and (7c).

The definition of|| and (6a) imply (8a). Points (8b), and (8c) follow from the ob-
servation that in all the equated session environmentsrdtiqates ofi are].

LemmaA.6 If <3 and ;2 P:thread, then TI;Y¥F P:thread.

Proof By induction on derivations. If the last applied ruleStart use Lemma 7.2.
If the last applied rule i®ar use Lemma A.5(2) and induction.

Lemma A.7 (Preservation of Typing under Structural Equivalence) If ;2 +
P :thread and P=P/, then;Z+ P : thread.

Proof By induction on the derivation c£.

For the case wher@ = P|null, we use Lemma A.3(2), and obtain= ¥;||Z, and
;21 F P:thread andl™; 3 - null:thread . Using Lemma A.3(1) and Lemma A.1(3)
we getl’; 22; 5 F null :ty, and0;0 < 25;5. Using Lemma A.5(1), we obtain that
21 =< Z, and from that, with Lemma A.6 we obtain tHat>; S - P:thread.

For the other two basic cases use Lemmas A.3(1) and A.4§2~¢8 the induction
case use Lemma A.3(1) and induction hypothesis.

We need a substitution lemma which takes into account ngtthel substitutions
of variables by values, but also the substitutionshaf by object identifiers and the
substitutions of channel names and variables by fresh ehaames. The proof by
induction on derivations is standard.

Lemma A.8 (Preservation of Typing under Substitution) (1) If M, x:t; 2,5+
e:t'andl; 0; OF v:t,thenl; Z;SFelv/x]:t’.

(2) IfI,this:C; Z;SFe:t andlM; 0; 0k o:C, thenl; Z; S F e[0/this] : t.

(3) IfM\u; ;S Fe:t andc is fresh, ther ; Z[c/u]; S[¢/u] Fe[C/u]:t.

56

A.3 Types in Subderivations, and Substitutions within &dat

Lemma 7.3 [Subderivations]

If [;Z; S+ Ele]:t, then there existy,2»,t’, such that for allx fresh in ET,
3 =310%p andl;Z;;Se:t/,andlM x 1t/ 20, S - E[x]:t.

Proof By induction onE, and using Generation Lemmas. For exampkes [|;e’,
thenl;Z;Ste;e’:t impliesZ = 3103 andlM; 21, SHe:t’ andlM; Z; S He’ it by
Lemma A.1(8). Then we gét,x :t’;Z5; S - x;e’:t by rulesVar andSeq

Lemma 7.4 [Context Substitution] If I';33; SFe:t’,andl,x :t/;32; S FE[x]:t,
andXjoX; is defined, thel; Z103,; S - Ele] :t.

Proof By induction onE, and using the Generation Lemmas.

A.4 Name Occurrence

Lemma A.9 formalises that a channel or object identifier theurs in an expres-
sion must occur also in the typing environments of that esgica.

Lemma A.9 (Name Occurrence) (1) If ;5,5 et ando € fv(e), theno €
D(I);
(2) IfI';%;8F et andc €fv(e), thenc € D(IM)UD(Z).

Proof By induction on the typing derivation.
We can then show:
Lemma 7.5 (Fresh Name)

Q) fr;%;S+e;h, then
(8 oce=o0c¢€h;
(b) cee=o0e€h.

(2) If;ZF P;h, then
(@ oeP=o0c€h;
(b) ceP=o0¢€h.

Proof The proof is by straightforward induction on the typing oétbexpression
(thread): first, by appealing to the well-formed heap judgetnwe show that any
object or channel occurring in typing environments mustuods heaps which are
well-formed with respect to those environments. Based at #nd using Lemma A.9
we obtain the occurrence result.

57

A.5 Proof of Theorem 7.6

Theorem 7.6 (Subject Reduction).

1D r;ZSke:t,andlMN X+ h, ande,h — e’ ,h imply ;%;S e’ : t, and
MskFhN,withl Cr’.
(2) I;ZFP;hand Ph— PN imply ;2 = P;h withT C " andZ C &'.

Proof By induction on the reductiom,h — e’,h’. We only consider the most
interesting cases.

Rule Spawn Therefore, the expression being reduced has the Ejspawn { e }],
and
(0) H =handP’ =E[null]|e.
Thus, together with the premises we obtain for same
(1) M;Z;S-E[spawn{e }]:t (2) I;ZFh.
The aim of the next steps is to obtain typesefand for E[null].
Applying Lemma 7.3 on (1) we obtain, that’, 1, ¥, with:
(3) IM;Z1;Skspawn{e }:t/, (4) T=3103, (5) Ix:t';Z; SEFE[X:t.
From (3) and Generation Lemmie(, A.1(15)), we obtain for some’, 2, 5":
(6) t'=Object (7) ;S Fe:t”, (8) endedZ)), (9) ;5 <Z3;S.
From (5), type ruleNull, and Context Substitution Lemmiag(, 7.4), we obtain:
(10) ;228 FE[null]:t.
From (10) and ruléstart, and from (7) and rul&tart, we obtain
(11) ;3 F E[null]:thread, (12) I';X] F e :thread.
From (11), (12) and rul®ar we obtain:
(13)T; 2|22+ e | E[null] : thread.
The aim of the next steps is to obtain typesefdE [null] in session environmeit
From (4) we obtain thakq0%, is defined, and therefore, from (9) and Lemma
A.5(3), we obtain
(14) ZjoXjis defined, andX 0%y < 21035.
Also, from (8), Lemma A.5(4b), we obtain
(15) 7|22 = ¥|oZ>.
Therefore, from (13), (14), (15), and Lemma A.6, we obtain
(16) I';ZFe|E[null]:thread.
The case concludes by takid=z, " =" and with (16) and (0).

