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Abstract

A session takes place between two parties; after establishing a connection, each party in-
terleaves local computations and communications (sendingor receiving) with the other.
Session types characterise such sessions in terms of the types of values communicated and
the shape of protocols, and have been developed for theπ-calculus, CORBA interfaces, and
functional languages. We study the incorporation of session types into object-oriented lan-
guages through MOOSE, a multi-threaded language with session types, thread spawning,
iterative and higher-order sessions. Our design aims to consistently integrate the object-
oriented programming style and sessions, and to be able to treat various case studies from
the literature. We describe the design of MOOSE, its syntax, operational semantics and type
system, and develop a type inference system. After proving subject reduction, we establish
the progress property: once a communication has been established, well-typed programs
will never starve at communication points.

1 Introduction

Object-based communication oriented software is commonlyimplemented using
either sockets or remote method invocation, such as Java RMIand C# remoting.
Sockets provide generally untyped stream abstractions, while remote method in-
vocation offers the benefits of standard method invocation in a distributed setting.
However, both have shortcomings: socket-based code requires a significant amount
of dynamic checks and type-casts on the values exchanged, inorder to ensure type
safety; remote method invocation does ensure that methods are used as mandated
by their type signatures, but does not allow programmers to express design patterns
frequently arising in distributed applications, wheresequencesof messages of dif-
ferent types are exchanged through a single connection following fixed protocols.
A natural question is the seamless integration of tractabledescriptions of type-safe
communication patterns with object-oriented programmingidioms.
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A sessionis such a sequence of interactions between two parties. It starts after a
connection has been established. During the session, each party may execute its
own local computation, interleaved with several communications with the other
party. Communications take the form of sending and receiving values over a chan-
nel. Additionally, throughout interaction between the twoparties, there should be
a perfect matching of sending actions in one with receiving actions in the other,
and vice versa. This form of structured interaction is foundin many application
scenarios.

Session typeshave been proposed in [32], aiming to characterise such sessions, in
terms of the types of messages received or sent by a party. Forexample, the session
typebegin.!int.!int.?bool.end expresses that twoint-values will be sent, then a
bool-value will be expected to be received, and then the protocolwill be complete.
Thus, session types specify the communication behaviour ofa piece of software,
and can be used to verify the safety of communication protocols between two par-
ties. Session types have been studied for several differentsettings,i.e., π-calculus-
based systems [6, 7, 11–13, 18, 27, 28, 32, 34, 35, 48], mobileprocesses [43], boxed
ambients [26], CORBA [49], functional languages [29], and recently, for CDL, a
W3C standard description language for web services [11, 13,47, 52].

In this paper we study the incorporation of session types into object-oriented lan-
guages. To our knowledge, except for some of our earlier work[15, 19, 21, 23], such
an integration has not been attempted so far. We propose the language MOOSE, a
multi-threaded object-oriented core language augmented with session types, which
supports thread spawning, iterative sessions, and higher-order sessions.

The design of MOOSEwas guided by the wish for the following properties:

object oriented style We wanted MOOSEprogramming to be as natural as possi-
ble to people used to mainstream object oriented languages.In order to achieve
an object oriented style, MOOSEallows sessions to be handled modularly using
methods.

expressivity We wanted to be able to express common case studies from the liter-
ature on session types and concurrent programming idioms [42], as well as those
from the WC3 standard documents [13, 52]. In order to achieveexpressivity, we
introduced conditional, and iterative sessions, the ability to spawn new threads,
and to send and receive sessions (i.e., higher-order sessions).

type preservation The guarantee that execution preserves types,i.e., the subject
reduction property, proved to be an intricate task. In fact,several session type
systems in the literature fail to preserve typability afterreduction of certain sub-
tle configurations, which we identified through a detailed analysis of how types
of communication channels evolve during reduction. Type preservation requires
linear usage of live channels; in order to guarantee this we had to prevent alias-
ing of channels, manifested by the fact that running sessiontypes (i.e., the types
of live channels) cannot be assigned to fields. We claim this restriction is quite
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natural since channels are not objects. Note that aliasing is less problematic in a
functional setting like that one considered in [51] than in an imperative setting
like the one we are dealing with here.

progress We wanted to be able to guarantee that once a session has started, i.e., a
connection has been established, threads neither starve nor deadlock at the points
of communication during the session. Progress is a highly desirable property in
communication-based programs. Establishing this property was an intricate task
as well, and, to the best of our knowledge, no other session type system in the
literature, but those in [4, 10, 15, 18, 21, 23], can ensure it. The combination of
higher-order sessions, spawn and the requirement to prevent deadlock during
sessions posed the major challenge for our type system.

This work is an extended version of [20], with complete definitions, more expla-
nations, detailed proofs and more comparisons with relatedwork. Furthermore, we
introduced minor differences in order to deal with small discrepancies which we
discovered while developing the more detailed proofs.

The paper is organised as follows: §2 illustrates the basic ideas through an exam-
ple. §3 defines the syntax of the language. §4 presents the operational semantics. §5
describes design decisions, such as the restriction on channel aliasing, that ensured
type preservation and progress. §6 illustrates the typing system. §7 gives basic the-
orems on type safety and communication safety. §8 describestype inference. §9
discusses the related work, and §10 concludes. More examples of MOOSE can be
found in [42]. The proofs are given in the appendices.

2 Business Protocol Example

We describe a typical collaboration pattern that appears inmany web service busi-
ness protocols [11–13, 35, 52] using MOOSE. This simple protocol contains essen-
tial features by which we can demonstrate the expressivity of M OOSE: it requires
a combination of session establishing, higher-order session passing, spawn, condi-
tional sessions, and deadlock-freedom during the session.

In Fig. 1 we show the sequence diagram for the protocol, whichmodels the pur-
chasing of items. We show the participants, the sessions between them, and the
program variables whose value is communicated on each channel. First, theSeller
andBuyer participants initiate interaction over channelc1; then, theBuyer sends
a product id to theSeller, and receives a price quote in return; finally, theBuyer

may either accept or reject this price. Thus, here we show thefirst case of a condi-
tional session. If the price received is acceptable, then theSeller connects with the
Shipper over channelc2. First theSeller sends to theShipper the details of the
purchased item. Then theSeller delegates its part of the remaining activity with
theBuyer to theShipper, that is realised by sendingc1 overc2. Now theShipper
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Fig. 1. Sequence diagram for item purchasing protocol.

1 session BuyProduct =
2 begin.!String.?double.!<!Address.?DeliveryDetails.end, ε.end>
3 session RequestDelivery =
4 begin.!ProductDetails.!(?Address.!DeliveryDetails.end).end

Fig. 2. Session types for the buyer-seller-shipper example

will await theBuyer’s address, before responding with the delivery date. If theprice
is not acceptable, then the interaction terminates.

In Fig. 2 we declare the necessary session types, and in Fig. 3we encode the given
scenario in MOOSE, using one class per protocol participant. The session types
BuyProduct and RequestDelivery describe the communication patterns between
Buyer andSeller, andSeller andShipper, respectively. The session typeBuyProduct
models the sending of aString, then the reception of adouble, and finally a con-
ditional behaviour, in which abool is (implicitly) sent before a branch is fol-
lowed: the first branch requires that anAddress is sent, then aDeliveryDetails
received, and finally that the session is closed; the second branch models an empty
communication sequence and the closing of the session. We write BuyProduct

for the dual type, which is constructed by takingBuyProduct and changing oc-
currences of ! to ? and vice versa; these types represent the two complementary
behaviours associated with a session, in which the sending of a value in one end
corresponds to its reception at the other. In other words,BuyProduct is the same as
begin.?String.!double.?<?Address.!DeliveryDetails.end,end>. Note that in the
case of the conditional, the thread with ! in its type decideswhich branch is to
be followed and communicates the boolean value, while the other thread passively
awaits the first thread’s decision. The session typeRequestDeliverydescribes send-
ing a ProductDetails instance, followed by sending a ‘live’ session channel of
remaining type?Address.!DeliveryDetails.end.

Sessions can start when two compatibleconnect statements are active. In Fig. 3,
the first component ofconnect is the shared channel that is used to start commu-
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1 class Buyer {
2

3 Address addr;
4

5 void buy( String prodID, double maxPrice ) {
6 connect c1 BuyProduct {
7 c1.send( prodID );
8 c1.sendIf( c1.receive <= maxPrice ) {
9 c1.send( addr );

10 DeliveryDetails delivDetails := c1.receive;
11 }{ null; /* buyer rejects price, end protocol */ }
12 } /* End connect */
13 } /* End method buy */
14 }
15

16 class Seller {
17 void sell() {
18 connect c1 BuyProduct {
19 String prodID := c1.receive;
20 double price := getPrice( prodID ); // implem. omitted
21 c1.send( price );
22 c1.receiveIf { // buyer accepts price
23 ProductDetails prodDetails := new ProductDetails();
24 // ... init prodDetails with prodID, size, etc
25 spawn { connect c2 RequestDelivery {
26 c2.send( prodDetails ); c2.sendS( c1 );} }
27 }{ null; /* receiveIf : buyer rejects */ }
28 } /* End connect */
29 } /* End method sell */
30 }
31

32 class Shipper {
33 void delivery() {
34 connect c2 RequestDelivery {
35 ProductDetails prodDetails := c2.receive;
36 c2.receiveS( x ) {
37 Address custAddress := x.receive;
38 DeliveryDetails delivDetails := new DeliveryDetails();
39 //... set state of delivDetails
40 x.send( delivDetails ); }
41 } /* End connect */
42 } /* End method delivery */
43 }

Fig. 3. Code for the buyer, seller and shipper.
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nication, the second is the session type, and the third is thesession body, which
implements the session type. The methodbuy of classBuyer contains aconnect
statement that implements the session typeBuyProduct, while the methodsell of
classSeller contains aconnect statement over the same channel and the dual ses-
sion type. When aBuyer and aSeller are executing concurrently their respective
methods, they can engage in a session, which will result in a fresh channel being
replaced for occurrences of the shared channelc1 within both session bodies; fresh-
ness guarantees that the new channel only occurs in these twothreads, therefore the
objects can proceed to perform their interactions without the possibility of external
interference.

Once the session has started in the body of methodbuy, the product identifier,
prodID, is sent usingc1.send(prodID) and the price quote is received usingc1.receive.
If the price is acceptable,i.e., if c1.receive <= maxPrice, thentrue is sent and the
first branch of the conditional is taken, starting on line 9. In this case, the customer’s
address,addr, is sent and an instance ofDeliveryDetails is received. If the price is
not acceptable, thenfalse is sent and the second branch of the conditional starting
on line 11 is taken, and the connection closes.

The body of methodsell implements behaviour dual to the above. Note that in
c1.receiveIf{...}{...} the branch to be selected depends on the boolean value
received from the other end, which will execute the complementary expression
c1.sendIf(..){...}{...}. The first branch of theSeller’s conditional contains
a nestedconnect in line 25, via which the product details are sent to theShipper,
followed by the actual runtime channel that was substitutedfor c1 when the outer
connect took place; the latter is sent through the constructc2.sendS(c1), which
realiseshigher-order session communication. Notice that the code in lines 25-26 is
within a spawn, which reduces to a new thread with the enclosed expression as its
body.

The methoddelivery of classShipper should now be clear, with the exception
of c2.receiveS(x){..} which is dual toc2.sendS(c1). In the first expression, the
received channel is bound to the variablex.

The above example shows how MOOSEachieves deadlock-freedom: whenever we
havec.send(v), eventually an expression of the shapec.receive will appear in
some other thread, unless the thread diverges, or a null pointer exception is thrown,
or there is a nested connect instruction waiting for the dualconnect instruction.
Likewise for the other communication expressions. By theseprogressconditions,
no session will remain incomplete; see Examples 5.4, 5.5, and 5.6. For the precise
definition of progress see Theorem 7.10.
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(type) t ::= C | bool | s | (s ,s)

(class) class ::= class C extends C { f̃ t M̃ }

(method) M ::= tm ( t̃ x , ρ̃ y ) {e}

(expression) e ::= this | x | v | e ; e | e .f := e | e .f | e .m( ẽ ) | new C

| spawn { e } | new (s ,s ) | connect u s {e}

| u .receive | u .send(e)

| u .receiveS (x ){e } | u .sendS (u )

| u .receiveIf {e }{e } | u .sendIf (e ){e }{e }

| u .receiveWhile {e } | u .sendWhile (e ){e } | NullExc

(channel) u ::= c | x

(value) v ::= c | null | true | false | o

(thread) P ::= e | P|P

Fig. 4. Syntax, where syntax occurring only at runtime appears shaded .

3 A Concurrent Object Oriented Language with Sessions

In Fig. 4 we describe the syntax of MOOSE. We distinguishuser syntax, i.e., source
level code, andruntime syntax, which includes null pointer exceptions, threads and
heaps. The syntax is based on FJ [37] with the addition of imperative and communi-
cation primitives similar to those from [3, 6, 21, 32, 34, 51]. We designed MOOSEas
a multi-threaded concurrent language for simplicity of presentation; note however
that MOOSEcan easily be extended to model distribution; see § 9.

Channels We distinguishshared channelsand live channels. Shared channels
have not yet been connected; they are used to decide if two threads can commu-
nicate, in which case they are replaced by fresh live channels. After a connection
has been created the channel is live; data may be transmittedthrough such active
channels only. The types of MOOSEenforce the condition that there are exactly two
threads which contain occurrences of the same live channel:we call it bilinearity
condition. This is proved in Lemma 7.8.

User syntax The metavariablet ranges over types for expressions,ρ ranges over
running session types,C ranges over class names ands ranges over shared session
types. Each shared session types has one correspondingdual, denoteds , which is
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obtained by replacing each ! (output) by ? (input) and vice versa. We introduce the
full syntax of types in § 6, Fig. 8. Class and method declarations are as expected.

The first nine productions for expressions,e ,e ′, are standard for concurrent object
oriented programming, and represent the receiver (this), a method parameter (x),
a value (v), a sequence of expressions (e;e′), field assignment (e.f = e′), field ac-
cess (e.f), method call (e.m(ẽ)), object creation (new C), and spawning of a new
thread (spawn { e }). The remaining productions are related to session creation
and communication: first, the channel constructornew (s , s), which builds a fresh
shared channel used to establish a private session; next, thecommunication expres-
sions, i.e., connect u s{e} and all the remaining session expressions. The reason
for declaring boths ands in the channel constructor is that we want to stress that
the fresh created channel can replace two variables of typess ands , respectively,
in order to establish a private communication, see Example 4.1.

The values are channels,null, and the literalstrue and false. Thread creation is
declared usingspawn { e }, in which the expressione is called thethread body.

The expressionconnect u s{e} starts a session: the channelu appears within the
term{e} in session communications that agree with session types . The remaining
eight expressions, which realise the exchanges of data, arecalledsession expres-
sions, and start with “u . ”; we call u thesubjectof such expressions. In Fig. 4 and
in the explanations below, session expressions are pairwise coupled: we say that
expressions in the same pair and with the same subject aredual to each other;e.g.,
c3.send(true) andc3.receive are dual expressions.

The first pair is for exchange of values (which can be shared channels):u .receive
receives a value viau , whileu .send (e) evaluatese and sends the result overu . The
second pair expresses live channel exchange : inu .receiveS (x){e} the received
channel will be bound tox within the expressione , in which x is used for com-
munications. The expressionu .sendS (u ′) sends the channelu ′ over u . The third
pair is forconditionalcommunication:u .receiveIf {e}{e ′} receives a boolean value
via channelu , and if it is true continues withe , otherwise withe ′; the expression
u .sendIf (e){e ′}{e ′′} first evaluates the boolean expressione , then sends the result
via channelu and if the result wastrue continues withe ′, otherwise withe ′′. The
fourth is for iterativecommunication: the expressionu .receiveWhile{e} receives a
boolean value via channelu , and if it istrue continues withe and iterates, otherwise
ends; the expressionu .sendWhile (e){e ′} first evaluates the boolean expressione ,
then sends its result via channelu and if the result wastrue continues withe ′ and
iterates, otherwise ends.

We do not define the standard iteration and conditional statements, as these can
be straightforwardly encoded in our calculus. For examplewhile(e){e′} can be
simulated byc .sendWhile (e){e ′}, assuming a session overc and the expression
c .receiveWhile{null } in another thread. Similarly for the conditional usingc .sendIf (e){e ′}{e ′′}.
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Also the general branch/select constructors are easily encoded in MOOSE and so
we left them out to avoid syntactic sugar.

Finally, we do not include primitives for recursive sessions. This allows a simpler
presentation, and more importantly, it enables us to formulate theprogressproperty
of our calculus based on a non-interleaving restriction (see § 5); with recursion,
simply nested sessions, which we allow, would clearly result in interleaved traces
after unfolding in the inner scope.

Runtime syntax The runtime syntax (shown shaded in Fig. 4) extends the user
syntax: it extends values to allow for object identifierso , which denote references
to instances of classes; addsNullExc to expressions, denoting the null pointer er-
ror; finally, introduces threads running in parallel. Single and multiplethreadsare
ranged over byP, P′. The expressionP|P′ says thatP andP′ are running in parallel.

4 Operational Semantics

This section presents the operational semantics of MOOSE, which is inspired by the
standard small step call-by-value reduction of Featherweight Java [46], extended
with imperative features, ase.g., in [45], and following the style of [3] and mainly
that of [21]. We only discuss the more interesting rules. First we list the evaluation
contexts.

E ::= [ ] | E.f | E;e | E.f := e | o .f := E | E.m(ẽ ) | o .m(ṽ ,E, ẽ)

| c .send (E) | c .sendIf (E){e}{e ′}

Notice thatconnect c s{E}, c .receiveS (x){E}, c .sendIf (e){E}{e}, c .sendIf (e){e}{E},
c .receiveIf {E}{e}, c .receiveIf {e}{E}, c .receiveWhile{E}, andc .sendWhile(e){E}
are not evaluation contexts: the first would allow session bodies to run before the
start of the session; the second would allow execution of an expression waiting for
a live channel before actually receiving it; the remaining would allow parts of a
conditional or iterative session to run before determiningwhich branch should be
selected, or whether the iteration should continue.

Fig. 5 defines auxiliary functions used in the operational semantics and typing rules.
As in [37] we assume a fixed, global class table. The classObjectdoes not have
fields/methods and his declaration does not occur in the class table. The decoration
� ∈ {�,�} in the functionmtype will be motivated in Example 5.5.

Objects and channels are stored inheaps, whose syntax is given by:
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Field lookup

fields(Object) = •
fields(D) = f̃ ′t ′ class C extends D {f̃ t M̃} ∈ CT

fields(C) = f̃ ′t ′, f̃ t

Method lookup

methods(Object) = •
methods(D) = M̃′ class C extends D {f̃ t M̃} ∈ CT

methods(C) = M̃′,M̃

Method type lookup

class C extends D {f̃ t M̃} ∈ CT tm ( τ̃ x) {e} ∈ M̃

mtype(m ,C) = τ̃ �
→ t

class C extends D {f̃ t M̃} ∈ CT m 6∈ M̃

mtype(m ,C) = mtype(m ,D)

Method body lookup

class C extends D {f̃ t M̃} ∈ CT tm ( τ̃ x) {e} ∈ M̃

mbody(m ,C) = (x̃ ,e)

class C extends D {f̃ t M̃} ∈ CT m /∈ M̃

mbody(m ,C) = mbody(m,D)

τ is eithert or ρ.