RuleConnect Then, we have that
(0) P =Ez[connect cs{e1}]|Ez[connect c5{e2}],
(1) W =h:c’, withc’is fresh inh,
(2) P =Eile['/c]]|Ezlez[c'/c]]-
The aim of the next steps is to obtain typessfpand fore».
From premises, (0) and Lemma A.3(2), and A.3(1) we obtaisdone> 1,25, $1,52,t 1,to:

58

() Z=2zif2,
(4) T;%;8 - Ei[connect csi{ei}]]:t; (i € {1,2}),
(5) T;=+h.
wheres1 =s andsy =5.
From (4), applying Lemma 7.3, there ex¥sf, 12, Z21, 222, t,t5, such that:
(6) i =Zj10Zj2,
(7) T;Zi1; 8 F connect csif{ei}:t{ (i € {1,2}),
(8) Ixitt{;ZigSik Eifxi]:ti (i € {1,2}).
From (7), and Lemmas A.2(1) we obtain for soltlg, >/, N1,N2:
(9) I;0;0Fc:si, (10) sij=begin.n;,
(11) T\c;Z;,c:ni;{ctrei:t] (ie{1,2}),
(12) %0 =% S

The aim of the next steps is to obtain types foinPa session environmeit, so
that> C 3.
From (1) and (11), and Lemma A.8(3), we geft;Z/;,c’ 1 ni; {c’} - ei[c'/c] i t]
(i € {1,2}) which implies by ruleNeakB:

(13) ;% ¢ isi; 0 ei[c'/c] t] (i € {1,2}).
(12) impliesX],c’:si; 0 < Zj1,c¢’:si; 5 beinge’ fresh, and then by (13) and Lemma 7.2
we derive:

(14) T;Zig,cisi; S eifc'/c] t] (i € {1,2}).
From (14), (8) and Lemma 7.4, we obtain (notice tf¥ai,c’:si)oZ; is defined by
(6) sincec’ is fresh):

(15) T;(Zig,c’:si)o%iz SiF Eileilc'/c]]:t] (i € {1,2}).
Applying rulesStart andPar on (15), and also the fact th@11,c’:s1)0Z12||(Z21,¢”:
s2)oXpp=X,c’:], we obtain

(16) I;%,c’] Eale1]c'/c]]| Ezlez[c'/c]] :thread.
Take

(17) ¥ =%,c"].
This gives, trivially that:
(18) zC ¥
Also, from (1) and (5) we obtain

(19) ;¥ +H.
The case concludes by considering (16), (17), (18) and (19).

RuleComS Therefore, we have that

(0) P =Ez[c.send(v)]|Ez[c.receive],

(1) P =E[null]|Ez[v], W =h.
From (0), application of the premises, we obtain fhat - E;[c.send (v)] | Ez[c.receive]:
thread, which gives by Lemma A.3(2) and (1) that for solg >, 51, 52, t,, t,:

(2) T;Z1;81F Exfc.send (v)]:tq,

(3) I;Z2; 852 F Epfc.receive]:to,

(4) =212

59

By application of premises, we obtain tHgtz - h.

The aim of the next steps is to obtain typesdoeceive andc.send(v), and for
E1[x] and B[x].
From (2) and Lemma 7.3, we obtain for solng, le,t’l:
(5) 211,851 F c.send (V) Ztg_,
(6) r,X Ztﬁ_; 212:51F E]_[X] t1
(7) Z1=2Z110212.
From (5) and Lemmas A.2(3) and A.1(2), (3), (4), (5), we aibfar somet’:
8) I;0;0Fv:t7,
9) {clti}i{c}2Z8.
From (3), and Lemma 7.3, we obtain for solmg, 22, t5:
(10) T;321;82F c.receive :th,
(11) I,x Ztlz; 222: 52 F Ez[x] to,
(12) 2 =221029.
From (10), by Lemma A.2(2), we obtain:
(13) {c2L}y;{c} <X Zo1;5.
The aim of the next steps is to obtain types fgnkl] and B|v].
From (9), and (7), which gives that 10215 is defined, and Lemma A.5(7a) and
(6b), we obtain:
(14) Zi1[c — €]oZ;2is defined,
(15) {c:e};0<X11[c — €];51.
By rulesNull, andWeakES we obtainl; {c :€};0 + null : t}. Then, by (15) and
Lemma 7.2 we obtain:
(16) T;Z1ac — €];S1F null:t].
From (6), (14) , (16), and Lemma 7.4, we obtain:
(17) T;Z11)c — €]oZ12; 851 F Exfnull] it ;.
From (4), (7), (12), (9), (13), and Lemma A.5(8a) we obtaiatt = t’. There-
fore, with (8) and (11) we obtain
(18) T;222; 52 Exlv]:to.
Furthermore, from (13), (12) and Lemma A.5(7c) we can dedbhet22;; 5> <
221[c +— €]oZ; S2. From that, (18) and application of Lemma 7.4, we obtain:
(19) T;Z21(c — €]oZnp S F Exfv]:t).
Furthermore, from (4), (7), (12), (9), (13) and Lemma A.5(8ke obtain:
(20) Zj1]c — €loX1||Z21(c > €|oZpn = 2110212 2210222
The case concludes by applying rular and Start to (17) and (19) taking (20)
into account.

RuleComSS We have:
(0) P=Ej[c.sendS(c’)] | Ex[c.receiveS (x){e}],
(1) P =Enull] | e[c/x] | Ez[null],
(2) W=h,
(3) I; =k P:thread.
From the premises, and using Lemma A.3(2) and (1), we obbasome> s, 25, 51, 52,t 1,t 2:
(4) ;21,85 Eq[c.sendS(c’)]: ty,

60

(5) TI; 2282 Epfc.receiveS (x){e}] : to,
(6) Z=2Z1)Z2.
The aim of the next steps is to obtain types fgin&l], Ex[null], ande [c/x].
From (4), using Lemma 7.3 and Lemma A.2(5) we obtain for s@me>1,,t7,n #
€.end:
(7) M 211,51 F c.sendS (C/) . tll,
(8) Ty:t];X18F Ely] ity,
(9) 21 =23110212,
(10) tj = Object
(11) {ct(n),c’:n};{c} = Zi1;8.
(11) and Lemma A.5(5a) imply
(12) {<’:n};0=<Z11\c; 5,
which gives byn # €.end and Lemma A.5(6a)
(13) Z11=127;,c’:0 whereB € {n,begin.n}.
(13) and (9) imply by Lemma A.5(4a)
(14) X} 0X12 defined.
(11) and (13) imply by Lemma A.5(5b)
(15) {cd(n)}i{c} 228
Using rulesNull, WeakESwe obtain:
(16) T;{c:e}; 0F null:t.
By (15), (14), and Lemma A.5(7a) and (6b) respectively weshav
(17) Z&l[c — 8]0212 defined,
(18) {c:e};0 =X [c — g]; 1.
From (18), (16), and using Lemma 7.2 we obtain:
(19) I; ¥qlc —€]; S1bnull:t].
From (8), (19), (17) and Lemma 7.4, we obtain:
(20) I;Z}4[c — €loZ12; 851 F Exnull]:ty.
From (5), using Lemma 7.3 and Lemma A.2(4) we obtain for sBme> o, t5, 1’ #
€.end:
(21) T'; 221,82+ c.receiveS (x){e} : th
(22) T,y :th; Zop 85 F Exly] i to,
(23) Z2=221022,
(24) t’, = Object
(25) {c2n")}i{c} 2221352,
(26) T'\x;{x:n'};{x}Fe:t’
Similarly and simpler than the proof of (20) we can show:
(27) T;Z21)c — €]oZp2; S F Ep[null] it o.
From (26) using Lemma A.8(3) we obtain:
(28) I;{c":n'};{c'} Felc/kx]:t’.
The aim of the next steps is to show that the type wded to type.sendS (¢’) is
dual to that used to type.receiveS (x){e }, and that the parallel composition of the
session environments used to typénll], Ex[null], ande[c/x] is the same a&.
(23) and (9) imply by Lemma A.5(4b)
(29) 2110212 = c’: 9”2&10212.

61

(6), (9), (23) and (29) imply:
(30) 2310212H2210222 defined.
From (30), (15), (25) by Lemma A.5(8a) we get:
(31) !(n)="2n’),
which implies:
(32) n=n"
Again from (30), (15), (25) by Lemma A.5(8b) we get:
(33) Z&l[c — E]OzleZm[c — 8]0222 = lelozleZﬂOZzz.
(6), (9). (29), (23), and (33) imply:
(34) 2= {C/ . G}HZ’H[C — 8]0212H221[C — 8]0222.
From (28), (13) and (32), possibly usiiigeakB andWeak, we derive:
(35) I;{c’:8};{c/}Felc/x]:t’
The case concludes by applying rulear and Start to (20), (27), (35) by taking
into account (34).

Rule ComSWhile.Then, we have that:
(0) P = Ei[c.sendWhile(e1){e2}]|Ez[c.receiveWhile{es}],
(1) h=h,
(2) P = Eiles] | Eofeg],
where we are using the shorthands:
(3) es=c.sendlf (e1){e2;c.sendWhile(e1){e2}}{null},
(4) eg = c.receivelf {e3;c.receiveWhile{e3} }{null}.
From premises, (0) and Lemma A.3(2), and A.3(1) we obtaisdonex1, 22, $1,52,t 1,to:
(5) I;Zkh,
(6) Z=2Z1)|Z2,
(7) T;%1;81F Ex[c.sendWhile(e1){e2}]:t1,
(8) T;%2;8 F Ep[c.receiveWhile{es}]:to.
From (7), (8) applying Lemma 7.3, there ex3gh, 212, 221, 222, t1, t5 S0 that:
(9) 1 =3110Z12, 2= 321022,
(10) I;Z114; 851 F c.sendWhile (eq){e2} :t],
(11) Mx: tll; 212,51 F E]_[X] T,
(12) T;321;8F c.receiveWhile {eg}:t5,
(13) IM,x: t/2;222;52 F Ep[x]:to.
The aim of the next steps is to find typesdgrandes, and E [es].
From (10), and Lemma A.2(9), we obtain for somge
(14) {c Hm)"}i{c} = 211551,
(15) I'; 0,0+ ey :bool,
(16) I;{c:m};{c}Fen:t].
We will be usingrp as a shorthand defined as follows:
(17) o =N(m.!(Ty)*).
By application of type ruledNull, Weak, Sendlf, Seq SendWhile on (15) and
(16), and using the shorthands (3) and (17) we obtain:
(18) I;{c:m};{c}Fes:t].
From (14), and application of Lemma A.5(6¢), we obtain that:

62

(20) {c:m};{c} =X Z11[c > begin.TR]; $1.
By application of Lemma 7.2 on (18) and (20), we obtain:

(21) I;Z11[c — begin.Tp]; S1 F es5:t).
By (9), we have thak;102 15 is defined, and therefore, by (14) and application of
Lemma A.5(7b) we also obtain thati[c — begin.Th]oX 1, is defined. Therefore
by applying Lemma 7.4 on (11) and (21) we obtain:

(22) I le[c — begin.T[z]ole; S1 F E]_[e5] Ztﬁ_.
The aim of the next steps is to find typesdgrandeg, and B[eg.
By arguments similar to those used to get (14) and (16), waiolitom (12) for
somert:

(23) {c:Xm)*};{c} = Z21;52,

(24) T;{c:m};{c}Fez:th.
We use the shorthand

(25) Tu =2TG.2(TG)",€).
Then, by arguments similar to those used to get (22), we okhai:

(26) I Zzl[c — begin.T[4]0222; S1F Ez[es] ‘to.
The aim of the next steps is to show that the typeused to types is dual to that
used to typeg, and that the parallel composition of the session enviramsesed
to type B [es] and By[eg] is the same aX.
Because of (14), (23), beirfy10515]|Z210%2- defined, and by Lemma A.5(8a) we
obtain that:

(27) m=Tg,
which implies:
(28) ™ =Tq.