Fig. 5. Lookup Functions

h ::= [ ] | h:: [o 7→ (C, f̃ :v )] | h::c .

Heaps, ranged overh, are built inductively using the heap composition operator‘::’,
and contain mappings of object identifiers to instances of classes, and channels. In
particular, a heap will contain the set offreshobjects and channels, both shared
and live, that have been created since the beginning of execution, and the shared
channels appearing free in the initial user program. The heap produced by com-
posingh :: [o 7→ (C, f̃ :v )] will map o to the object(C, f̃ :v ), whereC is the class
name and̃f :v is a representation for the vector of distinct mappings fromfield
names to their values for this instance. The heap produced bycomposingh::c will
contain the fresh channelc . Heap membership for object identifiers and channels
is checked using standard set notation, we therefore write it aso ∈ h andc ∈ h,
respectively. Heap update for objects is writtenh[o 7→ (C, f̃ :v )], and field update is
written (C, f̃ :v )[f 7→ v ]. Heap composition is undefined if the added object’s iden-
tifier (or the channel) is already in the heap; heap update is undefined if the updated
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Fld
h(o) = (C, f̃ :v )

o .fi ,h−→ v i ,h

Seq
v ;e ,h−→ e ,h

FldAss
h′ = h[o 7→ h(o)[f 7→ v ]]

o .f := v ,h−→ v ,h′

NewC
fields(C) = f̃ t o 6∈ h

new C,h−→ o ,h:: [o 7→ (C, ˜f : init(t ))]

NewS
c 6∈ h

new (s ,s ),h−→ c ,h::c

Cong
e ,h−→ e ′,h′

E[e ],h−→ E[e ′],h′

Meth
h(o) = (C, . . . ) mbody(m ,C) = (x̃ ,e)

o .m (ṽ ),h−→ e [o/this][ṽ/x̃ ],h

NullProp

E[NullExc ],h−→ NullExc ,h

NullFldAss
null .f := v ,h−→ NullExc ,h

NullFld
null .f ,h−→ NullExc ,h

NullMeth
null.m(ṽ ),h−→ NullExc ,h

In NewC, init(bool) = false otherwiseinit(t ) = null.

Fig. 6. Expression Reduction

object’s identifier is not in the heap.

An object identifiero (channelc ) is said to befreshin heaph wheno 6∈ h (c 6∈ h).
This condition, formalised in Lemma 7.5, guarantees that newly created objects
and channels are not already used anywhere in a well-typed configuration.

Expressions Fig. 6 shows the rules for execution of expressions which corre-
spond to the sequential part of the language. These are standard [5, 22, 37], ex-
cept for the addition of a fresh shared channel to the heap (rule NewS). In rule
NewC the auxiliary functionfields(C) examines the class table and returns the
field declarations forC. The method invocation rule isMeth; the auxiliary func-
tion mbody(m ,C) looks upm in the classC, and returns a pair consisting of the
formal parameter names and the method’s code. The result is the method body
where the keywordthis is replaced by the receiver’s object identifiero , and the
formal parameters̃x are replaced by the actual parametersṽ . Note that the replace-
ment ofthis by o cannot lead to unwanted behaviours since the receiver cannot
change during execution of the method body.

Threads The reduction rules for threads are shown in Fig. 7. RuleStruct gives
standard structural equivalence rules of theπ-calculus [41], written≡. This equiv-

alence is used in ruleStr. We definemulti-stepreduction as:→→
def
= (−→∪≡)∗.
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Struct

P|null ≡ P P|P1 ≡ P1 |P P|(P1 |P2) ≡ (P|P1) |P2 P≡ P′ ⇒ P|P1 ≡ P′ |P1

Str
P′

1 ≡ P1 P1,h−→ P2,h
′ P2 ≡ P′

2

P′
1,h−→ P′

2,h
′

Spawn
E[spawn{ e }],h−→ E[null] |e ,h

Par
P,h−→ P′,h′

P|P0,h−→ P′ |P0,h
′

Connect

E1[connect c s{e1}] |E2[connect c s{e2}],h −→ E1[e1[c
′/c ]] |E2[e2[c

′/c ]],h::c ′

c ′ 6∈ h

ComS

E1[c .send (v )] |E2[c .receive ],h −→ E1[null] |E2[v ],h

ComSS

E1[c .sendS(c ′)] | E2[c .receiveS (x){e}],h −→ E1[null] | e [c ′/x ] | E2[null],h

ComSIf-true

E1[c .sendIf (true){e1}{e2}] |E2[c .receiveIf {e3}{e4}],h −→ E1[e1] |E2[e3],h

ComSIf-false

E1[c .sendIf (false){e1}{e2}] |E2[c .receiveIf {e3}{e4}],h −→ E1[e2] |E2[e4],h

ComSWhile

E1[c .sendWhile (e){e1}] |E2[c .receiveWhile{e2}],h−→

E1[c .sendIf (e){e1;c .sendWhile (e){e1}}{null}]

| E2[c .receiveIf {e2;c .receiveWhile{e2}}{null}], h

Fig. 7. Thread Reduction
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In rule Spawn, whenspawn{ e } is the active redex within an arbitrary evaluation
context, thethread bodye becomes a new thread, and the original spawn expression
is replaced bynull in the context.

Rule Connect describes the opening of sessions: if two threads require a session
on the same channel namec with dual session types, then a new fresh channelc ′ is
created and added to the heap. The freshness ofc ′ guarantees privacy and bilinear-
ity of the session communication between the two threads. Finally, the two connect
expressions are replaced by their respective session bodies, where the shared chan-
nelc has been substituted by the live channelc ′. Note that all channels which occur
in a well-typed thread occur also in any well-formed heap which agrees with the
thread, see Lemma 7.5.

RuleComSgives simple session communication: the valuev is sent by one thread
and received by another. RuleComSSformalises the act of delegating a session.
One thread awaits to receive a live channel, which will be bound to the variablex
within the expressione , and another thread is ready to send such a channel. Notice
that when the channel is exchanged, the receiver spawns a newthread to handle the
consumption of the delegated session. This strategy is necessary in order to avoid
deadlocks in the presence of circular paths of session delegation; see Example 4.4.

In rulesComSIf-true andComSIf-false, depending on the value of the boolean,
execution proceeds with either the first or the second branch. RuleCommSWhile
simply expresses the iteration by means of the conditional.This operation allows
to repeat a sequence of actions within a single session, which is convenient when
describing practical communication protocols (see [11, 13, 21]).

The following examples justify some aspects of our operational semantics.

Example 4.1 motivates the inclusion of new channel creation in the language.

We extend the example of Fig. 3 with this extra functionality: the Buyer should
receive notification when – after the session finishes – the goods are dispatched
from the warehouse.

This requires a call-back session, a reversal of roles in which the service decides
when to establish a connection with the waiting client. Because the call-back con-
tinues a previous session, it should be established over a shared channel agreed by,
and unique to, the original participants. This, in turn, requires the ability to generate
fresh shared channels, which can be distributed before the end of the initial session.

TheShipper can be modified, with the following code inserted at line 40, extending
the original protocol:
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40 x.send( delivDetails ); // }
41 // Create call-back channel with
42 // s = begin.!DeliveryDate.end
43 (s,s) y := new (s,s);
44 // send y to "Warehouse" over c3, uses s

45 connect c3 begin.!DeliveryDetails.!s.end {
46 c3.send( delivDetails ); c3.send( y ); }
47 x.send( y ); } // send y to "Buyer", uses s

48 ...

In the above, a new fresh channel is created at line 43, with a session type allow-
ing the exchange of aDeliveryDate object. This channel is then distributed to the
Warehouse (code not shown), at lines 45 and 46, andBuyer, at line 47. Now, the
Buyer can wait for theWarehouse to connect, at some point, and provide the exact
delivery date, over the channel shared uniquely by the two.

Example 4.2 demonstrates how server objects can be modelled using sessions and
thread creation viaspawn.

Again, we extend the example of Fig. 3, enabling aSeller object to serve multiple
Buyer requests concurrently. This is shown below, wheree represents the original
session body of Fig. 3, lines 19 to 27:

16 class Seller {
17 void sell() {
18 while( true ) {
19 connect c1 BuyProduct {
20 spawn{ e }; // Thread with original
21 // session body
22 } /* End connect */
23 } /* End while */
24 } /* End method sell */
25 }

In the above, we first placed the body of methodsell inside a non-terminating
loop, allowing clients to be served in sequence. However, after a connection with a
Buyer has been established, we do not want other buyers to have to wait until the
previous session is complete. Instead, we allocate a new thread for each connection,
by placing the original session bodye within a spawn at line 20. Using this code,
after a connection is made, a new thread is dispatched to execute the session body,
and theSeller’s code can iterate and connect with another client immediately.

Example 4.3 demonstrates the use of iterative sessions.
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As before, we extend the example of Fig. 3, this time to allow aBuyer to order more
than one product per invocation of methodbuy. The code replacing the original
from line 5 onwards is as follows:

5 void buy( String[] prodID, double[] maxPrice ) {
6 connect c1 BuyProduct{
7 int i := 0;
8 c1.sendWhile( i++ < prodID.length ) {
9 c1.send( prodID[i] );

10 // was price accepted?
11 c1.send( c1.receive <= maxPrice[i] ); }
12 // Now send address, and get delivery
13 // details, as done originally ...
14 } /* End connect */
15 } /* End method buy */

First, the signature ofbuy is changed to expect array arguments – we use arrays
and other language features which are not defined in our language, but which are
orthogonal to sessions. Second, at lines 8 to 11 we implementan iterative session
part: at line 8, we require that the session part iterates as long as there are products
in the array given as argument; at line 9, we send the current product identifier,
based on the indexi; then, at line 11, we receive a price quote, compare it to the
maximum acceptable price for the item, and send the boolean result back to the
Seller, so that the item can be added to, or ignored from, the order. When the
iterations are finished, after line 11, the protocol would continue along the same
lines as the original – but we omit this code.

Example 4.4 demonstrates the reason for the definition of ruleComSSwhich cre-
ates a new thread out of the expression in which the sent channel replaces the
channel variable. A more natural and simpler formulation ofthis rule would avoid
spawning a new thread:

E1[c .receiveS (x){e}] | E2[c .sendS (c ′)],h−→ E1[e [c
′
/x ]] | E2[null ],h

However, using the above version of the rule, and assuming session typess1 ands2,
defined ass1=begin.?int.end, ands2=begin.?(!int.end).end, parallel execution
of the threadsP1 andP2 shown below reduces to

c ′1.send(5) ; c ′1.receive | null, h::c ′1

wherec ′1 is the fresh live channel that replacedc1 when the connection was estab-
lished. Notice that both ends of the session are in one thread, so the last configura-
tion is stuck.
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1 connect c1 s1 {
2 connect c2 s2 {
3 c2.receiveS(x) { x.send(5)} };
4 c1.receive
5 }

P1

1 connect c1 s1 {
2 connect s2 {
3 c2.sendS(c1)
4 }
5 }

P2

5 Motivating the Design of the Type System

This section discusses the key ideas behind the type system introduced in § 6 with
some examples, focusing on type preservation and progress.

Type preservation In order to achieve subject reduction, we need to ensure that
at any time during execution, no more than two threads have access to the same live
channel, and also, that no thread has aliases (i.e., more than one reference) to a live
channel.

Example 5.1 demonstrates that bilinearity is required for type preservation, and
that in order to guarantee bilinearity we need to restrict aliases on live channels.
Assume in the following, that we allowed live channels to be stored in fields, and
that in the threadsP1, P2 andP3 the field accesseso1.f 1, o2.f 2, ando3.f 3 all point
to the same live channelc in heaph.

P1︷ ︸︸ ︷
o1.f 1.send(3);o1.f 1.send (true) |

P2︷ ︸︸ ︷
o2.f 2.send(4);o2.f 2.send (false)

| o3.f 3.receive ;o3.f 3.receive︸ ︷︷ ︸
P3

, h

It is clear thatP3 expects to receive first an integer and then a boolean via channel
c ; butP3 could communicate first withP1 and then withP2 (or vice versa) receiving
two integers, destroying the intended sequence of communication between the two
original partners of the session. To avoid the creation of aliases on live channels,
we do not allow live channel types to be used as the types of fields, nor do we allow
more than one live channel parameter in methods.

Example 5.2 demonstrates that guaranteeing bilinearity requires restrictions on
sending/receiving live channels. In the following, assuming that the three threads,
P1, P2 andP3 could be typed, for somes1 ands2,
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1 connect c1 s1 {
2 connect c2 s2 {
3 c2.sendS(c1) };
4 c1.receive }

P1

1 connect c1 s1 {
2 c1.receive;
3 c1.send(3)
4 }

P2

1 connect c2 s2 {
2 c2.receiveS(x){ x.send(4) }
3 }

P3

then, starting with a heaph, the above three threads in parallel reduce to:

c ′1.receive | c ′1.receive ; c ′1.send (3) | c ′1.send (4), h::c ′1 ::c ′2

wherec ′1 andc ′2 are the fresh live channels that replaced respectivelyc1 andc2

when the sessions began. Clearly, this configuration violates the bilinearity condi-
tion.

We therefore need a notion of whether a live channel has beenconsumed, i.e.,
whether it cannot be further used for the communication of values. There is no
explicit user syntax for consuming channels. Instead, channels are implicitly con-
sumed 1) at the end of a connection, 2) when they are sent over achannel, and 3)
when they are used withinspawn. However, types do distinguish consumed chan-
nels using theend suffix; this condition originates from [34, 51]. This allowsus to
know if a live channel passed as parameter in a method call will be consumed or
not by the execution of the method body. In § 6.1 we show thatP1 is type incorrect
for anys1 ands2.

Progress in MOOSEmeans that indefinite waiting may only happen at the point
where a connection is required, and in particular when the dual of a connect is
missing. In other words, there will never be a deadlock at thecommunication points
on live channels. This can only be guaranteed if the communications are always
processed in a given order,i.e., if there is no interleaving of sessions.

Example 5.3 shows how a well-behaved program can be rejected by our type sys-
tem, to ensure general progress.
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1 connect c1 begin.!int.end {
2 connect c2 begin.?int.end

{
3 c1.send(3); c2.receive}
4 }

P1

1 connect c1 begin.?int.end {
2 connect c2 begin.!int.end

{
3 c1.receive; c2.send(5)}
4 }

P2

In the above the interleaved communications on channelsc1 andc2 would reach
completion; however, as the next example shows, a small modification in the or-
der of communications – which is undetected at the type level– can result in a
deadlocked state.

Example 5.4 demonstrates how session interleaving may cause deadlocks.

1 connect c1 begin.!int.end {
2 connect c2 begin.?int.end

{
3 c1.send(3); c2.receive}
4 }

P1

1 connect c1 begin.?int.end {
2 connect c2 begin.!int.end

{
3 c2.send(5); c1.receive}
4 }

P2

In the above example we have indefinite waiting after establishing the connection,
becauseP1 cannot progress unlessP2 reaches the statementc1.receive , andP2 can-
not progress unlessP1 reaches the statementc2.receive , and so we have a dead-
lock at a communication point. A similar deadlock between live channels has been
investigated in the context of linear and behavioural typesof mobile processes,
e.g., [38, 53]. Note thatnestingof sessions does not affect progress. Let us consider
the following processes:

P′
1 = connect c1begin.?int .end{c1.receive ;connect c2begin.!int .end{c2.send(5)}}

P′
2 = connect c1begin.!int .end{c1.send (3);connect c2begin.?int .end{c2.receive}}

P′
3 = connect c1begin.!int .end{connect c2begin.?int .end{c2.receive};c1.send (3)}

Parallel execution ofP′
1 andP′

2 does not cause deadlock, while parallel execution
of P′

1 with P′
3 does, but it does so at the connection point forc2. However, such

deadlock is acceptable, since it would disappear if we placed a suitableconnect in
parallel.

In order to avoid interleaving at live channels, we require that within each “scope”
no more than one live channel can be used for communication; we call this the “hot
set.” The formal definition can be found in § 6. The hot set offers a simpler typing
system than those based on behavioural types [38, 53] which need to keep track of
dependencies between channels.
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In § 6.1, we will show thatP1 andP2 are type incorrect.

The following, similar, example justifies the requirement that also spawned pro-
cesses use the current hot channel for communication.

1 connect c1 begin.!int.end {
2 connect c2 begin.?int.end{
3 spawn { c1.send(3);
4 spawn { c2.receive }
5 }
6 }
7 }

P3

1 connect c1 begin.?int.end {
2 connect c2 begin.!int.end{
3 spawn { c2.send(5);
4 spawn { c1.receive }
5 }
6 }
7 }

P4

Namely, execution ofP3 | P4 starting with a heaph leads to

null | c ′1.send (3); spawn{ c ′2.receive } | null | c ′2.send (5); spawn{ c ′1.receive }, h::c ′1::c ′2

which is deadlocked. As we will see, the type system makesP3 type incorrect.

Example 5.5 demonstrates that in order to avoid deadlocks, we also need to take
into account the live channels used to send and receive inside the method bodies.
Consider a methodm of classC with a parameterx of type ?int.end and body
x.receive. In this case, the two threadsP1 andP2 below in parallel, starting with a
heaph, reduce to

c ′2.send (3);c ′1.send(5) |c ′1.receive ;c ′2.receive , h::c ′1 ::c ′2

1 connect c1 begin.!int.end {
2 connect c2 begin.!int.end {
3 c2.send(3)
4 };
5 c1.send(5)
6 }

P1

1 connect c1 begin.?int.end {
2 connect c2 begin.?int.end {
3 new C.m(c1);
4 c2.receive
5 }
6 }

P2

In order to avoid problems like the above, we require that theonly channel used for
sending and receiving in the method body to be the first channel parameter, if any,
and we decorate the method type with the superscript� to indicate that the method
body may send or receive on the first channel parameter; and� to indicate that the
method body does not send or receive on any of the channel parameters.

Example 5.6 demonstrates that allowing live channels in the body of a channel re-
ceive expression may destroy progress. We assume session typess1=begin.!int.end
ands2=begin.!(!int.end).end.
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1 connect c1 s1 {
2 connect c2 s2 {
3 c2.sendS(c1) };
4 }

P1

1 connect c1 s1 {
2 connect c2 s2 {
3 c2.receiveS(x){
4 x.send(3);
5 connect c3 s1 {
6 c3.sendS(c1)
7 };
8 };
9 }

P2

Starting with a heaph, the two threads above reduce to a deadlock at a communi-
cation point

c ′1.send(3);connect c3 s{c3.sendS (c ′1)}, h::c ′1 ::c ′2

Discussion In this section we showed how the aim to guarantee progress drove
the design of the type system, and how this aim imposed some conditions on the
use of live channels.

We believe that these conditions are not that restrictive. First, we can represent most
of the communication protocols in the session types literature, as well as traditional
synchronisation [42, § 3], while at the same time ensuring progress. Secondly, since
these conditions are only essential for progress, if we remove hot sets from typing
judgements, and we allow multiple live channel parameters in methods, we will
obtain a more relaxed type system which allows deadlock on live channels, but still
preserves type safety.

6 Type System

Types The full syntax of types is given in Fig. 8.

Partial session types, ranged over byπ, represent sequences of communications,
whereε is the empty communication, andπ1.π2 consists of the communications
in π1 followed by those inπ2. We use † as a convenient abbreviation that ranges
over{!,?}. The partial session types !t and ?t express respectively the sending and
reception of a value of typet .