Therefore, using (14), (23), beig 103 12|| 221022, defined, and by Lemma A.5(8c)
we obtain that:

(29) le[c = begin.T[z]OZ]_z H Zzl[c — begin.T[4]0222 = 2110212 H 2210222
The case concludes by applying rular and Start to (22), (26), and taking into
account (29), (9), and (6).

B Proof of Theorems 7.10 and 7.13

We start from basic properties of live channels. In Sectiavedused the notion of
live channel in an informal way; here we need to give a predcenal definition.

Definition B.1 A channek is live in a process P if P= C[e], the expressionr is
either a session expression with subjeatr a command sending the chanmrel
and there are no contextg(, Cy[] such that P= Cy[connect c s{C[e]}].

For examplecl andc2 are live ino. f; cl.send(3); c2.receive; also,cl andc2
are live inc2. sendS(c1){...}; butcl is notlive in connect c1!int{cl.send(3)};
finally, a channel variable is never live.

63

LemmaB.2 (1) If I';ZF e:thread andc is live ine, then ¢ 0 € X for some
0 & {€,e.end, begin.€, begin.€.end,] }.
(2) Assume gis T -initial and By, hr — P,h. Then; 2+ P; h for somd™, Z, such
that all predicates irk are |.

Proof (1) By definitione = C[e’] wheree' is either a session expression with sub-
ject c or a command sending the chanielln the first case by Lemma A.2(2),
(3), (4), (5), (6), (7), (8), and (9) and in the second case byjnina A.2(5) the
session environment for typirg must contain a premise with subjecaind pred-
icate different frome, €.end, begin.€, begin.€.end, begin.€.end, |. The proof is then
by structural induction o[| taking into account tha| | # Ci[connect c s{Cp[]}]
forall C1[|, Co[]

(2) Py initial implies that it is typed with the empty session eoviment. Looking
at the proof of the Subject Reduction Theorem for threadsdtear thatConnect

is the only rule in which one needs to add premises to the@esgsivironments.
Moreover the added premise is of the shagevherec is the fresh created channel.

LemmaB.3 (1) If E[spawn{ e }]is well typed, then no live channel occurs both
in E[] and ine.
(2) If E[c.receiveS (x){e}] is well typed, then no live channel occursein

Proof (1) If E[spawn { e }] is well typed, then by Lemma 7.3 there &, $,t,%3,25,t’
such thatl;Z; S + E[spawn{ e }]:t andl;Z3;S + spawn{ e }:t’ andl,x:
t’;22; S F E[x]:t andZ = Z10%5. By Lemma A.1(15), there arE’; §’ such that
¥, 8" < Z1;5 andended’). By Lemma B.2(1) a live channel & must occur in
the domain of’, and therefore it cannot occur in the domairkef Becaus& 103,

is defined, and fronendedZ’), it follows that no live channel ir can occur in
E[x].

(2) If E[c.receiveS (x){e }] is well typed, then by Lemma 7.3 there &/, S, t 21,
2,,t’' suchthaf;Z; S+ E[c.receiveS (x){e }]:t andl’; Z3; S I c.receiveS (x){e }:t’
andl,y :t’;22; S F Ely]:t andZ = Z;0%5. By Lemma A.2(4), there ig such that
{c:n};{c} =< Z1;S, which implies the thesis by Lemma B.2(1).

Lemma 7.8 Assume @is I-initial and By, hr —— P,h. Then each live channel oc-
curs exactly in two threads in P.

Proof By induction on——. The base case is trivial, since there are no live channels
in the typing environments of an initial thread. TGennectrule creates a new live
channel in two different threads. By Lemma B.3(1) the livamhels which occur

in E1[spawn { e }] are split betweetk; [null] ande. By Lemma B.3(2) all the live
channels which occur iBj[c.receiveS (x){e }] are inE1[null].

We saye is irreducibleif e /—. The key in showing progress is the natural cor-
respondence between irreducible session expressionsaatial pession types for-

64

malised in the following definition.

Definition B.4 Definell between irreducible session expressions and parts of ses-
sion types as follows:

c.receive 0% c.send(v) Olt c.receiveS (x){e} 0?(n) c.sendS(c’) O!(Nn)

c.receivelf {e1}{e2} Op1,p2) c.sendlf (v){e1}{e2} O/ (p1,p2)
c.receiveWhile {e } Om)* c.sendWhile(v){e} O!(1)*

Notice, that the relatior [1t reflects the “shape” of the session, rather than the
precise types involved. For exampe[1?t impliese 0%’ for any typet’.

The following proposition is immediate from the definitioh(o.
Proposition B.5 If e O mande’ O T, thene ande’ are dual of each other.

Using the Generation Lemmas and Lemma 7.3 we can show thespomdence
between an irreducible session expression inside an ei@i@ntext and the type
of the live channel which is the subject of the expression.

Lemma B.6 Lete be an irreducible session expression with subgeandl ;3 -
Ele]:thread. Thene O mandZ(c) € {1 begin.Tt, TLend, TL.p, begin.TLp} for some

T, P.

Proof By Lemmas A.3(1) and 7.3 we gEtY’; S+ e :t’ for someX’ < X andt’.
By Lemma A.1(2), (3), (4), (5) the session environments atttping of values are
always> 0. Then from Lemma A.2(2), (3), (4), (5), (6), (7), (8), (9), wete I Tt
andX(c) € {1 begin.T;, TLend, TLP, begin.TLp} for somert, p.

The following three lemmas state a relationship betweershts and subjects of
session expressions and of method calls. In these lemmasngider typing of
initial threads so that rul&/eakB has never been applied. In fact ruléeakB
introduces a session type starting tigin in the session environment, which can
never be discharged in order to obtain an empty sessioncemaent.

Lemma B.7 Lete be a session expression or a method call with suhjeotd rule
WeakB be never applied in the considered typings.

(1) The expressioa must be typed with hot sét }.

(2) IfT; %, SECle]:t,andS # {u}, then either C] = Cy[connect us{Cy[]}] or
C[] = Cy[u’.receiveS (x){Cy[]}] andu =x, i.e.,e occurs in the body either
of aconnect or of areceiveS expression, and in the last case= x.

Proof (1) Immediate from Lemmas A.2(2), (3), (4), (5), (6), (7)),®) and A.1(12).

65

(2) From (1) we get that must be typed with hot s€u }. Then the claim follows
by observing that the only typing rules different froMeakB which change non-
empty hot sets ar€onn, ReceiveS

Notice that Lemma B.7 does not hold if we allow riweakB, since for example
we can derivé; {c : begin.!bool }; 0 c.send (true) : Object

Lemma 7.9 If connect us{e} is an expression which is well typed without using
rule WeakB ande = Cle’], wheree’ is a session expression or a method call with
subjectu’, then one of the following conditions holds:

Q) u=u’;
(2) C[] =Ca[connect u’s"{Cy[]}];
(3) C[]=Ca[u”.receiveS (x){Cy[]}] andu’ = x.

Proof From Lemma B.7(1) we get that must be typed with hot s€u’}. From
the typing ruleConn we get that must be typed with hot sé€u }. So we conclude
using Lemma B.7(2).

LemmaB.8 (1) Iftm (tx,py) {e}isokinsome classytype(m,C) :tl,...,tn,pl,...,pmg
t ande = C[e'], wheree' is a session expression or a method call with subject
u, then one of the following conditions holds:
(@) C[] =Cy[connect us{Cy[]}];
(b) C[]=Ca[u’.receiveS (x){Co[|}] andu = x.

(2) Iftm (tx,py) {e}isokinsome classtype(m,C) =t1,.. .t Pl Pm—

t ande =Cle'], wheree’ is a session expression or a method call with subject
u, then one of the following conditions holds:
(@) u=yu;
(b) C[] =Ci[connect us{Cy[]}];
(c) C[] =Cy|u’.receiveS (x){Cp[]}] andu = x.

Proof The proof is similar to that of Lemma 7.9, taking into accothmt rules
MMinus — ok andMPlus — ok do not allow to use rul&VeakB in typing e and
that these rules require respectively the empty set andeti{g §} as hot sets of.

The following definition shows the order in which expressiane reduced.
Definition B.9 Lete be an expression argl, e be two subexpressions ©f
e precedegsine iff e =Cle’] ande’ =E[e1] =C/[e?]

for some contexts(C, E[] and C[].

Notice that any expression precedes itself since we cansehalb contexts as the
empty one.

In the following we convene that the fresh channels creaddcing a thread take
successive numbers according to the order of creatiortheg.arecg, c1,.... This

66

means that iP,h — Q,h — R h” andc;j is a channel created in the reduction
P,h— Q,l, andcj is a channel created in the reductiQrh’ — R K, theni < j.
We convene also that the namegsc, ... are reserved for live channels.

The following lemma shows that the subject of a session esjpya inside an eval-
uation context is always the latest created channel whichirsdn the whole ex-
pression.

Lemma B.10 Let Ry beT-initial and Ry,hr — e |P,h. If ¢’ precede=” in e, and
e’ is a session expression or method call with subjgcthen i> j for all live
channels j which occur ine’.

Proof The proof is by induction or— and by cases on the last applied reduction
rule. We only consider some interesting cases.
Let the last applied rule bigleth:

Eolo.m (V)] |P',h — Eoleo[o/tnis][YX]] [P, h

sinceh(o) =(C,...), mbody(m,C) = (X,eq) andmtype(m,C) =t1,...,tn,P1,---, pmg
t.

If @ = ©, then by Lemma B.8(1) all session expressions or methos wélich oc-
curineo[°/this|[¥x] have subjects which cannot be live channels. For the session
expressions or method calls which occulg | induction hypothesis applies.

If © = & letc| be the live channel which is the subject of the method callirBy
ductionl > kfor all cx which occur inEo.m (V)]. By Lemma B.8(2) the subjects of

all session expressions and method calls insigle/this|[V/%] which are live chan-
nels are the channel. If e = Egleo[0/this][Vk]], then eithere’ ande” are both
sub-expressions @fy[o/this][V/x], ore’ is a sub-expressions ef[°/this]|[V/x] and

e’ is a sub-expressions &| |, ore’ ande” are both sub-expressionsBf| |. In

the first case is both the subject of’ and the only live channel which occurs in
e”, in the second case the subjecte6is c¢; andl > k for all the live channelg
which occur ine”, and in the third case induction hypothesis applies.

Let the last applied rule b@onnect

Ea[connect c s{e1}]|Ez[connect c5{e2}]|P,h— Eie1[ci/c]]| Ezlez[ci/c]] |P/,hiic’ ¢y ¢h

where by constructioh> k for all cx which occur inh. Notice thate; ande; have
never been reduced by definition of evaluation context, anthey can be typed
without using ruleWeakB. Therefore by Lemma 7.9 the subjects of all session
expressions and method calls inskggei/c| andez[ci/c] which are live channels
are the channel;. We can conclude as in previous case.