Theconditionalpartial session type has the shape †〈π1 ,π2 〉. When † is !, †〈π1 ,π2 〉
describes sessions which send a boolean value and proceed with π1 if the value is
true, or π2 if the value is false; when † is ?, the behaviour is the same, except
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† ::= ! | ? direction

π ::= ε | π.π | †t | †〈π,π〉 | †〈π〉∗ | †(η) partial session type

η ::= π.end | †〈η,η〉 | π.η ended session type

ρ ::= π | η running session type

s ::= begin.η | sch shared session type

θ ::= ρ | begin.ρ | l session type

t ::= C | bool | s | (s , s) standard type

Fig. 8. Syntax of types

that the boolean that determines the branch is to be receivedinstead. Theitera-
tivepartial session type †〈π〉∗ describes sessions that respectively send or receive a
boolean value, and if that value is true continue withπ, iterating, while if the value
is false, continue to the following partial session types, if any.

The partial session types !(η) and ?(η) represent the exchange of a live channel,
and therefore of an active session, with remaining communications determined by
the ended session typeη. Note that typing the live channel byη instead ofπ ensures
that this channel is no longer used in the sending thread. In fact each successive use
of the channel should concatenateη with a not empty running session type, but this
concatenation is not allowed, see Definition 6.1. Example 5.2 shows why this is
necessary.

An ended session type, η, is a partial session type concatenated either withend or
with a conditional whose branches in turn are both ended session types. It expresses
a sequence of communications with its termination,i.e., no further communications
on that channel are allowed at the end. A conditional ended session type allows to
type spawns or connects in the branches. For example, the channelc1 in the body
of methodsell in Fig. 3 cannot be typed by

begin.?String.!double.?<!Address.?DeliveryDetails,ε>.end

because the branching in line 23 contains a spawn.

We useρ to range over both partial session types and ended session types: we call
it a running session type.

A shared session type, s , starts with the keywordbegin and has one or more end-
points, denoted byend. Between the start and each ending point, a sequence of
session parts describe the communication protocol. The shared session typesch is
used for those shared channels that are free in a thread, and which can be used ac-
cording to any type respecting the (dynamic) duality check of rule Connect(Fig. 7).

21



The typing rules ensure that this type cannot be used directly to describe a session,
but it is necessary for definingfreshnessof channels.

A session typeθ is a running session type, possibly prefixed bybegin, so possibly
a shared session type, orl. We usel when typing threads, to indicate the type of a
channel which is being used by two threads in complementary ways.

Standard types, t , are either class identifiers (C), or booleans (bool ), or shared session types
(s ), or pairs of shared session types with their duals (i.e., (s , s)).

Each session typeθ except forl has a correspondingdual, denotedθ, which is
obtained as follows:

• ?=! ! =?
• begin.ρ = begin.ρ
• π.end = π.end π.†〈η1,η2〉 = π.†〈η1,η2〉
• ε = ε †t = †t †(η) = †(η)

†〈π1,π2〉 = †〈π1,π2〉 †〈π〉∗ = †〈π〉∗ π1.π2 = π1.π2

Note that, in the fourth line, the type of the value to be sent (received) in output
(input) is not dualised, as it should be the same for both sides of a session. The
same applies to the communication of live channels. Also, observe that duality is
an involution,i.e., θ = θ.

Type System We type expressions and threads with respect to a fixed, global
class tableCT, as reflected in the rules of Fig. 9 which define well-formed standard
types. ByD(CT) we denote the domain of the class tableCT, i.e., the set of classes
declared inCT. We assumeCT satisfies some usual sanity conditions as in FJ [37].
1 In the same figure we also define subtyping,<:, on class names: we assume that
the subtyping between classes is acyclic as in [37]. In addition, we have(s , s ) <: s

and(s , s ) <: s , as in standardπ-calculus channel subtyping rules [33]: a channel on
which both communication directions are allowed may also transmit data following
only one of the two directions.

The typing judgement for threads has two environments,i.e., has the shape:

Γ;Σ ⊢ P: thread

where thestandard environmentΓ associates standard types tothis, parameters,
objects, and shared channels, while thesession environmentΣ contains only judge-
ments for live channel names and channel variables. Fig. 9 defines well-formedness

1 Note, that we could easily have extended the syntax to allow dynamic class creation, but
this is orthogonal to session typing.
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Well-formed Standard Types

Class
C∈D(CT)

⊢C : tp

Wf-Session

⊢ s : tp

Pair

⊢ (s , s) : tp

Bool

⊢ bool : tp

Subtyping

(s , s) <: s (s , s) <: s

C∈D(CT)

C <: C

C <: D D <: E

C <: E

class C extends D {f̃ t M̃} ∈ CT

C <: D

Standard Environments, and Well-formed Standard Environments

Γ ::= /0 | Γ,this : C | Γ,x : t | Γ,o : C | Γ,c : sch

Emp

/0 ⊢ ok

Ethis
Γ ⊢ ok C∈D(CT) this 6∈D(Γ)

Γ, this : C ⊢ ok

EVar
Γ ⊢ ok ⊢ t : tp x 6∈D(Γ)

Γ,x : t ⊢ ok

EOid
Γ ⊢ ok C∈D(CT) o 6∈D(Γ)

Γ,o : C ⊢ ok

ECha
Γ ⊢ ok c 6∈D(Γ)

Γ,c : sch ⊢ ok

Session Environments, and Well-formed Session Environments

Σ ::= /0 | Σ,u : θ

SEmp

/0 ⊢ ok

SERC
Σ ⊢ ok u 6∈D(Σ)

Σ,u : θ ⊢ ok

Fig. 9. Standard Types, Subtyping, and Environments

of standard and session environments, where the domain of anenvironment is de-
fined as usual and denoted byD().

As we already discussed in Example 5.4, in order to avoid session interleaving, we
need to distinguish the unique (if any) channel identifier currently used to commu-
nicate data. Therefore we record a third set, thehot setS , which is either empty, or
contains a single channel identifier belonging to the session environment. Thus the
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typing judgement for expressions has the shape:

Γ;Σ;S ⊢ e : t

whereS is either/0 or {u} with u ∈D(Σ).

We adopt the convention that typing rules are applicable only when the session
environments in the conclusions are defined.

Expressions The typing rules for expressions are given in Fig. 10 and Fig.11.
Looking at these rules two observations on hot sets are immediate:

• in all rules exceptConn, ReceiveS, Weak andWeakB the hot sets of all the
premises and of the conclusion coincide;

• in all rules whose conclusion is a session expression the hotset of the conclusion
is the subject of the session expression.

These two conditions ensure that if ruleWeakB is not applied in deriving the type
of an expression or thread, then all communications use the same live channel, and
therefore sessions are not interleaved. This is proved in Lemma 7.9.

In rule Conn the ended session type becomes shared, and therefore in the conclu-
sion the hot set is empty.

The conditionη 6= ε.end in rulesSendSandReceiveSensures that the exchanged
channels have not yet been consumed. This requirement simplifies the progress
proof, since it guarantees that all live channels have a typedifferent fromε.end (see
Lemma B.2(1)). Sinceu .receiveS (x){e} in rule ReceiveSreceives along the live
channelu a channel that will replacex , the hot set of the premise is{x}, while that
of the conclusion is{u}. Example 5.6 justifies the requirement thatx is the only
live channel ofe .

Lastly, ruleWeak replaces an empty hot set by a set containing an arbitrary ele-
ment.

Notice that, in the derivation of a judgment of the shapeΓ; /0;S ⊢ e : t (i.e., where
the session environment is empty) the type ruleWeakB has never been used. This is
so, because after using ruleWeakB the session environment will contain a premise
whose predicate is a session type starting withbegin, and rulesConn, ReceiveS
cannot discharge such a kind of premises. See the discussionon the typing of Ex-
ample 5.4 in Subsection 6.1.

The session environments of the conclusions are obtained from those of the premises
and possibly other session environments using theconcatenationoperator,◦, de-
fined below. The typing rules concatenate the session environments to take into
account the order of execution of expressions.
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Typing Rules for Values

Chan
Γ,c : sch ⊢ ok

Γ,c : sch; /0; /0 ⊢ c :(s , s)

Null
Γ ⊢ ok ⊢ t : tp

Γ; /0; /0 ⊢ null : t

Oid
Γ,o : C ⊢ ok

Γ,o : C; /0; /0 ⊢ o : C

True
Γ ⊢ ok

Γ; /0; /0 ⊢ true : bool

False
Γ ⊢ ok

Γ; /0; /0 ⊢ false : bool

Typing Rules for Standard Expressions

Var
Γ,x : t ⊢ ok

Γ,x : t ; /0; /0 ⊢ x : t

This
Γ, this : C ⊢ ok

Γ, this : C; /0 ⊢ this : C

Fld
Γ;Σ;S ⊢ e : C f t ∈ fields(C)

Γ;Σ;S ⊢ e .f : t

Seq
Γ;Σ;S ⊢ e : t Γ;Σ′;S ⊢ e ′ : t ′

Γ;Σ◦Σ′;S ⊢ e ;e ′ : t ′

FldAss
Γ;Σ;S ⊢ e : C Γ;Σ′;S ⊢ e ′ : t f t ∈ fields(C)

Γ;Σ◦Σ′;S ⊢ e .f := e ′ : t

NewC
Γ ⊢ ok C∈D(CT)

Γ; /0; /0 ⊢ new C : C

NewS
Γ ⊢ ok

Γ; /0; /0 ⊢ new (s , s) :(s , s)

Spawn
Γ;Σ;S ⊢ e : t ended(Σ)

Γ;Σ;S ⊢ spawn{ e } :Object

NullPE
Γ ⊢ ok ⊢ t : tp

Γ; /0; /0 ⊢ NullExc : t

MethMinus
Γ;Σ0;S ⊢ e : C Γ;Σi ;S ⊢ e i : t i i ∈ {1. . .n}

mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm
�
→ t

Γ;Σ0◦Σ1 . . .◦Σn◦{u1 :ρ1, . . . ,um:ρm};S ⊢ e .m (e1, . . . ,en,u1, . . . ,um) : t

MethPlus
Γ;Σ0;{u1} ⊢ e : C Γ;Σi ;{u1} ⊢ e i : t i i ∈ {1. . .n}

mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm
�
→ t

Γ;Σ0◦Σ1 . . .◦Σn◦{u1 :ρ1, . . . ,um:ρm};{u1} ⊢ e .m(e1, . . . ,en,u1, . . . ,um) : t

Fig. 10. Typing Rules for Expressions I
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Typing Rules for Communication Expressions

Conn
Γ; /0; /0 ⊢ u :begin.η Γ\u ; Σ,u :η;{u} ⊢ e :t

Γ;Σ; /0 ⊢ connect u begin.η{e} :t

Send
Γ;Σ;{u} ⊢ e :t

Γ;Σ◦{u :!t };{u} ⊢ u .send( e ) : Object

Receive
Γ ⊢ ok ⊢ t : tp

Γ;{u : ?t };{u} ⊢ u .receive :t

SendS
Γ ⊢ ok η 6= ε.end

Γ;{u ′ :η,u : !(η)};{u} ⊢ u .sendS(u ′) : Object

ReceiveS
Γ\x ; {x :η};{x} ⊢ e :t η 6= ε.end

Γ;{u : ?(η)};{u} ⊢ u .receiveS (x){e} : Object

SendIf
Γ;Σ0;{u} ⊢ e :bool Γ;Σ,u :ρi ;{u} ⊢ e i :t i ∈ {1,2}

Γ;Σ0◦Σ,u :!〈ρ1 ,ρ2 〉;{u} ⊢ u .sendIf (e){e1 }{e2 } :t

ReceiveIf
Γ;Σ,u :ρi ;{u} ⊢ e i :t i ∈ {1,2}

Γ;Σ,u :?〈ρ1 ,ρ2 〉;{u} ⊢ u .receiveIf {e1 }{e2 } :t

SendWhile
Γ; /0; /0 ⊢ e :bool Γ;{u :π};{u} ⊢ e ′ :t

Γ;{u :!〈π〉∗};{u} ⊢ u .sendWhile(e ){e ′} :t

ReceiveWhile
Γ;{u :π};{u} ⊢ e :t

Γ;{u :?〈π〉∗};{u} ⊢ u .receiveWhile{e} :t

Non-structural Typing Rules for Expressions

WeakES
Γ ; Σ;S ⊢ e :t u 6∈D(Σ)

Γ ; Σ,u :ε ;S ⊢ e :t

WeakE
Γ;Σ,u :π;S ⊢ e :t

Γ;Σ,u :π.end;S ⊢ e :t

Consume
Γ;Σ,u :ε.end;S ⊢ e :t

Γ;Σ,u :l;S ⊢ e :t

Sub
Γ;Σ;S ⊢ e :t

Γ;Σ;S ⊢ e :t ′
t <: t ′

Weak
Γ;Σ; /0 ⊢ e :t u ∈D(Σ)

Γ;Σ;{u} ⊢ e :t

WeakB
Γ ; Σ,c :ρ;{c} ⊢ e :t

Γ ; Σ,c :begin.ρ ; /0 ⊢ e :t

Fig. 11. Typing Rules for Expressions II
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The concatenation of two channel typesθ and θ′ is the unique channel type (if
it exists) which prescribes all the communications ofθ followed by all those of
θ′. The concatenation only exists ifθ is a partial session type possibly prefixed by
begin, andθ′ is a running session type. The concatenation cancels meaninglessε,
so for exampleε◦ l=l. The extension to session environments is straightforward.
As usual,⊥ stands for undefined.

Definition 6.1 (Concatenation)

• θ◦θ′ =





θ if θ′ = ε

θ′ if θ = ε

θ.end if θ′ = ε.end and

θ is a partial session type possibly prefixed bybegin

begin.θ′ if θ = begin.ε andθ′ is a running session type

θ.θ′ if θ is a partial session type possibly prefixed bybegin

andθ′ is a running session type

⊥ otherwise.

• Σ\Σ′ = {u :Σ(u) |u ∈D(Σ)\D(Σ′)}

• Σ◦Σ′ =





Σ\Σ′ ∪ Σ′ \Σ ∪ {u :Σ(u)◦Σ′(u) | u∈D(Σ)∩D(Σ′)}

if ∀u∈D(Σ)∩D(Σ′) : Σ(u)◦Σ′(u) 6= ⊥;

⊥ otherwise.

In the above definition we avoided the occurrence of meaninglessε, e.g., we never
create the session type !bool .ε. This is why the definition considers several differ-
ent cases. An alternative would allow the occurrence of meaninglessε, and would
consider session types which differ forε occurrences as equivalent.

In the following we discuss the most interesting typing rules for expressions.

RuleSpawn requires that all sessions used by the spawned thread are finally con-
sumed,i.e., they are all ended session types. This is necessary in orderto preserve
the bilinearity condition,e.g., avoid configuartions such asspawn{ c .send (1) };c .send (true).
To guarantee the consumption we define:

ended(Σ) = ∀u :θ ∈ Σ. θ is an ended session type.

For example,ended({c :?bool .end,c ′ :!〈?bool .end, !bool .end〉}) holds, while, on
the other handended({c :?bool}) doesnothold.
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MMinus-ok
mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm

�
→ t {this : C, x̃ : t} ; {ỹ :ρ} ; /0 ⊢ e : t

tm ( t̃ x , ρ̃ y) {e} :ok in C

MPlus-ok
mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm

�
→ t {this : C, x̃ : t} ; {ỹ :ρ} ; {y1} ⊢ e : t

tm ( t̃ x , ρ̃ y) {e} :ok in C

C-ok
mtype(m ,D) defined =⇒ mtype(m ,C) = mtype(m ,D) M̃ : ok in C

class C extends D {f̃ t M̃} : ok

CT-ok
class C extends D {f̃ t M̃} : ok D = Object or D defined inCT CT : ok

CT,class C extends D {f̃ t M̃} : ok

Fig. 12. Well-formed Class Tables

RulesMethMinus andMethPlus retrieve the type of the methodm from the class
table using the auxiliary functionmtype(m ,C). The session environments of the
premises are concatenated with{u1 : ρ1, . . . ,um : ρm}, which represents the com-
munication protocols of the live channelsu1, . . . ,um during the execution of the
method body. RuleMethMinus requires the hot sets of all the premises and of the
conclusion to be the same. RuleMethPlus expects the actual parameteru1 to be a
channel identifier that will be used within the method body directly as if it was part
of an open session. Therefore the hot sets of all the premisesand of the conclusion
must be{u1}. We callu1 thesubject of the method call.So a call of methods whose
type is decorated by� has a subject, while a call of methods by� has no subject.

RuleConn ensures that a session body properly uses its unique channelaccording
to the required session type. The first premise says that the channel identifier used
for the session (u ) can be typed with the appropriate shared session type (begin.η).
The second premise ensures that the session body can be typedin the restricted
environmentΓ \ u with a session environment containingu : η and with hot set
{u}.

Lastly, in rulesReceiveIFandSendIFbothρ1 andρ2 are either partial session types
or ended session types – this is guaranteed by the syntax of conditional session
types (see Fig. 8).

We discuss the non-structural rules in Subsection 6.1.
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Class Tables Fig. 12 defines well-formed class tables. Note that we expectthe
selection of the� in the method type lookup functionmtype(.., ..) to correctly
pick between� and� so as to satisfy rulesMMinus −ok andMPlus−ok, which
type-check the method bodies with respect to a classC taking as environments
the association between formal parameters and their types and the association be-
tweenthis andC. These rules differ in the hot sets used to type the method bodies;
thus MPlus−ok allows a receive or send on the first channel parameter, while
MMinus −ok does not allow any send or receive on the channel parameters.

In keeping with [37], we leave implicit the requirement thatmethods are not over-
loaded,i.e., that no method is defined more than once in a class body, and that no
field is declared more than once in a class hierarchy. Also in keeping with [37],
we explicitly require that method overriding preserves thetype of the overridden
method.

Start

Γ;Σ ⊢ e :t

Γ;Σ ⊢ e :thread

Par

Γ;Σi ⊢ Pi :thread i ∈ {1,2}

Γ;Σ1||Σ2 ⊢ P1 |P2 :thread

Fig. 13. Typing Rules for Threads

Thread In the typing rules for threads, we need to take into account that the same
channel can occur with dual types in the session environments of two premises. For
this reason we compose the session environments of the premises using theparallel
composition, ||.

Definition 6.2 We define parallel composition,||, on session types and on session
environments as follows:

θ||θ′ =





l if θ = θ′

⊥ otherwise.

Σ||Σ′ =





Σ\Σ′ ∪ Σ′ \Σ ∪ {u :Σ(u) ||Σ′(u) |u∈D(Σ)∩D(Σ′)}

if ∀u∈D(Σ)∩D(Σ′) : Σ(u) ||Σ′(u) 6= ⊥

⊥ otherwise.

Note thatl ||θ = θ|| l= ⊥.

Using the operator|| the typing rules for processes are straightforward (see Fig. 13).
RuleStart promotes an expression to the thread level; and rulePar types a com-
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/0; /0; /0 ⊢ true :bool

/0;{c :ε}; /0 ⊢ true :bool

/0;{c :ε};{c} ⊢ true :bool

/0;{c :!bool};{c} ⊢ c .send (true) :Object

Fig. 14. A Type Derivation using RulesWeakESandWeak

position of threads if the composition of their session environments is defined.

In writing session environments we assume the following operator precedence: ,◦
||. For exampleΣ0,c : π◦Σ1||Σ2 is short for((Σ0,c : π)◦Σ1)||Σ2.

6.1 Justifying Examples

In this subsection we discuss the typing of the threads shownin § 5 and we also give
examples justifying the non-structural rules, except for ruleSub which is obvious.

Example 5.1:The threadP1 |P2 is not typable since the parallel composition of the
corresponding session environments is undefined.

Example 5.2:The threadP1 cannot be typed since:

• the expression in line 3 can only be typed by ruleSendSwhich requires for the
sent channelc1 a live channel type terminating byend in the session environ-
ment;

• the expression in line 4 can only be typed by ruleReceivewhich requires also a
live channel type different fromε for the channelc1 in the session environment;

• to type the composition of these two expressions,Seqrequires the concatenation
of the corresponding session environments to be defined, butthis is false since a
type terminating byend cannot be concatenated to a live channel type different
from ε.

Examples 5.3 and 5.4:Neither thread can be typed. For example, to type the ex-
pressions in line 3 inP1 using rulesSend, andReceive, {c1} and{c2} should be
the hot sets, respectively. Notice that ruleSeq requires the premises to share the
same hot set. We could use rulesWeakESandWeakB to force the hot set of the
first premise to be{c2}, but then ruleConn would not be applicable to type the
whole expressionP1.

Example 5.5: It is clear from rulesMethMinus andMethPlus that the hot sets
of the receivers, of the actual parameters and of the method bodies cannot be two
different live channels.

Use of non-structural rules.
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RuleWeakES, whereES stands for empty session, is necessary to add a channel
to a session environment and ruleWeak is used to specify an hot set. Look for
example at the typing ofc .send (true), as shown in Fig. 14.

With ruleWeakESwe can derive/0;{c :ε}; /0⊢ null:thread and then with rulesStart
andPar we can derive/0;{c :l} ⊢ null|null : thread . Sincenull|null ≡ null, in order
to have type preservation under structural equivalence we need to be able to also
derive that/0;{c :l} ⊢ null:thread . This gives the motivation for ruleConsume. The
derivation works as follows: use rulesNull , WeakESandWeakE to obtain /0;{c :
ε.end}; /0⊢ null:Object. Then, applyConsumeand obtain/0;{c :l}; /0⊢ null:Object.
Then, applyStart and obtain/0;{c :l} ⊢ null : thread .

The design of ruleConsumeis delicate, and we considered several alternatives. We
chose to start from the predicateε.end for the same subjectu , since this simplifies
the proof of Lemma 7.2 (see Appendix A). Moreover, we chose todesign rule
Consumefor expressions (and not for processes) since this gives us the property
thatΓ;Σ ⊢ e :thread impliesΓ;Σ;S ⊢ e :t for someS , t . This property significantly
simplifies the proof of subject reduction.

Rule WeakE, whereE stands forend, allows us to obtain ended session types as
predicates of session environments, as required in order tobe able to apply rules
Conn, Spawn, ReceiveS. For example, through application ofTrue, Weak, Send,
we obtain /0;{u :!bool};{u} ⊢ u .send(true) : bool . Then, through application of
WeakE we obtain /0;{u :!bool .end};{u} ⊢ u .send (true) : bool . Then,Spawn is
applicable, and gives/0;{u :!bool .end};{u} ⊢ spawn{ u .send (true) } :Object.

Rule WeakB, whereB stands for begin, is necessary for type preservation under
execution. For example, consider the threadsP1 andP2 defined as follows:

1 connect c1 begin.!bool .end {
2 connect c2 begin.!bool .end {
3 c2.send(true) };
4 c1.send(false) }

P1

1 connect c1 begin.?bool .end {
2 connect c2 begin.?bool .end {
3 c2.receive };
4 c1.receive }

P2

Clearly, we can derive/0; /0 ⊢ P1|P2 : thread .

Starting with a heaph, the above two threads in parallel reduce to:

c ′1.send(true) ; c ′2.send (false) | c ′1.receive ; c ′2.receive , h::c ′1 ::c ′2

wherec ′1 andc ′2 are the fresh live channels, that replaced respectivelyc1 andc2

when the sessions began. Fig. 15 shows a typing forc ′1.receive ; c ′2.receive ; the first
rule on the right isWeakB.
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/0;{c ′
1 :?bool};{c ′

1} ⊢ c ′
1.receive :bool

/0;{c ′
2 :?bool};{c ′

2} ⊢ c ′
2.receive :bool

/0;{c ′
2 :begin.?bool}; /0 ⊢ c ′

2.receive :bool

/0;{c ′
2 :begin.?bool};{c ′

1} ⊢ c ′
2.receive :bool

/0;{c ′
1 :?bool ,c ′

2 :begin.?bool};{c ′
1} ⊢ c ′

1.receive ; c ′
2.receive :bool

Fig. 15. A Type Derivation using RuleWeakB

HCha
c ∈D(h) (s , s ) <: s ′

h⊢ c : s ′

HNull
C∈D(CT)

h⊢ null : C

HTrue

h⊢ true : bool

HFalse

h⊢ false : bool

HObj
h(o) = (C′, ...) C′ <: C

h⊢ o : C

WfObj
h(o) = (C, f̃ :v) fields(C) = f̃ t h⊢ v i : t i

h⊢ o

WfHeap
∀o ∈D(h) : h⊢ o ∀o ∈D(Γ) : h⊢ o : Γ(o)
∀c ∈D(Γ)∪D(Σ) : c ∈ h D(Γ)∩D(Σ) = /0

Γ;Σ ⊢ h

Fig. 16. Types of Runtime Entities, and Well-formed Heaps

7 Type Safety and Communication Safety

We will consider only reductions of well-typed expressionsand threads. We define
agreement between environments and heaps in the standard way and we denote it
by Γ;Σ ⊢ h. The judgment is defined in Fig. 16. The judgmenth⊢ v : t guarantees
that the runtime valuev has typet . In ruleHCha we use<: in order to write only
one rule, which allows to derive types of both shapes ((s , s) ands ). For objects we
take subclasses into consideration in ruleHObj . The judgmenth ⊢ o guarantees
that the objecto is well formed,i.e., that its fields contain values according to the
declared field types inC, the class of that object. The judgmentΓ;Σ ⊢ h guarantees
that the heap is well formed forΓ andΣ, i.e., that all objects are well formed, all
objects in the domain ofΓ have a class which is a superclass of their declared class
in h, all channels in the domain ofΓ and ofΣ are channels inh.

We defineΓ;Σ;S ⊢ e ;h, as a shorthand forΓ;Σ;S ⊢ e : t for somet andΓ;Σ ⊢ h.
Similarly Γ;Σ ⊢ P;h meansΓ;Σ ⊢ P : thread andΓ;Σ ⊢ h.
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7.1 Subject Reduction

In this section, we outline the proof of subject reduction, while we give full details
and proofs in Appendix A.

As usual, we use Generation Lemmas. The Generation Lemmas inthis work are
somewhat unusual, because, due to the non-structural rules, when an expression is
typed, we only can deducesomeinformation about the session environment and
hot set used in the typing. For example,Γ;Σ;S ⊢ x : t doesnot imply that Σ = /0;
instead, it implies thatR (Σ) ⊆ {ε,ε.end,begin.ε.end,begin.ε}, whereR (Σ) is the
range ofΣ.

In order to express the Generation Lemmas, we define the partial order� among
pairs of session environments, and hot sets, which basically reflects the differences
introduced through the application of nonstructural rules.

Definition 7.1 (Weakening Order�) (1) Σ;S � Σ′;S ′ is the smallest partial or-
der such that:
• Σ;S � Σ,u : ε;S if u /∈D(Σ),
• Σ,u : π;S � Σ,u : π.end;S ,
• Σ,u : ε.end;S � Σ,u :l;S ,
• Σ; /0 � Σ;{u},
• Σ,c : ρ;{c} � Σ,c : begin.ρ; /0.

(2) Σ � Σ′ if Σ;S � Σ′;S ′ for someS , S ′.

For example{c :?bool};{c} � {c :begin.?bool ,c ′ :l}; /0.

Lemma 7.2 states that the ordering relation� preserves the types of expressions,
and is proven in Appendix A.

Lemma 7.2 If Σ;S � Σ′;S ′ and Γ;Σ;S ⊢ e : t , then Γ;Σ′;S ′ ⊢ e : t .

Generation Lemmas for standard expressions, communication expressions, and pro-
cesses are given in Appendix A (see Lemmas A.1, A.2, and A.3) and make use
of the relation�. For example,Γ;Σ;S ⊢ u .send (e) : t implies t = Object and
Γ;Σ′;{u} ⊢ e : t andΣ′◦{u : !t};{u} � Σ;S .

Lemma 7.3 states that the typing ofE[e ] can be broken down into the typing ofe ,
and the typing ofE[x ]. Furthermore,Σ, the environment used to typeE[e ], can be
broken down into two environments,Σ = Σ1◦Σ2, whereΣ1 is used to typee , and
Σ2 is used to typeE[x ]. The proof is given in Appendix A.

Lemma 7.3 (Subderivations)

If Γ;Σ;S ⊢ E[e ] : t , then there existΣ1,Σ2, t ′, such that for allx fresh in E,Γ,
Σ = Σ1◦Σ2, andΓ;Σ1;S ⊢ e : t ′, andΓ,x : t ′;Σ2;S ⊢ E[x ] : t .
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On the other hand, Lemma 7.4 allows the combination of the typings ofE[x ] and
the typing ofe , provided that the contextsΣ1 andΣ2 used for the two typings can
be composed through◦, and that the type ofe is the same as that ofx in the first
typing. The proof is given in Appendix A.

Lemma 7.4 (Context Substitution) If Γ;Σ1;S ⊢ e :t ′, andΓ,x : t ′;Σ2;S ⊢E[x ]:t ,
andΣ1◦Σ2 is defined, thenΓ;Σ1◦Σ2;S ⊢ E[e ] : t .

Lemma 7.5 establishes a desirable property of freshness: for a well-typed expres-
sion (thread) and an associated well-formed heap, if a channel or object identifier
occurs in the expression (thread), then it occurs in the heaptoo.

Lemma 7.5 (Fresh Name) (1) If Γ;Σ;S ⊢ e ;h, then
(a) o ∈ e ⇒ o ∈ h;
(b) c ∈ e ⇒ o ∈ h.

(2) If Γ;Σ ⊢ P;h, then
(a) o ∈ P⇒ o ∈ h;
(b) c ∈ P⇒ o ∈ h.

We now state the Subject Reduction theorem:

Theorem 7.6 (Subject Reduction) (1) Γ;Σ;S ⊢ e : t , andΓ;Σ ⊢ h, ande ,h−→
e ′,h′ implyΓ′;Σ;S ⊢ e ′ : t , andΓ′;Σ ⊢ h′, with Γ ⊆ Γ′.

(2) Γ;Σ ⊢ P;h and P,h−→ P′,h′ implyΓ′;Σ′ ⊢ P;h′ with Γ ⊆ Γ′ andΣ ⊆ Σ′.

The proof, given in Appendix A, is by structural induction onthe derivatione ,h−→
e ′,h′ or P,h−→ P′,h′. It uses the Generation Lemmas, the Subderivations Lemma,
and the Context Substitution Lemma, as well as further lemmas, stated and proven
in the appendix, and which deal with properties of the relation�, of the operations
◦, and||, and substitutions.

7.2 Communication Safety

Even more interesting than subject reduction, are the following properties:

P1 (communication error freedom) no communication error can occur, i.e., there
cannot be two sends or two receives on the same channel in parallel in two dif-
ferent threads;

P2 (progress) typable threads can always progress unless one of the following sit-
uations occurs:
• a null pointer exception is thrown;
• there is a connect instruction waiting for the dual connect instruction.

P3 (communication-order preserving) after a session has begun the required com-
munications are always executed in the expected order.
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In order to stateP1, we add a new constantCommErr (communication error) to the
syntax and the following rule to the operational semantics:

E1[e ] |E2[e
′] −→ CommErr

if e ande ′ are session expressions with the same subject and are not dual of each
other, – dual expressions were defined on page 8. We can now prove that we never
reach a state containing such incompatible expressions.

Corollary 7.7 (CommErr Freedom) AssumeΓ;Σ ⊢ P;h and P, /0 →→ P′,h′. Then
P′ does not containCommErr , i.e., there does not exist Q such that P′≡Q|CommErr .

The proof of the above corollary follows from the fact that a communication error
only happens if two threads contain, in evaluation positions, session expressions
with the same subject, which are not dual of each other, and that the parallel con-
catenation of such threads is not well typed. The rest is straightforward from the
subject reduction theorem.

7.3 Progress

This subsection states the main result of this paper – the progress propertyP2holds
in our typing system. A summary of the proof is given here; thefull proof is rele-
gated to Appendix B.

PropertiesP2 andP3 hold for a thread obtained by reducing a well-typed (from an
empty session environment) closed thread in which all expressions are user expres-
sions.

We write∏0≤i<n e i for e0 | e1 | ... | en−1 . We say a threadP is Γ-initial if Γ; /0 ⊢
P : thread is derivable and the domain ofΓ contains all and only shared channels
andP≡ ∏0≤i<n e i wheree i is a user expression. We denote byhΓ the heap which
contains only the shared channels in the domain ofΓ. Notice thatP Γ-initial implies
Γ; /0 ⊢ P;hΓ, i.e., the heaphΓ agrees withΓ-initial threads.

We start by formalising two crucial properties assured by our type system. The first
property is the bilinearity of live channels.

Lemma 7.8 Assume P0 is Γ-initial and P0,hΓ →→ P,h. Then each live channel oc-
curs exactly in two threads in P.

The second property assures that sessions are not interleaved when ruleWeakB
is never applied. For stating this property contexts are handy. As usual we add the
hole[ ] to the syntax of expressions and we say that a context is an expression which
contains one hole (notationC[ ]). Clearly evaluation contexts (as defined at page 9)
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are particular contexts.

Lemma 7.9 If connect u s{e} is an expression which is well typed without using
rule WeakB ande = C[e ′], wheree ′ is a session expression or a method call with
subjectu ′, then one of the following conditions holds:

(1) u = u ′;
(2) C[ ] = C1[connect u ′ s ′{C2[ ]}];
(3) C[ ] = C1[u

′′.receiveS (x){C2[ ]}] andu ′ = x .

Theorem 7.10 (Progress)Assume P0 is Γ-initial and P0,hΓ →→ P,h. Then one of
the following holds.

• In P, all expressions are values, i.e., P≡ ∏0≤i<n v i ;
• P,h−→ P′,h′;
• P contains a null pointer exception, i.e., P≡ NullExc |Q; or
• P stops with a connect waiting for its dual instruction, i.e., P≡E[connect c s{e}] |Q.

Proof Outline We show that execution of initial processes preserves the following
properties

• each live channel occurs in exactly two threads;
• if e precedese ′ in some thread (i.e., e will be executed beforee ′), then all live

channels ine are more recent than the live channels ine ′ (we assume that chan-
nels created at runtime have a “time stamp” and can be distinguished according
to how recent they are).

We then argue that execution of initial processes leads to a configuration which
is either a sequence a values, or contains a null pointer exception, or is waiting
for a connect, or has at least one live channel. In the latter case, we chose the
most recent one, and find the two threads in which the channel is live. Because
execution preserves well-typedness, we know that the channel has dual types in the
two threads. Because of this, if the threads are session expressions, we can show
that they can communicate. Otherwise, they can execute independently.

Appendix B contains the detailed proof.

Note that the Progress Theorem shows thatthreads can always communicate at live
channels. From the above theorem, immediately we get:

Corollary 7.11 (Completion of Sessions)Assume P0 is Γ-initial and P0,hΓ →→
P,h. Suppose P≡∏0≤i<n e i and irreducible. Then either alle i are values(0≤ i < n)
or there is somej (0≤ j < n) such thate j ∈ {NullExc ,E[connect c s{e}]}.

Finally we state the main property (P3) of our typing system. For this purpose, we
define the partial order⊑ on session types as follows.
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Definition 7.12 (Evaluation Order) θ ⊑ θ′ is the smallest partial order such that:

• ε ⊑ ρ;
• ρ ⊑ π.ρ;
• πi ⊑ †〈π1,π2〉 (i ∈ {1,2});
• πi.ρ ⊑ †〈π1,π2〉.ρ (i ∈ {1,2});
• ηi ⊑ †〈η1,η2〉 (i ∈ {1,2});
• †〈π.〈π〉∗,ε〉 ⊑ 〈π〉∗;
• †〈π.〈π〉∗,ε〉.ρ ⊑ 〈π〉∗.ρ;
• ρ ⊑ ρ′ impliesbegin.ρ ⊑ begin.ρ′.

The partial order⊑ takes into account reduction as formalised in the following
theorem: any configurationE[e0] |Q,h reachable from the initial configuration and
containing the irreducible session expressione0, if it proceeds, then either

(1) it does so in the sub-threadQ, or
(2) Q contains an expressione ′0 (dual ofe0), which

(a) interacts withe0, and
(b) has a dual type atc , and
(c) then the type of channelc in the resulting process “correctly shrinks” as

θ′ ⊑ θ.

Theorem 7.13 (Communication-Order Preservation)Let P0 beΓ-initial. Assume
that P0,hΓ →→ E[e0] |Q,h−→ P′,h′ wheree0 is an irreducible session expression
with subjectc . Then:

(1) P′ ≡ E[e0] |Q′, or
(2) Q≡ E′[e ′0] |R withe ′0 dual ofe0 and

(a) E[e0] |E′[e ′0] |R,h−→ e |e ′ |R′,h′;
(b) Γ;Σ,c : θ ⊢ E[e0] : thread andΓ;Σ′,c : θ ⊢ E′[e ′0] : thread ; and

(c) Γ; Σ̂,c : θ′ ⊢ e : thread andΓ; Σ̂′,c : θ′ ⊢ e ′ : thread with θ′ ⊑ θ.

8 Inference of Session Environments, Hot Sets, and Session Types forconnect

Although the type system is flexible enough to express interesting protocols, typing
as described so far is somewhat inconvenient, in that it requires the hot sets and the
session environments to be assumed (or “guessed”). In this section, we develop
inference rulesfor expressions and threads which have the shape

Γ ⊢ e : t ⌊⌉ Σ;S and Γ ⊢ P: thread ⌊⌉ Σ

and which express that session environments and hot sets arederived rather than
assumed.
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Extension of session environment schemes

Σ((u)) =

{
Σ(u) if u ∈D(Σ),

ε otherwise.

Ending of running session type schemes and of session environment schemes

ρ↓ =





†〈π1↓,π2↓〉, if ρ = †〈π1,π2〉 for someπ1,π2,

π.†〈π1↓,π2↓〉, if ρ = π.†〈π1,π2〉 for someπ,π1,π2,

ρ, if ρ is an ended session type scheme,

ρ.end otherwise.

Σ↓ = {u : Σ(u)↓ |u ∈D(Σ)}

Union of hot sets

S1⊎S2 =

{
S1∪S2 if eitherS1 = S2 or S1 = /0 or S2 = /0,

⊥ otherwise.