If the last applied rule i€ComS

Eici.send (v)]| Ez[c).receive] |P’,h — Ex[null] | E2[v]| P/, h

then all session expressions or method calls which occé imull] | Ex[v] occur
also inE;[]| E2[], so induction hypothesis applies.

67

If the last applied rule i€omSS
Eaci.sendS (ck)] | Ex[c).receiveS (x){eo}]|P',h— Ea[null] | eo[ck/x] | Ez[null] [P, h

then no live channel occurs &y by Lemma B.3(2). Therefore & = eg[Ck/x], then
ck is both the subject of’ and the only live channel which occursdfi. The proof
for E1[null] andEz[null] is as in the case of rul€omS

Now we prove the progress property. The following proof oEdlem 7.10 argues
that if the configuration does not contain waiting connectsull pointer errors, but
contains an irreducible session expressignthen by subject reduction and well-
formedness of the session environment, the rest of thedhnelependently moves
or it contains the dual of that irreducible expressien, Then by Lemma B.6, we
gete; O mandes [0 Tt Thereforee; andes are session expressions dual of each
other and they can communicate.

Theorem 7.10 (Progress)Assume is IM-initial and By, hr — P, h. Then one of
the following holds.

In P, all expressions are values, i.e.72P[(o<j<n Vi’

Ph— P H;

P throws a null pointer exception, i.e., 2 NullExc | Q; or

P stops with a connect waiting for its dual instruction,,jR= E[connect cs{e }] | Q.

Proof SupposeP = NullExc |Q or P = E[connect cs{e}]| Q. Then the proof is
immediate. Als® =e |Qwithe,h— e’ ,h" is easy, since we g&h— e’ |Q,H.

The only interesting case BR=V | Q, whereV is a parallel of values an@ is a
parallel of evaluation contexts containing irreduciblesen expressions. L =
Mi<j<n Ej[e;]- Letcj be the live channel with the higher index which occur®in
By Lemma 7.8c; occurs exactly in two threads . By definition of=, without
loss of generality, we can assume thatccurs inE; [e;] andE; [e2]. Then by
Lemma B.1(Qc; is the subject ot ande,. By Subject Reduction we have >
P;h. This impliesZ = %4|...[|Z, andT;Z; I- Ejle;] : thread by Lemma A.3(2).
By Lemma B.2(2)Z(cj) =] and by definition of|| the channet; occurs exactly
in two session environments betweEn ...,>, with dual running session types
different frome. By Lemma B.2(1); occurs inZ; and inZ, and then by above
21(ci) = Z2(cj). Lemma B.6 gives, 00 tande, O Tt for somett Thereforee;
ande are session expressions dual of each other by Propositmaril they can

communicate.

Theorem 7.13 (Communication-Order Preservation) Let Ry be I-initial. As-
sume that B hr — E[eo]|Q,h — P’,h" whereeg is an irreducible session ex-
pression with subject. Then:

(1) P =Ele(]|Q, or

68

(2) Q= E'[ep]|R withep dual ofeg and
(@) Efeq]|[E'[eg]|[Rh—e|e’|R,N;
(b) M;%,c:8F Eleq] : thread andl";%’,c : O E'[eg)] : thread; and
(c) M5 c:0Fe:thread andl: %/ c -0 F e’ : thread with & C 6.

Proof By the proof of the Progress Theorem (Theorem 7.10) if thecgdn step
Eleo]|Q,h— P, K
does not reduc® alone, therQ = E’[eg] | Rwith ej dual ofeq. Thus we have:
Eleo] |[E'[eg] [IRh— e |e/|R, K
which shows (a).

For (b) by the Subject Reduction Theorem (Theorem 7;&)F E[eo] |E'[ef] |R:
thread , which implies by Lemma A.3(Z = 21|25/ Z3 andl; 23 F Efeg] : thread

andr; X, E'[eg] : thread andl; Z3 - R: thread . Again by the proof of the Progress
Theorem the channelwhich is the subject afg ande(, has dual running session types
in 1 andZ,. We have theix; =3, c:0 and3, = ', c :0 for someX, s/, 8.

For (c) we consider only two interesting cases, the proo@liother cases being
similar. We assum@ = 1up, the proof for8 of different shapes being almost the
same.

Let eg = c.receive andey = c.send (v) andt=2t. Then we have = E[v] and

e’ = E'[null | andR = R by the reduction rul€€omS. From the proof the Subject
Reduction Theorem we gétZ,c :pk e : thread andl;Z',c : pF e’ : thread.
Leteg = c.receiveS (x){e} andeg = c.sendS (c’) andrt=2(n). Then we have =
E[null] ande’ = E/[null | andR = e[c’/x]| R by the reduction rul€omSS From
the proof the Subject Reduction Theorem welget”,c : p+ e : thread for some
Y Cxandl;2 c:pke’:thread.

C Proof of Theorem 8.2

We list the omitted inference rules in Fig. C.1 and Fig. C.2.

An environment session scheme-ifeeif all its predicates are running session type
schemes different frora. The following lemma states that:

e session environment schemes obtained by applying inferemgstitutions to in-
ferred session environment schemes for expressions-tie2 and they never
contain] as predicate, and

e session environment schemes obtained by applying infersmlgstitutions to in-
ferred session environment schemes for threads-&ese.

69

Chanl Nulll

OidI

[",c:sch - ok Mok HFt:itp No:Ckok C<:D
Mcischi-c:@l] 0;0 MEnull:t [] 0,0 MNo:Cko:D[0,0
Truel Falsel
I ok I ok

[F true :bool [] 0;0 I F false :bool [| 0;0

Varl Thisl
Mx:ttok N this:CFok C<:D

Mx:tkx:t[00 I, this: CF this:D [] 0;0

FidI Seql
[Fe:C %S ftefilds(C) Tret[SS Tre it/ [
Mef:t |8 Meje’it'[| 2o 8wy’
FldAssI
N-e:C[%8 F-e':t |28 ft efields(C)

Mhefi=e it || 2o 50

NewCl
ok CeD(CT) C<:D

' new C:D [] 0;0

NewsSl
ok

[new (s,5):(s,5) | 0,0

Spawnl
NFeit |58
I spawn{ e }:Object[] Z|;S

NUllPEI
Mok Ft:tp

[- NullExc:t [0;0

Fig. C.1. Inference Rules for Values and Standard Exprasdio

The proof by induction on deductions is standard.