Fig. 17. Auxiliary Operators for Inference

For simplicity we only consider typing of initial threads, and therefore we do not
allow to use ruleWeakB. This is enough, since by the Subject Reduction Theorem
we know that all threads obtained by reducing well-typed threads are well typed
too.

We extend the syntax of types with thestandard type variables, ranged over by
φ, which stand for standard types, and thepartial session type variables, ranged
over byψ, which stand for partial session types. In this way, for eachone of the
syntactic categories in Fig. 8, we obtain a corresponding category ofschemes,and
similarly for the environments. We use for them the same notational conventions.
Notice that, since we do not allow to use ruleWeakB, all predicates in session
environment schemes for typing expressions are running session type schemes.

Fig. 17 gives some auxiliary operators on session environment schemes and hot
sets. Theending operator,↓, appends if meaningfulend to running session type
schemes, propagates inside the final branches of conditional partial session types,
and does nothing otherwise. The ending operator generalises to session environ-
ment schemes in the expected way (see Fig. 17).

The more interesting inference rules for the expressions and threads occupy Fig. 18.
Other rules are left to Appendix C. The rules are applicable only if all sets in the
conclusion are defined.
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MethMinusI
Γ ⊢ e :C ⌊⌉ Σ0;S0 Γ ⊢ e i :t i ⌊⌉ Σi;Si i ∈ {1. . .n}

mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm
�
→ t

Γ ⊢ e .m (e1, . . . ,en,u1, . . . ,um) :t ⌊⌉ Σ0◦Σ1 . . .◦Σn◦{u1 :ρ1, . . . ,um :ρm};S0⊎S1⊎ . . .⊎Sn

MethPlusI
Γ ⊢ e :C ⌊⌉ Σ0;S0 Σ0 ⊆ {u1} Γ ⊢ e i :t i ⌊⌉ Σi ;Si Si ⊆ {u1} i ∈ {1. . .n}

mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm
�
→ t

Γ ⊢ e .m (e1, . . . ,en,u1, . . . ,um) :t ⌊⌉ Σ0◦Σ1 . . .◦Σn◦{u1 :ρ1, . . . ,um:ρm};{u1}

ConnI

Γ\u ⊢ e :t ⌊⌉ Σ;S Σ((u)) = ρ s = begin.σ(ρ↓) S ⊆ {u}
if u is a variableΓ(u) <: s

if u is a nameΓ(u) = sch

Γ ⊢ connect u s {e} :σ(t ) ⌊⌉ σ(Σ)\u ; /0

SendI
Γ ⊢ e :t ⌊⌉ Σ;S S ⊆ {u}

Γ ⊢ u .send ( e ) :Object⌊⌉ Σ◦{u :!t };{u}

ReceiveI
Γ ⊢ ok

Γ ⊢ u .receive :φ ⌊⌉ {u : ?φ};{u}

SendSI
Γ ⊢ ok

Γ ⊢ u .sendS(u ′) : Object⌊⌉ {u ′ :ψ.end,u : !(ψ.end)};{u}

ReceiveSI
Γ\x ⊢ e :t ⌊⌉ {x :ρ};S S ⊆ {x} ρ 6= ε

Γ ⊢ u .receiveS (x){e} :Object⌊⌉ {u : ?(ρ↓)};{u}

SendIfI

Γ ⊢ e :t0 ⌊⌉ Σ0;S0 Γ ⊢ e i :t i ⌊⌉ Σi ;Si Σi((u)) = ρi S j ⊆ {u} i ∈ {1,2} j ∈ {0,1,2}

σ = E({〈t1;t2〉,〈t0;bool〉}∪{〈Σ1(u
′);Σ2(u

′)〉 | ∀u ′ 6= u .u ′ ∈D(Σ1)∩D(Σ2)}∪
{〈Σi(u

′);ε.end〉 | ∀u ′ 6= u .u ′ ∈D(Σi) & u ′ 6∈D(Σ j) i, j ∈ {1,2}})

ρ′
i =

{
ρi ↓ if ρ j is an ended session type scheme,

ρi otherwise
i 6= j, i, j ∈ {1,2}

Σ = {u ′ :ε.end | ∀u ′ 6= u .u ′ ∈D(Σ2) & u ′ 6∈D(Σ1)}

Γ ⊢ u .sendIf (e){e1 }{e2 } :σ(t ) ⌊⌉ σ(Σ0)◦(σ(Σ1\u ,u :!〈ρ′
1
,ρ′

2
〉)∪Σ);{u}

Fig. 18. Selected Inference Rules for Expressions

As usual, the inference rules are structural,i.e., depend on the structure of the ex-
pression being typed; typically, the inference system doesnot have rules likeWeak.
Therefore, the inference rules must play also the role of thenon-structural typing
rules.

RuleMethMinusI uses the union of hot sets to check if all hot sets are either the
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StartI

Γ ⊢ e : t ⌊⌉ Σ;S

Γ ⊢ e : thread ⌊⌉ Σ

ParI

Γ ⊢ P: thread ⌊⌉ Σ Γ ⊢ P′ : thread ⌊⌉ Σ′

Γ ⊢ P|P′ : thread ⌊⌉ Σ9Σ′

Fig. 19. Inference Rules for Threads

same or empty. In ruleMethPlusI all hot sets of the premises must be either empty
or just contain the running channelu1.

RuleReceiveIintroduces a standard type variable, since we do not know thetype of
the data that will be received. RuleSendSI introduces a partial session type vari-
able, since we do not know the type of the channel that will be sent. We always
assume the introduced variables to be fresh,i.e., they cannot occur elsewhere in the
current deduction.

In rule ConnI we do not know if the session environment inferred fore contains a
premise foru , for this reason we use the extension of session environmentschemes
defined in Fig. 17.

An inference substitution, σ, maps standard type variables to standard type schemes,
and partial session type variables to partial session type schemes. We use an infer-
ence substitution in ruleConnI in order to unify the shared session types with
begin.ρ ↓, whereρ ↓ being inferred may contain variables. That is, we require
s = begin.σ(ρ↓). We prescribe the domain ofσ to be the set of type variables which
occur inρ.

We need some definitions for combining session environment schemes.

Given a finite set of pairs of standard type schemes and running session type schemes
Ξ = {〈t i ; t ′i〉 | 1≤ i ≤ m}∪{〈ρ j ;ρ′

j〉 | 1≤ j ≤ n}, anequality solverof Ξ is an in-
ference substitutionσ such that we haveσ(t i) = σ(t ′i) for 1 ≤ i ≤ m and either
σ(ρ j) = σ(ρ′

j), σ(ρ j ↓) = σ(ρ′
j) or σ(ρ j) = σ(ρ′

j ↓) for 1 ≤ j ≤ n. Themost gen-
eral equality solverof Ξ, E(Ξ), is the solverσ such that ifσ′ is a solver ofΞ, then
there is an inference substitutionσ′′ such thatσ = σ′ ◦ σ′′. It is routine to show
that if a set has a solver, then it also has the more general one. For example the
most general equality solverσ of {〈φ;bool〉,〈?φ.end;ψ〉} is defined byσ(φ) = bool

andσ(ψ) =?bool , while there is no solver for{〈φ;bool〉,〈?φ.end;?int〉}. The most
general equality solver is used in rulesSendIfI (andReceiveIfI which is left to
Appendix C) in order to unify the types of the two branches.

Given a finite set of pairs of running session type schemesΞ = {〈ρi;ρ′
i〉 | 1≤ i ≤ n},

a duality solverof Ξ is an inference substitutionσ such that for 1≤ i ≤ n, we
have eitherσ(ρi) = σ(ρ′

i), σ(ρi ↓) = σ(ρ′
i), or σ(ρi) = σ(ρ′

i ↓). Themost general
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/0 ⊢ 5:int ⌊⌉ /0; /0

/0 ⊢ x .send (5) :Object⌊⌉ {x :!int};{x}

/0 ⊢ c2.receiveS (x ){x .send (5)} :Object⌊⌉ {c2 :?(!int .end)};{c2}

Γ1 ⊢ e :Object⌊⌉ /0; /0 Γ1 ⊢ e ′ :φ ⌊⌉ {c1 :?φ};{c1}

Γ1 ⊢ e ;e ′ :φ ⌊⌉ {c1 :?φ};{c1}

Γ ⊢ connect c1begin.?int .end{e ;e ′} : int ⌊⌉ /0; /0
wheree = connect c2begin.?(!int .end).end{c2.receiveS (x ){x .send (5)}},
e ′ = c1.receive , Γ = {c1 :sch,c2 :sch}, Γ1 = {c2 :sch}.

Fig. 20. An Example of Inference

duality solverD(Ξ) is defined similarly to the most general equality solver. For
example the most general duality solverσ of {〈?φ; !bool〉,〈!φ.end;ψ〉} is defined
by σ(φ) = bool andσ(ψ) =?bool .

We use the most general duality solver to define theparallel composition of session
environment schemesas:

Σ9Σ′ = σ(Σ\D(Σ))∪σ(Σ′ \D(Σ))∪{u :l| u ∈D(Σ)∩D(Σ′)}

whereσ = D({〈Σ(u);Σ′(u)〉 | u ∈ D(Σ)∩D(Σ′)}). ThereforeΣ9Σ′ is undefined
if there is no duality solver of{〈Σ(u);Σ′(u)〉 | u ∈ D(Σ)∩D(Σ′)}. We use the
parallel composition of session environment schemes in rule ParI . Notice that by
construction in the premises of this rule the set of type variables which occur inΣ
and inΣ′ are disjoint.

Note that the inference ofΣ does not rely onS , so that we can obtain the same
result for the system withoutS .

As an example we show the inference for the threadP1 of Example 4.4 in Fig. 20.

We can show that inference computes the least session environments and hot sets,
as stated in the following theorem, whose proof is given in Appendix C. We first
need to introduce an order on session types and on session environments which
takes into account the absence of weakening rules in the typeinference. This order
is a restriction of the weakening order of Definition 7.1.

Definition 8.1 (Inference Order)

(1) θ ⋐ θ′ is the smallest partial order such that
• π ⋐ π.end, and
• ε.end ⋐ l.

(2) Σ ⋐ Σ′ iff ∀u∈D(Σ) : Σ(u) ⋐ Σ′(u), and∀u∈D(Σ′)\D(Σ) : Σ′(u) ⋐ l.
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Clearly Σ ⋐ Σ′ implies Σ � Σ′, but the vice versa is not true. For example{c :
?bool} ⋐ {c :?bool .end,c ′ :l}, but{c :?bool} 6⋐ {c :begin.?bool ,c ′ :l}, also if{c :
?bool};{c} � {c :begin.?bool ,c ′ :l}; /0.

Theorem 8.2 (1) If Γ;Σ;S ⊢ e :t without using ruleWeakB, thenΓ⊢ e :t ′ ⌊⌉Σ′;S ′

whereσ(t ′) = t andσ(Σ′) ⋐ Σ for some inference substitutionσ andS ′ ⊆ S .
(2) If Γ ⊢ e : t ⌊⌉ Σ;S , then for all inference substitutionsσ such thatσ(Σ) is a

session environment andσ(t ) is a type, we get:Γ;σ(Σ);S ⊢ e :σ(t ).
(3) If Γ;Σ ⊢ P: threadwithout using ruleWeakB, thenΓ ⊢ P: thread ⌊⌉ Σ′ where

σ(Σ′) ⋐ Σ for some inference substitutionσ.
(4) If Γ ⊢ P: thread ⌊⌉ Σ, then for all inference substitutionsσ such thatσ(Σ) is a

session environment, we get:Γ;σ(Σ) ⊢ P: thread .

Note that the above theorem assures that the present type system enjoys the princi-
pal type property in the classical sense of [31].

9 Related work

Systems for processes, Subject Reduction and Progress

Session types for theπ-calculus are the subject of many works [6, 7, 11–13, 18,
27, 28, 32, 34, 35, 48]. More recently, sessions were incorporated into boxed ambi-
ents [26], and higher-order processes supporting code mobility [43].

In all previously mentioned papers on session types, typability guarantees the ab-
sence of run-time communication errors. However, not all ofthem have the sub-
ject reduction property: the problem emerges when sending and instantiating a live
channel to a thread which already uses this channel to communicate, as in Exam-
ple 4.4. This example can be translated into the calculi studied in [6, 28, 34, 51],
and this issue has been discussed with some of the authors of these papers [1]. The
recent work [54] analyses this issue in detail, comparing different reduction rules
and typing systems appeared in the literature [6, 28, 34, 51].

MOOSE has been inspired by the previously mentioned papers, however, we be-
lieve that it has been the first calculus which guarantees absence of starvation on
live channels also in presence of delegation (progress without delegation is only
considered in [21]). For example, we can encode the counterpart of Example 5.4 in
the calculi of [6, 28, 34, 51]. In the language of [51] we can type the parallel of the
following processes (obtained by translating the threads of Example 5.4):
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1 // fun1 x y =
2 let u = request x in
3 let w = request y in
4 let i = receive u in
5 let j = receive w in
6 close u; close w;

1 // fun2 x y =
2 let u = accept x in
3 let w = accept y in
4 send 5 on w;
5 send 6 on u;
6 close u; close w;

Note that in the above two interleaved sessions are established, however no session
can proceed, because the progress of each is dependent on theprogress of the other:
before line 4 of the left hand process can reduce, line 5 of theright hand process
must be made available in parallel; a similar dependency occurs between lines 4 and
5 of the right and left hand processes, respectively. Furthermore, observe that such
deadlocks can also occur due to interdependencies among three or more processes,
in which case they cannot be detected easily. We believe thatsuch configurations
are clearly undesirable, and for this reason our typing system rejects interleaved
sessions.

The same problem arises in the calculi of [6, 28, 34], where the previous example
is written as follows:

1 request x(u) in
2 request y(w) in
3 u?(i);
4 w?(j );

1 accept x(u)
2 accept y(w)
3 w![5];
4 u![6];

Note that by simply dropping the hot set, we can flexibly obtain a version of the
typing system which preserves the type safety and type inference results, but allows
deadlock on live channels like the above mentioned literature. In this sense, our
system is not only theoretically sound, but also modular.

Clearly, allowing asynchronous communication enhances progress: for example the
processes of Example 5.4 would not be stuck any more. Sessiontypes which take
advantage of asynchronous communication are studied in [15] for a suitable variant
of MOOSE. There the conditions for progress are relaxed, allowing arbitrary (non-
blocking) outputs to appear inside nested sessions.

In recent work by some of the present authors [18], more flexible conditions for
progress are studied in the context of a process language. Intheir system, inter-
leaving is allowed by permitting hot sets to contain more than one element, and
progress is ensured using a causality partial order, resulting in a significantly more
fine-grained analysis. For instance the translation of Example 5.3 is typable in the
type discipline of [18].
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Advanced session types

An issue that arises with the use of sessions is how to group and distinguish differ-
ent behaviours within a program or protocol. In [34] and subsequently in [29] the
authors utilise labelledbranchingandselection; the first enables a process to offer
alternative session parts indexed by labels, and the secondis used dually to choose
a part by selecting one of the available labels. In [27, 28, 34, 50], branching and
selection are considered as an effective way to simulate methods of objects. Our
conditional constructs are a simplification of branching and selection, therefore the
same behaviour realised by branching types can also be expressed using our types.
A different branching mechanism is proposed in [19, 23], where the choice on how
to continue a session is made on the basis of the class of the object sent/received.

Session subtyping systems range from simple session subtyping [28] to more com-
plex bounded session polymorphism [27], which enables parametric polymorphism
of session types. Inspired by [27], [19] enhances the expressivity of session types
in objects, by allowing bounded polymorphism for a suitableextension of MOOSE.

As another study on the enrichment of basic session types, in[6] the authors inte-
grate thecorrespondence assertionsof [30] with standard session types to reason
about multi-party protocols comprising of standard interleaved sessions.

In this work, our purpose was to produce a reliable and extensible object-oriented
core, and not to include everything in the first attempt; however, such richer type
structures are attractive in an object-oriented framework. MOOSEcan be used as a
core extensible language incorporating other typing systems.

Linear typing systems

Session types for theπ-calculus relate to linear typing systems [33, 39], whose main
aim is to guarantee that a channel is used exactly or at most once within a term.

In the context of programming languages, [25] proposes a type system for check-
ing protocols and resource usage in order to enforce linearity of variables in the
presence of aliasing. They implemented the typing system inVault [17], a low
level C-like language. The main issue that they had to address is that a shared
component should not refer to linear components, since aliasing of the shared com-
ponent can result in non-linear usage of any linear elementsto which it provides
access. To relax this condition, they proposed operations for safe sharing, and for
controlled linear usage. In our system non-interference isensured by operational
semantics in which substitution of shared with fresh channels takes place when re-
ducingconnect , and therefore we do not need explicit constructs for this purpose.
Finally, note that the system of [25] is not readily applicable in a concurrent setting,
and hence in channel-based communication.
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Programming languages and sessions

In [51] the authors define a concurrent functional language with session primitives.
Their language supports sending of channels and higher-order values that do not
contain running sessions, and incorporates branching and selection, along with re-
cursive sessions and channel sharing. Moreover, it incorporates the multi-threading
primitive fork, whose operational semantics is similar to that ofspawn. Finally,
their system allows live channels as parameters to functions, and tracks aliasing of
channels; as a result, their system is polymorphic.

In [49], the authors formalise an extension to CORBA interfaces based on session
types, which are used to determine the order in which available operations can
be invoked. The authors defineprotocolsconsisting ofsessions, and use labelled
branches and selection to model method invocation within each session. Labelled
branches are also used to denote exceptions, and their system incorporates recursive
session types. However, run-time checks are considered in order to check protocol
conformance, and there is no formalisation in terms of operational semantics and
type system.

More recently, a similar approach has been used in the Singularity OS [24]. Be-
haviour in this system is defined incontracts, that contain definitions that form a
state machine of desired message exchange patterns. Messages encapsulate asyn-
chronous method invocation, and consist of information on which method should
be invoked, along with the actual arguments to use, when the message is received.
Messages are exchanged using bidirectional channels, where each channel has two
explicit endpoints. At the endpoints, the specific methods required for each state of
the contract are defined. Asynchronous transmission is implemented using message
queues at each endpoint. In our system, channels have generic send and receive op-
erations, and communication is synchronous. Their system has the property that
each endpoint can only be used by a single thread at a time, which corresponds to
our property of bilinearity, and this ensures that messagesat the endpoint queues
are always ordered. Also, they allow to send channel endpoints, which corresponds
to live channel communication in our system. When differentmessages can be re-
ceived, they use a form of switch to group the program behaviours for each case,
similarly to [49]. However, in contrast to the latter, contracts are verified statically.

We developed our formalism building upon previous experience withLdoos [21], a
distributed object-oriented language with basic session capabilities. In the present
work we have chosen to simplify the substrate to that of a concurrent calculus,
and focus on the integration of advanced session types. In [21], as in all previous
papers on session types, shared channels could only be associated with a single
session type each, and therefore runtime checks were not required for connections;
however, this assumption is not necessary, and it is orthogonal to the essence of our
system which is the typing of a session body against a sessiontype. In particular,
in an open environment we cannot assume that the types of shared channels can be
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fixed in advance, and the runtime cost of checking compatibility is low, requiring
one check of session duality (and possibly subtype checking).