LemmaC.1 (1) IfF'e:t [] £;5 ando is an inference substitution, ther(X)
is e-free andu :p € o(Z) impliesp #J;
(2) If I = P:thread [] Z ando is an inference substitution, therX) is e-free.

A second lemma gives useful properties of inference suwititits and< .
Lemma C.2 (1) If Zis a session environment scheme ai#) is a session envi-
ronment, them(Z\u) =o(X) \ u.

(2) If Zis a session environment scheme aifal) is a session environment, then

o(Z1)=o(z) .

70

Receivelfl
FEeitti | 23S Zi(u)=p SC{u} ie{l,2}
o=E({(ty;t2) JU{{Z1(u);Zo(u")) |Vu' #u.u’ € D(Z1) N D(Z2)}U
{(Zi(u");e.end) |Vu' #u.u' € D(Z) & u' € D(Z))i,j € {1,2}})
- pil if pjis anended session type schem(|e7,é {12
' Ipi otherwise I L1 ’
S={u":eend |Vu' #£u.u' € D) & u' & D(Z;)}
It u.receivelf {eq }Heo }:o(t) [0(Z1\u,u2p),p5)) UZ; {u}

SendWhilel
Mheito]0;0 THe 1| ZS
TC{u:mp SC{u} o=E({(to;bool)})
[u.sendWhile (e){e’}:0(t)] o({u (9" }); {u}

ReceiveWhilel
NFeit |58 ZC{u:imp SC{u}

I b u.receiveWhile{e }:t [| {u (M };{u}

Fig. C.2. Inference Rules for Communication Expressions I

(3) If Z,%’ are session environments aktde 2, u :n, thenZ’\u € .
(4) If £,2" are session environment schemes afH),5(X’) are session environ-
ments and(Z)||o(Y') is defined, thew(Z ||| ') = o(2)||o(Y).
(5) If £1,2,,%),%) are session environments aBfl|%, is defined and} UZ, is
e-free, therz; € ¥} andX; € 2, imply 21| 2> € ¥/ [|%5.
Proof (1) and (2) are immediate.
(3) follows from the definitions o€ .
(4) Easy by definition ofj| on session environment schemes.

(5) By induction onZ;. The basic case,; = 0, is trivial. For the induction case,
21 =X, u:] istrivial too. ForZ; = Zp,u :p, we need to consider different sub-cases.
We always hav&’ (u) € {p,p |} by definition ofe .

If u ¢ D(Z,), thenu ¢ D(Zy) andZy||Zp(u) = Z7(u).

If u:p’ €2, thenZy(u) € {p/,p’' |}. Being 2|3, defined, we have = o/, or
pl=p’,orp=p']. In all cases we gefy||Zo(u) = [Z5(u) =].

If u g D(Z,) andu:p’ € 55, then as in previous cage= p/, or p |= p’. Being
> %5 defined, we have’ #] and we conclude’ = €.end, sinceX} U, is e-free.

71

S0Z1Z2(u) = €.end, which impliesZ | Z5(u) =].

Theorem 8.2 (1) IfI;Z; S+ e:t without using ruléNVeakB, thenl Fe:t’ [| Z;5’

whereo(t’) =t ando(¥’) € Z for some inference substitutianand s’ C .

(2) Ifr'Fe:t [] Z;8, then for all inference substitutiors such thato(Z) is a
session environment amt) is a type, we get;0(%); S e:o(t).

(3) If I'; 2+ P:thread without using ruléWeakB, thenl” - P:thread [] ¥’ where
o(') € Z for some inference substitutian

(4) IfI - P:thread || Z, then for all inference substitutiomssuch thato(X) is a
session environment, we gét:o(X) - P:thread.

Proof The proofs of all points are by induction on derivations aredomly consider
the more interesting cases.

(2) If the last applied rule is

Conn
0,0 u:beginn T\u;Zu:n;{u}te:t

I;Z;0F connect u begin.n{e}:t

by induction hypothesis we have

Muke:t' |28 (C.2)

with o(t’) =t ando(¥’) € Z,u :n for some inference substitutianand.s’ C .
LetX'(u)) = p, we geto(p|) =n. If o, is the restriction ob to the type variables
which occur inp we have als@p(p|) =n. If u is a variable, thef (u) <:s by
Lemma A.1(1). Ifu is a name, thef (u) = sch by Lemma A.1(2). By applying
rule Connl to (C.1) we derive

[+ connect u begin.n{e}:0p(t") [] 0p(Z')\u;0
If o_ is the restriction oo to the type variables which do not occurpn(and so
0_00p =0) we geto_(0p(t’)) =t ando_(0p(X' \u)) =0_(0p(Y’)) \u € Z by
Lemma C.2(1) and (3), and this concludes the proof of this.cas

If the last applied rule is

ReceiveS
F\x;{x:nk{x}Fe:t n#ecend
M {u:?(n)};{u} - u.receiveS (x){e} : Object

by induction hypothesis we have

M\xFe:t'[| 28 (C.2)

72

with o(t’) =t anda(X’) € {x :n} for some inference substitutianands’ C {x }.
Fromao(¥') € {x:n} we getZ’ = {x:p}, anda(p|) = n for somep # €. We can
conclude by applying rul®eceiveSito (C.2).