In our new formulation we chose not to model RMI, and in fact, an interesting
question is whether we can encode RMI as a form of degenerate session in the spirit
of [49]. Also, we have now introduced more powerful primitives for thread and
(shared) channel creation, along with the ability to delegate live sessions via method
invocation and higher-order sessions. None of these features are considered in [21].
We discovered a flaw in the progress theorem inLdoos[21], and developed the new
type system with hot sets in order to guard against the offending configurations.

More recently, [23] suggests an amalgamation of the sessiontype and the object
oriented paradigm whereby sessions are amalgamated with methods: class defini-
tions contain therefore fields and session/method declarations. Generic classes and
union types for the calculus of [23] are discussed in [10] and[4], respectively.

Behavioural types and Service-oriented computing

Behavioural types for processes (see [38]) have some similarities with sessions, but
describe communications as types that resemble CCS processes. Hence, these sys-
tems capture the precise interleavings, and using additional tags (annotations) they
achieve a fine-grained analysis of deadlock and liveness. Compared to our progress
guarantee, the behavioural analysis is more detailed, but it is not straightforward
how to adapt such techniques compositionally in a class-based object language
without losing the appeal of being sufficiently simple for practical implementa-
tions.

In [2] a process language for service oriented computing is formalised, using a
system of types similar, but simpler, to the behavioural types of [38]. Their system
ensures a progress property for service clients, which seems natural since their
sessions take place in nested scopes, and are not interleaved.

Objects implementing services are studied in [9] in an object-based formalism
where communication is realised as a form of remote method invocation. Their
system uses a language of spatial-behavioural types that can express sequencing
and parallelism of usages on objects, recursive behaviours, and dynamic capabili-
ties through owned types.

A different approach to the description of communication protocols is based on the
notion of contract [8, 14]. The theory of contracts formalises the compatibility of
a client to a service and the safe replacement of a service by another service by
using behavioural equivalencies. An interesting comparison between contracts and
session types is developed in [40].
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Implementations

An early implementation of session types in Haskell is that of [44] where session
types are mapped to existing type constructs, which can therefore be implemented
without extending the language.

More recently, in [16], session types are considered forF♯, an implementation of
a ML dialect. The work describes a system for ensuring security of multi-role ses-
sions in the absence of trust. Session types are compiled to cryptographic protocols
in a way such that during execution every party is guaranteedto play their role.
Runtime verification is used to detect behaviour incompatible with a session.

The most relevant implementation is that of [36]. In this work the language Java
is extended with basic session primitives for creating session-typed sockets and
for performing communications governed by sessions based on our work [20], and
also [19] and [15]. Sessions are defined by means of “protocol” declarations and
static type checking is used to ensure safety, in combination with a dynamic agree-
ment of session types between parties that are connecting over a session-typed
socket. At the level of types our conditional types are replaced with the more gen-
eral label-indexed branching and selection types found in the literature (see [34]),
and the implementation also supports our session iterationtypes, session delega-
tion, and subtyping. Communication is asynchronous and theimplementation has
been measured to have a very small performance overhead compared to untyped
socket communication.

10 Conclusion and Future Work

This paper proposes the language MOOSE, a simple multi-threaded object-oriented
language augmented with session communication primitivesand types. MOOSE

provides a clean object-oriented programming style for structural interaction pro-
tocols by prescribing channel usages as session types. We develop a typing system
for MOOSEand prove type safety with respect to the operational semantics. We also
show that in a well-typed MOOSE program, there will never be a communication
error, starvation on live channels, nor an incorrect completion between two party in-
teractions. These results demonstrate that a consistent integration of object-oriented
language features and session types is possible where well-typedness can guaran-
tee the consistent composition of communication protocols. To our best knowl-
edge, MOOSEis the first application of session types to a concurrent object-oriented
class-based programming language, apart from [21]. Furthermore, type inference
of session environments (Theorem 8.2), and the progress property on live chan-
nels with delegation (Theorem 7.10) have never been proved before in any work on
session types including those in theπ-calculus.
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Exceptions and timeout

One feature not considered in our system, although important in practice, is excep-
tions; in particular, we did not provide any way for a sessiontype to declare that
it may throw acheckedexception, so that when this occurs both communicating
processes can execute predefined error-handling code. One obvious way to encode
an exception would be to use a branch as in [49]. In addition, when a thread be-
comes blocked waiting for a session to commence, in our operational semantics, it
will never escape the waiting state unless a connection occurs. In practice, this is
unrealistic, but it could have been ameliorated by introducing a ‘timeout’ version of
our basic connection primitive such asconnect(timeout)u s {e}. However, con-
trolling exceptions during session communication and realising timeout would be
non-trivial since we wish to preserve the progress propertyon live channels. There-
fore we plan to investigate these issues.
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A Proof of Subject Reduction

A.1 Generation Lemmas

We will prove in Lemma 7.2 that� preserves the types of expressions. In Lemma
A.6 we will show that� preserves also the types of threads.

Lemma 7.2 If Σ;S � Σ′;S ′ and Γ;Σ;S ⊢ e : t , then Γ;Σ′;S ′ ⊢ e : t .

Proof By induction on the number of basic steps to establishΣ;S � Σ′;S ′ (in the
sense of Definition 7.1), and application of the non-structural rules.
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Lemma A.1 (Generation for Standard Expressions) (1) Γ;Σ;S ⊢ x : t implies
/0; /0 � Σ;S andx : t ′∈ Γ for somet ′<: t .

(2) Γ;Σ;S ⊢ c : t implies /0; /0 � Σ;S andc : sch∈ Γ andt = (s , s) or t = s .
(3) Γ;Σ;S ⊢ null : t implies /0; /0 � Σ;S .
(4) Γ;Σ;S ⊢ v : t with v ∈ {true, false} implies /0; /0 � Σ;S andt = bool .
(5) Γ;Σ;S ⊢ o : t implies /0; /0 � Σ;S ando :C∈ Γ for some C<: t .
(6) Γ;Σ;S ⊢ NullExc : t implies /0; /0 � Σ;S .
(7) Γ;Σ;S ⊢ this : t implies /0; /0 � Σ;S and andthis :C∈ Γ for some C<: t .
(8) Γ;Σ;S ⊢ e1;e2 :t impliesΣ = Σ1◦Σ2, andt = t 2 andΓ;Σi ;S ⊢ e i :t i for some

Σi , t i (i ∈ {1,2}).
(9) Γ;Σ;S ⊢ e .f := e ′ :t impliesΣ = Σ1◦Σ2, andΓ;Σ1;S ⊢ e :C andΓ;Σ2;S ⊢ e ′ :t

with f t ∈ fields(C) for someΣ1,Σ2,C.
(10) Γ;Σ;S ⊢ e .f : t impliesΓ;Σ;S ⊢ e :C andf t ∈ fields(C) for some C.
(11) Γ;Σ;S ⊢ e .m (e1, . . . ,en) : t impliesΓ;Σ0;S ′ ⊢ e :C, andΓ;Σi ;S ′ ⊢ e i : t i for

1 ≤ i ≤ n−m, anden−m+ j = u j for 1 ≤ j ≤ m, andΣ0◦Σ1 . . .◦Σn−m◦{u1 :

ρ1, . . . ,um : ρm};S ′ � Σ;S and mtype(m ,C) = t 1, . . . , t n−m,ρ1, . . . ,ρm
�
→ t ,

for some m (0≤ m≤ n), S ′,Σi, t i ,u j ,ρ j ,C (1≤ i ≤ n−m,1≤ j ≤ m).
(12) Γ;Σ;S ⊢ e .m(e1, . . . ,en) :t impliesΓ;Σ0;{u1} ⊢ e :C, andΓ;Σi ;{u1} ⊢ e i :t i

for 1≤ i ≤ n−m, anden−m+ j = u j for 1≤ j ≤ m, andΣ0◦Σ1 . . .◦Σn−m◦{u1 :

ρ1, . . . ,um:ρm};{u1}�Σ;S andmtype(m ,C)= t 1, . . . , t n−m,ρ1, . . . ,ρm
�
→ t ,

for some m (1≤ m≤ n), Σi , t i ,u j ,ρ j ,C (1≤ i ≤ n−m,1≤ j ≤ m).
(13) Γ;Σ;S ⊢ new C: t implies /0; /0 � Σ;S and C<: t .
(14) Γ;Σ;S ⊢ new (s ,s) : t implies /0; /0 � Σ;S and(s , s )<: t .
(15) Γ;Σ;S ⊢ spawn{ e } : t impliesΣ′;S ′ � Σ;S , and ended(Σ′) and t = Object

andΓ;Σ′;S ′ ⊢ e : t ′ for someΣ′,S ′, t ′.

Proof By induction on typing derivations, then case analysis overthe shape of the
expression being typed, and then case analysis over the lastrule applied. We just
show two paradigmatic cases of the inductive step.

(12) If the expression being typed has the shapee .m(e1, . . . ,en), then the last rule
applied isMethPlus, MethMinus or one of the structural rules. We only consider
the case where the last applied rule isConsume, thenMethPlus:

Γ;Σ,u :ε.end;S ⊢ e .m(e1, . . . ,en) : t

Γ;Σ,u :l;S ⊢ e .m(e1, . . . ,en) : t

By induction hypothesis we getΓ;Σ0;S ⊢ e :C, andΓ;Σi ;S ⊢ e i : t i for 1 ≤ i ≤
n− m, and en−m+ j = u j for 1 ≤ j ≤ m, and Σ0◦Σ1 . . .◦Σn−m◦{u1 : ρ1, . . . ,um :

ρm};{u1} � Σ,u : ε.end;S and mtype(m ,C) = t 1, . . . , t n−m,ρ1, . . . ,ρm
�
→ t , for

somem (1 ≤ m≤ n), Σi, t i ,u j ,ρ j ,C (1 ≤ i ≤ n−m, 1 ≤ j ≤ m). By definition
we also have thatΣ,u : ε.end;S � Σ,u :l;S , and from transitivity of� we obtain
thatΣ0◦Σ1 . . .◦Σn−m◦{u1 :ρ1, . . . ,um:ρm};{u1} � Σ,u :l;S .
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(15) If the expression being typed has the shapespawn{ e }, then the last rule
applied is eitherSpawn, or one of the structural rules.
If last applied rule isWeakB, then

Γ;Σ,c :ρ;{c} ⊢ spawn{ e } : t

Γ;Σ,c :begin.ρ; /0 ⊢ spawn{ e } : t

By induction hypothesis there existΣ′,S ′, so thatΣ′;S ′�Σ,c :ρ;{c}, andended(Σ′)
andt = ObjectandΓ;Σ′;S ′ ⊢ e :t ′. The rest follows from the fact that, by definition,
Σ,c :ρ;{c} � Σ,c :begin.ρ; /0, and from transitivity of�.

Lemma A.2 (Generation for Communication Expressions) (1) Γ;Σ;S ⊢ connect u s {e}:
t impliess = begin.η, andΓ; /0; /0 ⊢ u :begin.η andΓ\u ;Σ′,u :η;{u} ⊢ e : t ,
andΣ′; /0 � Σ;S for someη,Σ′.

(2) Γ;Σ;S ⊢ u .receive : t implies{u : ?t};{u} � Σ;S .
(3) Γ;Σ;S ⊢ u .send (e) : t impliest = Object andΓ;Σ′;{u} ⊢ e : t ′ and Σ′◦{u :

!t};{u} � Σ;S for someΣ′, t ′.
(4) Γ ; Σ;S ⊢ u .receiveS (x){e} : t impliest = Object andΓ\x ; {x :η};{x} ⊢ e :

t ′ and{u : ?(η)};{u} � Σ;S for somet ′,η 6= ε.end.
(5) Γ ; Σ;S ⊢ u .sendS (u ′) : t impliest = Object and{u ′ : η,u :!(η)};{u} � Σ;S

for someη 6= ε.end.
(6) Γ;Σ;S ⊢ u .receiveIf {e1}{e2 } : t impliesΓ;Σ′,u : ρi;{u} ⊢ e i : t (i ∈ {1,2})

andΣ′,u :?〈ρ1 ,ρ2 〉;{u} � Σ;S for someΣ′,ρ1 ,ρ2 .
(7) Γ;Σ;S ⊢ u .sendIf (e){e1}{e2 } : t impliesΓ;Σ1;{u} ⊢ e : bool and Γ;Σ2,u :

ρi ;{u} ⊢ e i :t (i ∈{1,2}) andΣ1◦Σ2,u :!〈ρ1 ,ρ2 〉;{u}�Σ;S for someΣ1,Σ2,ρ1 ,ρ2 .
(8) Γ;Σ;S ⊢ u .receiveWhile{e}:t impliesΓ;{u :π};{u} ⊢ e :t and{u :?〈π〉∗};{u}�

Σ;S for someπ.
(9) Γ;Σ;S ⊢ u .sendWhile (e){e ′} :t impliesΓ; /0; /0 ⊢ e :bool andΓ;{u :π};{u} ⊢

e ′ : t and{u :!〈π〉∗};{u} � Σ;S for someπ.

Proof Similar to the proof of Lemma A.1.

Lemma A.3 (Generation for Threads) (1) Γ;Σ ⊢ e : thread impliesΓ;Σ;S ⊢ e :
t for somet .

(2) Γ;Σ ⊢ P1 |P2 : thread impliesΣ = Σ1||Σ2 andΓ;Σi ⊢ Pi : thread (i ∈ {1,2}) for
someΣ1,Σ2.

Proof Similar to the proof of Lemma A.1.

A.2 Types Preservation under Structural Equivalence, and under Substitutions

As a convenient shorthand, for any two entitiesx andy which belong to a domain
that includes⊥, we use the notationx , y to indicate thatx is defined if and only if
y is defined, and ifx is defined, thenx = y.
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In Lemma A.7 we show that structural equivalence of terms preserves types. To
prove this, we first prove in Lemma A.4 the neutrality of element /0, and associativ-
ity and commutativity of parallel composition of session environments. Moreover
we show in Lemma A.5 various properties of�, ||, and◦ which easily follow from
their definitions.

Lemma A.4 (1) Σ1|| /0 = Σ1 = /0||Σ1.
(2) Σ1||Σ2 , Σ2||Σ1.
(3) Σ1||(Σ2||Σ3) , (Σ1||Σ2)||Σ3.

Proof Note that for anyΣ, Σ′, if Σ||Σ′ is defined, thenD(Σ||Σ′) =D(Σ)∪D(Σ′).
(1) follows from definition of||.
For (2) show∀u∈ D(Σ1)∪D(Σ2) : Σ1(u)||Σ2(u) , Σ2(u)||Σ1(u). For (3) show
∀u∈D(Σ1)∪D(Σ2)∪D(Σ3) : Σ1(u)||(Σ2(u)||Σ3(u)) , (Σ1(u)||Σ2(u))||Σ3(u).

The next Lemma,i.e., A.5, characterizes small modifications on operations that
preserve well-formedness of the session environment composition, || and◦, and
also the preservation of the relationship�. It will be used in the proof of Subject
Reduction.

We define:

Σ[u 7→ θ](u ′) =

{
θ if u = u ′,

Σ(u ′) otherwise.

Lemma A.5 (1) /0 � Σ1, and Σ1||Σ2 defined imply Σ2 � Σ1||Σ2.
(2) Σ1||Σ2 � Σ, implies that there areΣ′

1,Σ
′
2 such thatΣ1 � Σ′

1 andΣ2 � Σ′
2 and

Σ′
1||Σ

′
2 = Σ.

(3) Σ1 � Σ′
1, and Σ′

1◦Σ2 defined, imply Σ1◦Σ2 defined, andΣ1◦Σ2 � Σ′
1◦Σ2.

(4) ended(Σ1) and(Σ1∪Σ′
1)◦Σ2 defined imply

(a) Σ′
1◦Σ2 defined,

(b) (Σ1∪Σ′
1)◦Σ2 = Σ1||Σ′

1◦Σ2.
(5) Σ;S � Σ′;S ′ implies

(a) Σ\u ; /0 � Σ′ \u ;S ′,
(b) Σ\u ;S � Σ′ \u ;S ′ whenS 6= {u}.

(6) {u :θ};S � Σ;S ′ implies
(a) Σ(u) ∈ {θ,θ.end,begin.θ,begin.θ.end,l} and
R (Σ\u) ⊆ {ε,ε.end,begin.ε,begin.ε.end,l};

(b) {u :θ′}; /0 � Σ[u 7→ θ′];S ′ for all θ′;
(c) {u :η};S � Σ′[u 7→ begin.η];S ′ for all η.

(7) {u :θ};S � Σ;S ′ andΣ◦Σ′ defined imply
(a) Σ[u 7→ π]◦Σ′ defined for allπ;
(b) Σ[u 7→ begin.π]◦Σ′ defined for allπ;
(c) Σ′;S ′ � Σ[u 7→ ε]◦Σ′;S ′.

(8) Σ1◦Σ2||Σ3◦Σ4 defined, and{u :π} � Σ1 and{u :π′} � Σ3 imply :
(a) π = π′;
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(b) Σ1[u 7→ π′′]◦Σ2||Σ3[u 7→ π′′]◦Σ4 = Σ1◦Σ2||Σ3◦Σ4, for all π′′;
(c) Σ1[u 7→ begin.π′′]◦Σ2||Σ3[u 7→ begin.π′′]◦Σ4 = Σ1◦Σ2||Σ3◦Σ4, for all π′′.

Proof For (1) notice that/0 � Σ1 impliesR (Σ1)⊆ {ε,ε.end,begin.ε,begin.ε.end,l}
and thatΣ1||Σ2 defined impliesΣ1(u) = (Σ2(u)) for all u ∈D(Σ1)∩D(Σ2).
For (2) one can obtainΣ′

1 andΣ′
2 by applying toΣ1 andΣ2 the same transformations

which buildΣ from Σ1||Σ2.
(3) follows easily from the definitions of� and of◦.
(4a) is immediate. For (4b),ended(Σ1) and (Σ1 ∪ Σ′

1)◦Σ2 defined imply that
D(Σ1)∩D(Σ2) = /0.
(5a) and (5b) follow from the definition of�. The conditionS 6= {u} is necessary
since for example{u :!bool};{u} � {u :begin.!bool}; /0, but /0;{u} 6� /0; /0.
(6a) follows from the definition of� and (6b), (6c) are consequences of (6a).
(6a) implies (7a), (7b) and (7c).
The definition of|| and (6a) imply (8a). Points (8b), and (8c) follow from the ob-
servation that in all the equated session environments the predicates ofu arel.

Lemma A.6 If Σ � Σ′ and Γ;Σ ⊢ P: thread , then Γ;Σ′ ⊢ P: thread .

Proof By induction on derivations. If the last applied rule isStart use Lemma 7.2.
If the last applied rule isPar use Lemma A.5(2) and induction.

Lemma A.7 (Preservation of Typing under Structural Equivalence) If Γ;Σ ⊢
P : thread and P≡ P′, then Γ;Σ ⊢ P′ : thread .

Proof By induction on the derivation of≡.
For the case whereP′ = P|null, we use Lemma A.3(2), and obtainΣ = Σ1||Σ2 and
Γ;Σ1 ⊢P:thread andΓ;Σ2 ⊢ null:thread . Using Lemma A.3(1) and Lemma A.1(3)
we getΓ;Σ2;S ⊢ null : t 2, and /0; /0 � Σ2;S . Using Lemma A.5(1), we obtain that
Σ1 � Σ, and from that, with Lemma A.6 we obtain thatΓ;Σ;S ⊢ P: thread .
For the other two basic cases use Lemmas A.3(1) and A.4(2)-(3). For the induction
case use Lemma A.3(1) and induction hypothesis.

We need a substitution lemma which takes into account not only the substitutions
of variables by values, but also the substitutions ofthis by object identifiers and the
substitutions of channel names and variables by fresh channel names. The proof by
induction on derivations is standard.

Lemma A.8 (Preservation of Typing under Substitution) (1) If Γ,x : t ; Σ;S ⊢
e : t ′ andΓ ; /0 ; /0 ⊢ v : t , thenΓ ; Σ;S ⊢ e [v/x ] : t ′.

(2) If Γ, this :C; Σ;S ⊢ e : t andΓ ; /0 ; /0 ⊢ o :C, thenΓ ; Σ;S ⊢ e [o/this] : t .
(3) If Γ\u ; Σ;S ⊢ e : t andc is fresh, thenΓ ; Σ[c/u ];S [c/u ] ⊢ e [c/u ] : t .
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A.3 Types in Subderivations, and Substitutions within Contexts

Lemma 7.3 [Subderivations]

If Γ;Σ;S ⊢ E[e ] : t , then there existΣ1,Σ2, t ′, such that for allx fresh in E,Γ,
Σ = Σ1◦Σ2, andΓ;Σ1;S ⊢ e : t ′, andΓ,x : t ′;Σ2;S ⊢ E[x ] : t .

Proof By induction onE, and using Generation Lemmas. For example ifE = [ ];e ′,
thenΓ;Σ;S ⊢ e ;e ′ : t impliesΣ = Σ1◦Σ2 andΓ;Σ1;S ⊢ e : t ′ andΓ;Σ2;S ⊢ e ′ : t by
Lemma A.1(8). Then we getΓ,x : t ′;Σ2;S ⊢ x ;e ′ : t by rulesVar andSeq.

Lemma 7.4 [Context Substitution] If Γ;Σ1;S ⊢ e :t ′, andΓ,x : t ′;Σ2;S ⊢E[x ]:t ,
andΣ1◦Σ2 is defined, thenΓ;Σ1◦Σ2;S ⊢ E[e ] : t .

Proof By induction onE, and using the Generation Lemmas.

A.4 Name Occurrence

Lemma A.9 formalises that a channel or object identifier thatoccurs in an expres-
sion must occur also in the typing environments of that expression.

Lemma A.9 (Name Occurrence) (1) If Γ;Σ;S ⊢ e : t and o ∈ fv(e), theno ∈
D(Γ);

(2) If Γ;Σ;S ⊢ e : t andc ∈ fv(e), thenc ∈D(Γ)∪D(Σ).

Proof By induction on the typing derivation.

We can then show:

Lemma 7.5 (Fresh Name)

(1) If Γ;Σ;S ⊢ e ;h, then
(a) o ∈ e ⇒ o ∈ h;
(b) c ∈ e ⇒ o ∈ h.

(2) If Γ;Σ ⊢ P;h, then
(a) o ∈ P⇒ o ∈ h;
(b) c ∈ P⇒ o ∈ h.

Proof The proof is by straightforward induction on the typing of the expression
(thread): first, by appealing to the well-formed heap judgement, we show that any
object or channel occurring in typing environments must occur in heaps which are
well-formed with respect to those environments. Based on that, and using Lemma A.9
we obtain the occurrence result.
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A.5 Proof of Theorem 7.6

Theorem 7.6 (Subject Reduction).

(1) Γ;Σ;S ⊢ e : t , and Γ;Σ ⊢ h, ande ,h −→ e ′,h′ imply Γ′;Σ;S ⊢ e ′ : t , and
Γ′;Σ ⊢ h′, with Γ ⊆ Γ′.

(2) Γ;Σ ⊢ P;h and P,h−→ P′,h′ implyΓ′;Σ′ ⊢ P;h′ with Γ ⊆ Γ′ andΣ ⊆ Σ′.

Proof By induction on the reductione ,h −→ e ′,h′. We only consider the most
interesting cases.

RuleSpawn. Therefore, the expression being reduced has the formE[spawn{ e }],
and

(0) h′ = h andP′ = E[null] |e .
Thus, together with the premises we obtain for somet :

(1) Γ;Σ;S ⊢ E[spawn{ e }] : t (2) Γ;Σ ⊢ h.

The aim of the next steps is to obtain types fore and for E[null].
Applying Lemma 7.3 on (1) we obtain, that∃t ′,Σ1,Σ2 with:

(3) Γ;Σ1;S ⊢ spawn{ e }:t ′, (4) Σ = Σ1◦Σ2, (5) Γ,x : t ′;Σ2;S ⊢E[x]:t .
From (3) and Generation Lemma (i.e., A.1(15)), we obtain for somet ′′, Σ′

1, S ′:
(6) t ′ = Object, (7) Γ;Σ′

1;S ′ ⊢ e :t ′′, (8) ended(Σ′
1), (9) Σ′

1;S ′ � Σ1;S .
From (5), type ruleNull , and Context Substitution Lemma (i.e., 7.4), we obtain:

(10) Γ;Σ2;S ⊢ E[null] : t .
From (10) and ruleStart, and from (7) and ruleStart, we obtain

(11) Γ;Σ2 ⊢ E[null] : thread , (12) Γ;Σ′
1 ⊢ e : thread .

From (11), (12) and rulePar we obtain:
(13) Γ;Σ′

1||Σ2 ⊢ e |E[null] : thread .

The aim of the next steps is to obtain types fore |E[null] in session environmentΣ.
From (4) we obtain thatΣ1◦Σ2 is defined, and therefore, from (9) and Lemma
A.5(3), we obtain

(14) Σ′
1◦Σ2 is defined, andΣ′

1◦Σ2 � Σ1◦Σ2.
Also, from (8), Lemma A.5(4b), we obtain

(15) Σ′
1||Σ2 = Σ′

1◦Σ2.
Therefore, from (13), (14), (15), and Lemma A.6, we obtain

(16) Γ;Σ ⊢ e |E[null] : thread .

The case concludes by takingΣ′ = Σ, Γ′ = Γ and with (16) and (0).

RuleConnect. Then, we have that
(0) P = E1[connect c s{e1}] |E2[connect c s{e2}],
(1) h′ = h::c ′, with c ′ is fresh inh,
(2) P′ = E1[e1[c

′
/c ]] |E2[e2[c

′
/c ]].

The aim of the next steps is to obtain types fore1 and fore2.
From premises, (0) and Lemma A.3(2), and A.3(1) we obtain forsomeΣ1,Σ2,S1,S2, t 1, t 2:
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(3) Σ = Σ1||Σ2,
(4) Γ;Σi ;Si ⊢ Ei [connect c s i{e i}]] : t i (i ∈ {1,2}),
(5) Γ;Σ ⊢ h.

wheres1 = s ands2 = s .
From (4), applying Lemma 7.3, there existΣ11, Σ12, Σ21, Σ22, t ′1, t

′
2, such that:

(6) Σi = Σi1◦Σi2,
(7) Γ;Σi1;Si ⊢ connect c s i{e i} : t ′i (i ∈ {1,2}),
(8) Γ,x i : t ′i ;Σi2;Si ⊢ Ei [x i] : t i (i ∈ {1,2}).

From (7), and Lemmas A.2(1) we obtain for someΣ′
11, Σ′

12, η1,η2:
(9) Γ; /0; /0 ⊢ c : s i , (10) s i = begin.ηi ,
(11) Γ\ c ;Σ′

i1,c :ηi ;{c} ⊢ e i : t ′i (i ∈ {1,2}),
(12) Σ′

i1; /0 � Σi1;Si.

The aim of the next steps is to obtain types for P′ in a session environmentΣ′, so
thatΣ ⊆ Σ′.
From (1) and (11), and Lemma A.8(3), we getΓ;Σ′

i1,c
′ : ηi ;{c ′} ⊢ e i [c

′/c ] : t ′i
(i ∈ {1,2}) which implies by ruleWeakB:

(13) Γ;Σ′
i1,c

′ : s i ; /0 ⊢ e i [c
′
/c ] : t ′i (i ∈ {1,2}).

(12) impliesΣ′
i1,c

′ :s i; /0�Σi1,c
′ :s i ;Si beingc ′ fresh, and then by (13) and Lemma 7.2

we derive:
(14) Γ;Σi1,c

′ : s i ;Si ⊢ e i [c
′/c ] : t ′i (i ∈ {1,2}).

From (14), (8) and Lemma 7.4, we obtain (notice that(Σi1,c
′ :s i)◦Σi2 is defined by

(6) sincec ′ is fresh):
(15) Γ;(Σi1,c

′ : s i)◦Σi2;Si ⊢ Ei[e i [c
′/c ]] : t ′i (i ∈ {1,2}).

Applying rulesStart andPar on (15), and also the fact that(Σ11,c
′ :s1)◦Σ12||(Σ21,c

′ :
s2)◦Σ22 = Σ,c ′ :l, we obtain

(16) Γ;Σ,c ′ :l⊢ E1[e1[c
′
/c ]] |E2[e2[c

′
/c ]] : thread .

Take
(17) Σ′ = Σ,c ′ :l.

This gives, trivially that:
(18) Σ ⊆ Σ′.
Also, from (1) and (5) we obtain

(19) Γ;Σ′ ⊢ h′.
The case concludes by considering (16), (17), (18) and (19).

RuleComS. Therefore, we have that
(0) P = E1[c .send(v )] |E2[c .receive ],
(1) P′ = E1[null ] |E2[v ], h′ = h.

From (0), application of the premises, we obtain thatΓ;Σ⊢E1[c .send(v )] |E2[c .receive ]:
thread , which gives by Lemma A.3(2) and (1) that for someΣ1,Σ2,S1,S2, t 1, t 2:

(2) Γ;Σ1;S1 ⊢ E1[c .send(v )] : t 1,
(3) Γ;Σ2;S2 ⊢ E2[c .receive ] : t 2,
(4) Σ = Σ1||Σ2.
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By application of premises, we obtain thatΓ;Σ ⊢ h.

The aim of the next steps is to obtain types forc .receive and c .send (v ), and for
E1[x ] and E2[x ].
From (2) and Lemma 7.3, we obtain for someΣ11,Σ12, t

′
1:

(5) Γ;Σ11;S1 ⊢ c .send (v ) : t ′1,
(6) Γ,x : t ′1;Σ12;S1 ⊢ E1[x ] : t 1,
(7) Σ1 = Σ11◦Σ12.

From (5) and Lemmas A.2(3) and A.1(2), (3), (4), (5), we obtain for somet ′′1:
(8) Γ; /0; /0 ⊢ v : t ′′1,
(9) {c :!t ′′1};{c} � Σ11;S1.

From (3), and Lemma 7.3, we obtain for someΣ21,Σ22, t
′
2:

(10) Γ;Σ21;S2 ⊢ c .receive : t ′2,
(11) Γ,x : t ′2;Σ22;S2 ⊢ E2[x ] : t 2,
(12) Σ2 = Σ21◦Σ22.

From (10), by Lemma A.2(2), we obtain:
(13) {c :?t ′2};{c} � Σ21;S2.

The aim of the next steps is to obtain types for E1[null] and E2[v ].
From (9), and (7), which gives thatΣ11◦Σ12 is defined, and Lemma A.5(7a) and
(6b), we obtain:

(14) Σ11[c 7→ ε]◦Σ12 is defined,
(15) {c :ε}; /0 � Σ11[c 7→ ε];S1.

By rulesNull , andWeakES we obtainΓ;{c : ε}; /0 ⊢ null : t ′1. Then, by (15) and
Lemma 7.2 we obtain:

(16) Γ;Σ11[c 7→ ε];S1 ⊢ null : t ′1.
From (6), (14) , (16), and Lemma 7.4, we obtain:

(17) Γ;Σ11[c 7→ ε]◦Σ12;S1 ⊢ E1[null] : t 1.
From (4), (7), (12), (9), (13), and Lemma A.5(8a) we obtain that t ′′1 = t ′2. There-
fore, with (8) and (11) we obtain

(18) Γ;Σ22;S2 ⊢ E2[v ] : t 2.
Furthermore, from (13), (12) and Lemma A.5(7c) we can deducethat Σ22;S2 �
Σ21[c 7→ ε]◦Σ22;S2. From that, (18) and application of Lemma 7.4, we obtain:

(19) Γ;Σ21[c 7→ ε]◦Σ22;S2 ⊢ E2[v ] : t 2.
Furthermore, from (4), (7), (12), (9), (13) and Lemma A.5(8b), we obtain:

(20) Σ11[c 7→ ε]◦Σ12||Σ21[c 7→ ε]◦Σ22 = Σ11◦Σ12||Σ21◦Σ22.
The case concludes by applying rulesPar andStart to (17) and (19) taking (20)
into account.

RuleComSS. We have:
(0) P = E1[c .sendS (c ′)] | E2[c .receiveS (x){e}],
(1) P′ = E1[null] | e [c ′/x ] | E2[null],
(2) h′ = h,
(3) Γ ; Σ ⊢ P : thread .

From the premises, and using Lemma A.3(2) and (1), we obtain for someΣ1,Σ2,S1,S2, t 1, t 2:
(4) Γ ; Σ1;S1 ⊢ E1[c .sendS(c ′)] : t 1,
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(5) Γ ; Σ2;S2 ⊢ E2[c .receiveS (x){e}] : t 2,
(6) Σ = Σ1||Σ2.

The aim of the next steps is to obtain types for E1[null], E2[null], ande [c
′
/x ].

From (4), using Lemma 7.3 and Lemma A.2(5) we obtain for someΣ11,Σ12, t
′
1,η 6=

ε.end:
(7) Γ ; Σ11;S1 ⊢ c .sendS (c ′) : t ′1,
(8) Γ,y : t ′1 ; Σ12;S1 ⊢ E1[y ] : t 1,
(9) Σ1 = Σ11◦Σ12,
(10) t ′1 = Object,
(11) {c :!(η),c ′ :η};{c} � Σ11;S1.

(11) and Lemma A.5(5a) imply
(12) {c ′ :η}; /0 � Σ11\c ;S1,

which gives byη 6= ε.end and Lemma A.5(6a)
(13) Σ11 = Σ′

11,c
′ :θ whereθ ∈ {η,begin.η}.

(13) and (9) imply by Lemma A.5(4a)
(14) Σ′

11◦Σ12 defined.
(11) and (13) imply by Lemma A.5(5b)

(15) {c :!(η)};{c} � Σ′
11;S1.

Using rulesNull , WeakESwe obtain:
(16) Γ ; {c :ε} ; /0 ⊢ null : t ′1.

By (15), (14), and Lemma A.5(7a) and (6b) respectively we have:
(17) Σ′

11[c 7→ ε]◦Σ12 defined,
(18) {c :ε}; /0 � Σ′

11[c 7→ ε];S1.
From (18), (16), and using Lemma 7.2 we obtain:

(19) Γ ; Σ′
11[c 7→ ε] ; S1 ⊢ null : t ′1.

From (8), (19), (17) and Lemma 7.4, we obtain:
(20) Γ;Σ′

11[c 7→ ε]◦Σ12;S1 ⊢ E1[null] : t 1.
From (5), using Lemma 7.3 and Lemma A.2(4) we obtain for someΣ21,Σ22, t

′
2,η

′ 6=
ε.end:

(21) Γ ; Σ21;S2 ⊢ c .receiveS (x){e} : t ′2
(22) Γ,y : t ′2 ; Σ22;S2 ⊢ E2[y ] : t 2,
(23) Σ2 = Σ21◦Σ22,
(24) t ′2 = Object,
(25) {c :?(η′)};{c} � Σ21;S2,
(26) Γ\ x ; {x :η′};{x} ⊢ e : t ′.

Similarly and simpler than the proof of (20) we can show:
(27) Γ;Σ21[c 7→ ε]◦Σ22;S2 ⊢ E2[null] : t 2.

From (26) using Lemma A.8(3) we obtain:
(28) Γ ; {c ′ :η′};{c ′} ⊢ e [c

′
/x ] : t ′.

The aim of the next steps is to show that the type ofc used to typec .sendS (c ′) is
dual to that used to typec .receiveS (x){e}, and that the parallel composition of the
session environments used to type E1[null], E2[null], ande [c

′
/x ] is the same asΣ.

(13) and (9) imply by Lemma A.5(4b)
(29) Σ11◦Σ12 = c ′ :θ||Σ′

11◦Σ12.
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(6), (9), (23) and (29) imply:
(30) Σ′

11◦Σ12||Σ21◦Σ22 defined.
From (30), (15), (25) by Lemma A.5(8a) we get:

(31) !(η) = ?(η′),
which implies:

(32) η = η′.
Again from (30), (15), (25) by Lemma A.5(8b) we get:

(33) Σ′
11[c 7→ ε]◦Σ12||Σ21[c 7→ ε]◦Σ22 = Σ′

11◦Σ12||Σ21◦Σ22.
(6), (9), (29), (23), and (33) imply:

(34) Σ = {c ′ :θ}||Σ′
11[c 7→ ε]◦Σ12||Σ21[c 7→ ε]◦Σ22.

From (28), (13) and (32), possibly usingWeakB andWeak, we derive:
(35) Γ ; {c ′ :θ};{c ′} ⊢ e [c ′/x ] : t ′.

The case concludes by applying rulesPar and Start to (20), (27), (35) by taking
into account (34).

RuleComSWhile.Then, we have that:
(0) P = E1[c .sendWhile(e1){e2}] |E2[c .receiveWhile{e3}],
(1) h′ = h,
(2) P′ = E1[e5] | E2[e6],

where we are using the shorthands:
(3) e5 = c .sendIf (e1){e2;c .sendWhile(e1){e2}}{null},
(4) e6 = c .receiveIf {e3;c .receiveWhile{e3}}{null}.

From premises, (0) and Lemma A.3(2), and A.3(1) we obtain forsomeΣ1,Σ2,S1,S2, t 1, t 2:
(5) Γ;Σ ⊢ h,
(6) Σ = Σ1||Σ2,
(7) Γ;Σ1;S1 ⊢ E1[c .sendWhile(e1){e2}] : t 1,
(8) Γ;Σ2;S2 ⊢ E2[c .receiveWhile{e3}] : t 2.

From (7), (8) applying Lemma 7.3, there existΣ11, Σ12, Σ21, Σ22, t ′1, t ′2 so that:
(9) Σ1 = Σ11◦Σ12, Σ2 = Σ21◦Σ22,
(10) Γ;Σ11;S1 ⊢ c .sendWhile(e1){e2} : t ′1,
(11) Γ,x : t ′1;Σ12;S1 ⊢ E1[x ] : t 1,
(12) Γ;Σ21;S2 ⊢ c .receiveWhile{e3} : t ′2,
(13) Γ,x : t ′2;Σ22;S2 ⊢ E2[x ] : t 2.

The aim of the next steps is to find types fore2, ande5, and E1[e5].
From (10), and Lemma A.2(9), we obtain for someπ1:

(14) {c :!〈π1〉∗};{c} � Σ11;S1,
(15) Γ; /0; /0 ⊢ e1 :bool ,
(16) Γ;{c :π1};{c} ⊢ e2 : t ′1.

We will be usingπ2 as a shorthand defined as follows:
(17) π2 =!〈π1.!〈π1〉∗,ε〉.