If the last applied rule is

SendIf
;20;{u} Fe:bool MZuipp;{utFeiit ie€{1,2}

M 2Z00{Z,ul{p1,p2)};{u} Fu.sendlf (e){e1 }{ea}:t

by induction hypothesis we have
Fhe:to[] 258 TMheitti | 2SS i€{1,2} (C.3)

with og(to) = bool, 0p(Zf) € Zo, 0i(ti) =t, 0i(Zi) € Z,u :p; for some inference
substitutionog, oj, andSp C {u}, 5 C {u}, i € {1,2}. Froma;(Zi) € Z,u :p; we
getoi(Zi)(u) € pi. By Lemma C.2(2)p;(Z;) € Z,u : pj implieso;(Zi)\u € %, and
then eithero1(Z1)(u’) = 02(Z2)(u’), 01(Z1)(u’) |= 02(Z2)(u’), or 01(Z1)(u’) =
02(Z2)(u’) | forallu’ #u.u’ € D(Z1) N D(Z2). Moreover by Lemma C.1(1)’ #
u,andu’:p € 01(21), andu’ & D(Z,) imply p = €.end. Symmetricallyu’ # u, and
u’:p € 02(Z2), andu’ € D(Z;) imply p = €.end. Since by assumption the variables
in 2o,%1, %, are disjoint, therpo 01 0 07 is defined. Let = E({(Z1(u’);Z2(u’)) |
Vu' £uu’ € D(Z)ND(Z) U {(Z1(u’);e.end) | Vu' £ u.u’ € D(Z1) & v’ &
D(Z2)}U{(Z2(u’);e.end) | Vu' £ u.u’ € D(Z2) & u’ & D(Z1)}): by construction
there iso’ such that o 0’ = 0go 01 0 G2. We conclude by applying rulgendlfl to
(C.3).

(2) If the last applied rule is

Connl

_ if u is a variabld (u) <:s
MNubke:t[]ZS Z(u)=p s=begino(pl) SC{u}
if uisanamd (u) =sch

I connectus{e}:o(t) [o(X)\u;0
by induction hypothesis for ati’ we have
M\u;0’(2);SFe:d(t)
and this holds in particular for those inference substingb’ such that’ = 0"’ oo
for someo”. If S= 0 by rule Weak we getl \ u;0’(Z);{u} Fe:d'(t). LetZ =
0'(2) if u € D(Z) and’ = ¢’'(Z),u :€.end otherwise. In both cases (using rules

WeakESandWeakE in the second case) we get

M\u; 2 {ulFe:d(t) (C.4)

73

If u is a channel name, thér{u) = sch andl";0;0+ u :s by rulesChan andSub.
If u is a variable name, thdn(u) <:s impliesl’;0;0+ u :s by rulesVar andSub.
We can conclude applying ru@onn to (C.4).

If the last applied rule is

ReceiveSl
MxkFeit [[{x:phS SCS{x} p#e
[u.receiveS (x){e } :Object[] {u:?(pl)};{u}

by induction hypothesis for aty we have
F\x;{x:0(p)};SFe:o(t)

If S= 0 by ruleWeak we getl \ x; {x:0(p)};{x} F e:o(t). By rule WeakE we
can derive

F\x;{x:0(p)l};{x}Fe:o(t) (C.5)

wherep | # €.end, and we can conclude applying rdkeceive3o (C.5).
If the last applied rule is

Sendlfl
Meito] 20080 TMheitti 23S Zi(u)=p SC{u} ie{l,2} je{01,2}
0= E({(tl;tz),<to,bool>}U{<Zl(N Z2(u")) [Vu' #u.u’ € D(E)ND(ZL) U

{(Z1(u) g.end) | Vu' #u. u' D(Z1) & u' &€ D(ZL) U
{(Z2(u’);e.end) | Vu' £ u.u’ € D(Z3) & u’' ¢ D(21)})

p1] If p2is an ended session type scheme

p1 otherwise

, p2] if ppis an ended session type scheme

P2 p2 otherwise

S={u:eend|Vu' #£u.u' € D(Z) & u' ¢ D(Z1)}

o

[+ u.sendlf (e){e1 }{ex}:a(t) [0(Z0)o(0(Z1\ u,u{p},p5))UZ);{u}
by induction hypothesis for ati’ we have
[0 (Z0);S0Fe:0d'(tg) ;0(Z);8 Fei:d(ti)

and this holds in particular for those inference substingb’ such that’ =o” oo
for somea”. Using rulesWeak, WeakES andWeakE we can derive

[0 (Z0);{u}Fe:d(to) ;0 (Z1\u,u:p)UZ;{u}tei:d(ti). (C.6)

We can conclude applying rutgendif to (C.6).

74

(3) If the last applied rule is

Par
21 Pi:thread TI;22F Py:thread

;21|22 Py| Pe:thread
by induction hypothesis we have
[+ Pp:thread [| 27 T FPoithread [25
and there are1, o, such thao;(X)) € ; fori € {1,2}. By rule Parl we get
[+ Py|Poithread [| 2] ||| Z5.
By Lemma C.1(2)¢ is not a predicate iro1(X]) Uo2(Z5). By Lemma C.2(5)
0i(Z)) € g fori € {1,2} imply 01(2})[|02(Z5) € Z1||Z2. By construction the sets of
variables occurring iX; and are disjoint. Lett = 01007, theno1(X))[|02(Z5) =

o(2})0(5) = 0(Z} [| Z) by Lemma C.2(4)

(4) If the last applied rule is

Parl
MEPpr:thread [| 21 T Po:thread [] 2

M+ P]_‘ P> :thread U 21 |H 2o
by induction hypothesis for ath we have:
;0(Z1) - Py:thread T;0(Z2) - Po:thread

Beingo(Z1)|0(22) = 0(Z1 || Z2) by Lemma C.2(4), we conclude by applying rule
Par.

75