By application of type rulesNull , Weak, SendIf, Seq, SendWhile on (15) and
(16), and using the shorthands (3) and (17) we obtain:

(18) Γ;{c :π2};{c} ⊢ e5 : t ′1.
From (14), and application of Lemma A.5(6c), we obtain that:
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(20) {c :π2};{c} � Σ11[c 7→ begin.π2];S1.
By application of Lemma 7.2 on (18) and (20), we obtain:

(21) Γ;Σ11[c 7→ begin.π2];S1 ⊢ e5 : t ′1.
By (9), we have thatΣ11◦Σ12 is defined, and therefore, by (14) and application of
Lemma A.5(7b) we also obtain thatΣ11[c 7→ begin.π2]◦Σ12 is defined. Therefore
by applying Lemma 7.4 on (11) and (21) we obtain:

(22) Γ;Σ11[c 7→ begin.π2]◦Σ12;S1 ⊢ E1[e5] : t ′1.

The aim of the next steps is to find types fore3, ande6, and E2[e6].
By arguments similar to those used to get (14) and (16), we obtain from (12) for
someπ3:

(23) {c :?〈π3〉∗};{c} � Σ21;S2,
(24) Γ;{c :π3};{c} ⊢ e3 : t ′2.

We use the shorthand
(25) π4 =?〈π3.?〈π3〉∗,ε〉.

Then, by arguments similar to those used to get (22), we obtain that:
(26) Γ;Σ21[c 7→ begin.π4]◦Σ22;S1 ⊢ E2[e6] : t 2.

The aim of the next steps is to show that the type ofc used to typee5 is dual to that
used to typee6, and that the parallel composition of the session environments used
to type E1[e5] and E2[e6] is the same asΣ.
Because of (14), (23), beingΣ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(8a) we
obtain that:

(27) π1 = π3,
which implies:

(28) π2 = π4.
Therefore, using (14), (23), beingΣ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(8c)
we obtain that:

(29) Σ11[c 7→ begin.π2]◦Σ12 || Σ21[c 7→ begin.π4]◦Σ22 = Σ11◦Σ12 || Σ21◦Σ22

The case concludes by applying rulesPar andStart to (22), (26), and taking into
account (29), (9), and (6).

B Proof of Theorems 7.10 and 7.13

We start from basic properties of live channels. In Section 3we used the notion of
live channel in an informal way; here we need to give a precise, formal definition.

Definition B.1 A channelc is live in a process P if P= C[e ], the expressione is
either a session expression with subjectc or a command sending the channelc ,
and there are no contexts C1[ ], C2[ ] such that P≡C1[connect c s{C2[e ]}].

For example,c1 andc2 are live ino.f;c1.send(3);c2.receive; also,c1 andc2

are live inc2.sendS(c1){...}; but c1 is not live in connect c1!int{c1.send(3)};
finally, a channel variable is never live.
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Lemma B.2 (1) If Γ;Σ ⊢ e : thread and c is live in e , then c: θ ∈ Σ for some
θ 6∈ {ε,ε.end,begin.ε,begin.ε.end,l}.

(2) Assume P0 is Γ-initial and P0,hΓ →→P,h. ThenΓ;Σ ⊢ P;h for someΓ, Σ, such
that all predicates inΣ arel.

Proof (1) By definitione ≡C[e ′] wheree ′ is either a session expression with sub-
ject c or a command sending the channelc . In the first case by Lemma A.2(2),
(3), (4), (5), (6), (7), (8), and (9) and in the second case by Lemma A.2(5) the
session environment for typinge ′ must contain a premise with subjectc and pred-
icate different fromε,ε.end,begin.ε,begin.ε.end,begin.ε.end,l. The proof is then
by structural induction onC[ ] taking into account thatC[ ] 6=C1[connect c s{C2[ ]}]
for all C1[ ], C2[ ].

(2) P0 initial implies that it is typed with the empty session environment. Looking
at the proof of the Subject Reduction Theorem for threads it is clear thatConnect
is the only rule in which one needs to add premises to the session environments.
Moreover the added premise is of the shapec :lwherec is the fresh created channel.

Lemma B.3 (1) If E[spawn{ e }] is well typed, then no live channel occurs both
in E[ ] and ine .

(2) If E[c .receiveS (x){e}] is well typed, then no live channel occurs ine .

Proof (1) If E[spawn{ e }] is well typed, then by Lemma 7.3 there areΓ,Σ,S , t ,Σ1,Σ2, t
′

such thatΓ;Σ;S ⊢ E[spawn{ e }] : t and Γ;Σ1;S ⊢ spawn{ e } : t ′ and Γ,x :
t ′;Σ2;S ⊢ E[x ] : t andΣ = Σ1◦Σ2. By Lemma A.1(15), there areΣ′;S ′ such that
Σ′;S ′ � Σ1;S andended(Σ′). By Lemma B.2(1) a live channel ine must occur in
the domain ofΣ′, and therefore it cannot occur in the domain ofΣ2. BecauseΣ1◦Σ2

is defined, and fromended(Σ′), it follows that no live channel ine can occur in
E[x ].

(2) If E[c .receiveS (x){e}] is well typed, then by Lemma 7.3 there areΓ,Σ, S , t ,Σ1,
Σ2, t ′ such thatΓ;Σ;S ⊢E[c .receiveS (x){e}]:t andΓ;Σ1;S ⊢ c .receiveS (x){e}:t ′

andΓ,y : t ′;Σ2;S ⊢ E[y ] : t andΣ = Σ1◦Σ2. By Lemma A.2(4), there isη such that
{c :η};{c} � Σ1;S , which implies the thesis by Lemma B.2(1).

Lemma 7.8 Assume P0 is Γ-initial and P0,hΓ →→ P,h. Then each live channel oc-
curs exactly in two threads in P.

Proof By induction on→→. The base case is trivial, since there are no live channels
in the typing environments of an initial thread. TheConnectrule creates a new live
channel in two different threads. By Lemma B.3(1) the live channels which occur
in E1[spawn{ e }] are split betweenE1[null] ande . By Lemma B.3(2) all the live
channels which occur inE1[c .receiveS (x){e}] are inE1[null].

We saye is irreducible if e 6−→. The key in showing progress is the natural cor-
respondence between irreducible session expressions and partial session types for-
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malised in the following definition.

Definition B.4 Define∝ between irreducible session expressions and parts of ses-
sion types as follows:

c .receive ∝?t c .send (v ) ∝!t c .receiveS (x){e} ∝?(η) c .sendS (c ′) ∝!(η)

c .receiveIf {e1}{e2} ∝?〈ρ1,ρ2〉 c .sendIf (v ){e1}{e2} ∝!〈ρ1,ρ2〉

c .receiveWhile{e} ∝?〈π〉∗ c .sendWhile(v ){e} ∝!〈π〉∗

Notice, that the relatione ∝ π reflects the “shape” of the session, rather than the
precise types involved. For example,e ∝?t impliese ∝?t ′ for any typet ′.

The following proposition is immediate from the definition of ∝.

Proposition B.5 If e ∝ π ande ′ ∝ π, thene ande ′ are dual of each other.

Using the Generation Lemmas and Lemma 7.3 we can show the correspondence
between an irreducible session expression inside an evaluation context and the type
of the live channel which is the subject of the expression.

Lemma B.6 Let e be an irreducible session expression with subjectc andΓ;Σ ⊢
E[e ] : thread . Thene ∝ π and Σ(c) ∈ {π,begin.π,π.end,π.ρ,begin.π.ρ} for some
π,ρ.

Proof By Lemmas A.3(1) and 7.3 we getΓ;Σ′;S ⊢ e : t ′ for someΣ′ � Σ andt ′.
By Lemma A.1(2), (3), (4), (5) the session environments in the typing of values are
always� /0. Then from Lemma A.2(2), (3), (4), (5), (6), (7), (8), (9), wegete ∝ π
andΣ(c) ∈ {π,begin.π,π.end,π.ρ,begin.π.ρ} for someπ,ρ.

The following three lemmas state a relationship between hotsets and subjects of
session expressions and of method calls. In these lemmas we consider typing of
initial threads so that ruleWeakB has never been applied. In fact ruleWeakB
introduces a session type starting bybegin in the session environment, which can
never be discharged in order to obtain an empty session environment.

Lemma B.7 Lete be a session expression or a method call with subjectu and rule
WeakB be never applied in the considered typings.

(1) The expressione must be typed with hot set{u}.
(2) If Γ;Σ;S ⊢C[e ] : t , andS 6= {u}, then either C[ ] = C1[connect u s{C2[ ]}] or

C[ ] = C1[u
′.receiveS (x){C2[ ]}] andu = x , i.e., e occurs in the body either

of a connect or of a receiveS expression, and in the last caseu = x .

Proof (1) Immediate from Lemmas A.2(2), (3), (4), (5), (6), (7), (8), (9) and A.1(12).
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(2) From (1) we get thate must be typed with hot set{u}. Then the claim follows
by observing that the only typing rules different fromWeakB which change non-
empty hot sets areConn, ReceiveS.

Notice that Lemma B.7 does not hold if we allow ruleWeakB, since for example
we can derive/0;{c :begin.!bool}; /0 ⊢ c .send (true) :Object.

Lemma 7.9 If connect u s{e} is an expression which is well typed without using
rule WeakB ande = C[e ′], wheree ′ is a session expression or a method call with
subjectu ′, then one of the following conditions holds:

(1) u = u ′;
(2) C[ ] = C1[connect u ′ s ′{C2[ ]}];
(3) C[ ] = C1[u

′′.receiveS (x){C2[ ]}] andu ′ = x .

Proof From Lemma B.7(1) we get thate ′ must be typed with hot set{u ′}. From
the typing ruleConn we get thate must be typed with hot set{u}. So we conclude
using Lemma B.7(2).

Lemma B.8 (1) If tm ( t̃ x , ρ̃ y ) {e} is ok in some class,mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm
�
→

t ande =C[e ′], wheree ′ is a session expression or a method call with subject
u , then one of the following conditions holds:
(a) C[ ] = C1[connect u s{C2[ ]}];
(b) C[ ] = C1[u

′.receiveS (x){C2[ ]}] andu = x .

(2) If tm ( t̃ x , ρ̃ y) {e} is ok in some class,mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm
�
→

t ande =C[e ′], wheree ′ is a session expression or a method call with subject
u , then one of the following conditions holds:
(a) u = y1;
(b) C[ ] = C1[connect u s{C2[ ]}];
(c) C[ ] = C1[u

′.receiveS (x){C2[ ]}] andu = x .

Proof The proof is similar to that of Lemma 7.9, taking into accountthat rules
MMinus −ok andMPlus−ok do not allow to use ruleWeakB in typing e and
that these rules require respectively the empty set and the set{y1} as hot sets ofe .

The following definition shows the order in which expressions are reduced.

Definition B.9 Let e be an expression ande1, e2 be two subexpressions ofe

e1 precedese2 in e iff e = C[e ′] ande ′ = E[e1] = C′[e2]
for some contexts C[ ], E[ ] and C′[ ].

Notice that any expression precedes itself since we can choose all contexts as the
empty one.

In the following we convene that the fresh channels created reducing a thread take
successive numbers according to the order of creation, i.e.they arec0, c1, . . .. This
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means that ifP,h →→ Q,h′ →→ R,h′′ andc i is a channel created in the reduction
P,h→→Q,h′, andc j is a channel created in the reductionQ,h′ →→R,h′′, theni < j.
We convene also that the namesc0, c1, . . . are reserved for live channels.

The following lemma shows that the subject of a session expression inside an eval-
uation context is always the latest created channel which occurs in the whole ex-
pression.

Lemma B.10 Let P0 beΓ-initial and P0,hΓ →→ e |P,h. If e ′ precedese ′′ in e , and
e ′ is a session expression or method call with subjectc i , then i≥ j for all live
channelsc j which occur ine ′.

Proof The proof is by induction on−→ and by cases on the last applied reduction
rule. We only consider some interesting cases.
Let the last applied rule beMeth:

E0[o .m(ṽ )] |P′,h−→ E0[e0[o/this][ṽ/x̃ ]] |P′,h

sinceh(o) = (C, . . .), mbody(m ,C) = (x̃ ,e0) andmtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm
�
→

t .
If � = �, then by Lemma B.8(1) all session expressions or method calls which oc-
cur in e0[o/this][ṽ/x̃ ] have subjects which cannot be live channels. For the session
expressions or method calls which occur inE0[ ] induction hypothesis applies.
If � = � let c l be the live channel which is the subject of the method call. Byin-
ductionl ≥ k for all ck which occur inE[o .m(ṽ )]. By Lemma B.8(2) the subjects of
all session expressions and method calls insidee0[o/this][ṽ/x̃ ] which are live chan-
nels are the channelc l . If e = E0[e0[o/this][ṽ/x̃ ]], then eithere ′ ande ′′ are both
sub-expressions ofe0[o/this][ṽ/x̃ ], or e ′ is a sub-expressions ofe0[o/this][ṽ/x̃ ] and
e ′′ is a sub-expressions ofE0[ ], or e ′ ande ′′ are both sub-expressions ofE0[ ]. In
the first casec l is both the subject ofe ′ and the only live channel which occurs in
e ′′, in the second case the subject ofe ′ is c l and l ≥ k for all the live channelsck

which occur ine ′′, and in the third case induction hypothesis applies.
Let the last applied rule beConnect:

E1[connect c s{e1}] |E2[connect c s{e2}] |P
′,h−→E1[e1[c l/c ]] |E2[e2[c l/c ]] |P′,h::c ′ c l 6∈h

where by constructionl > k for all ck which occur inh. Notice thate1 ande2 have
never been reduced by definition of evaluation context, and so they can be typed
without using ruleWeakB. Therefore by Lemma 7.9 the subjects of all session
expressions and method calls insidee1[c l/c ] ande2[c l/c ] which are live channels
are the channelc l . We can conclude as in previous case.
If the last applied rule isComS:

E1[c l .send(v )] |E2[c l .receive ] |P′,h−→ E1[null] |E2[v ] |P′,h

then all session expressions or method calls which occur inE1[null] |E2[v ] occur
also inE1[ ] |E2[ ], so induction hypothesis applies.
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If the last applied rule isComSS:

E1[c l .sendS (ck)] | E2[c l .receiveS (x){e0}] |P
′,h−→E1[null] | e0[ck/x ] | E2[null] |P′,h

then no live channel occurs ine0 by Lemma B.3(2). Therefore ife = e0[ck/x ], then
ck is both the subject ofe ′ and the only live channel which occurs ine ′′. The proof
for E1[null] andE2[null] is as in the case of ruleComS.

Now we prove the progress property. The following proof of Theorem 7.10 argues
that if the configuration does not contain waiting connects or null pointer errors, but
contains an irreducible session expressione1, then by subject reduction and well-
formedness of the session environment, the rest of the thread independently moves
or it contains the dual of that irreducible expression,e2. Then by Lemma B.6, we
get e1 ∝ π ande2 ∝ π. Thereforee1 ande2 are session expressions dual of each
other and they can communicate.

Theorem 7.10 (Progress)Assume P0 is Γ-initial and P0,hΓ →→ P,h. Then one of
the following holds.

• In P, all expressions are values, i.e., P≡ ∏0≤i<n v i ;
• P,h−→ P′,h′;
• P throws a null pointer exception, i.e., P≡ NullExc |Q; or
• P stops with a connect waiting for its dual instruction, i.e., P≡E[connect c s{e}] |Q.

Proof SupposeP ≡ NullExc |Q or P ≡ E[connect c s{e}] |Q. Then the proof is
immediate. AlsoP≡ e |Q with e ,h−→ e ′,h′ is easy, since we getP,h−→ e ′ |Q,h′.

The only interesting case isP ≡ V |Q, whereV is a parallel of values andQ is a
parallel of evaluation contexts containing irreducible session expressions. LetQ≡
∏1≤j≤n Ej [e j ]. Let c i be the live channel with the higher index which occurs inP.
By Lemma 7.8c i occurs exactly in two threads inP. By definition of≡, without
loss of generality, we can assume thatc i occurs inE1 [e1 ] andE2 [e2 ]. Then by
Lemma B.10c i is the subject ofe1 ande2. By Subject Reduction we haveΓ;Σ ⊢
P;h. This impliesΣ = Σ1|| . . . ||Σn and Γ;Σj ⊢ Ej [e j ] : thread by Lemma A.3(2).
By Lemma B.2(2)Σ(c i) =l and by definition of|| the channelc i occurs exactly
in two session environments betweenΣ1, . . . ,Σn with dual running session types
different fromε. By Lemma B.2(1)c i occurs inΣ1 and inΣ2 and then by above
Σ1(c i) = Σ2(c i). Lemma B.6 givese1 ∝ π ande2 ∝ π for someπ. Thereforee1

ande2 are session expressions dual of each other by Proposition B.5 and they can
communicate.

Theorem 7.13 (Communication-Order Preservation) Let P0 be Γ-initial. As-
sume that P0,hΓ →→ E[e0] |Q,h −→ P′,h′ wheree0 is an irreducible session ex-
pression with subjectc . Then:

(1) P′ ≡ E[e0] |Q′, or
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(2) Q≡ E′[e ′0] |R withe ′0 dual ofe0 and
(a) E[e0] |E′[e ′0] |R,h−→ e |e ′ |R′,h′;
(b) Γ;Σ,c : θ ⊢ E[e0] : thread andΓ;Σ′,c : θ ⊢ E′[e ′0] : thread ; and

(c) Γ; Σ̂,c : θ′ ⊢ e : thread andΓ; Σ̂′,c : θ′ ⊢ e ′ : thread with θ′ ⊑ θ.

Proof By the proof of the Progress Theorem (Theorem 7.10) if the reduction step

E[e0] |Q,h−→ P′,h′

does not reduceQ alone, thenQ≡ E′[e ′0] |Rwith e ′0 dual ofe0. Thus we have:

E[e0] |E′[e ′0] |R,h−→ e |e ′ |R′,h′

which shows (a).

For (b) by the Subject Reduction Theorem (Theorem 7.6)Γ; Σ̌ ⊢ E[e0] |E′[e ′0] |R :
thread , which implies by Lemma A.3(2)̌Σ = Σ1||Σ2||Σ3 andΓ;Σ1 ⊢ E[e0] : thread

andΓ;Σ2⊢E′[e ′0] : thread andΓ;Σ3⊢R: thread . Again by the proof of the Progress
Theorem the channelc which is the subject ofe0 ande ′0 has dual running session types
in Σ1 andΣ2. We have thenΣ1 = Σ,c :θ andΣ2 = Σ′,c :θ for someΣ,Σ′,θ.

For (c) we consider only two interesting cases, the proofs inall other cases being
similar. We assumeθ = π.ρ, the proof forθ of different shapes being almost the
same.
Let e0 ≡ c .receive ande ′0 ≡ c .send (v ) andπ =?t . Then we havee ≡ E[v ] and
e ′ ≡ E′[null ] andR′ ≡ R by the reduction ruleComS. From the proof the Subject
Reduction Theorem we getΓ;Σ,c : ρ ⊢ e : thread and Γ;Σ′,c : ρ ⊢ e ′ : thread .
Let e0 ≡ c .receiveS (x){e} ande ′0 ≡ c .sendS (c ′) andπ =?(η). Then we havee ≡
E[null ] ande ′ ≡ E′[null ] andR′ ≡ e [c ′/x ] |R by the reduction ruleComSS. From
the proof the Subject Reduction Theorem we getΓ;Σ′′,c : ρ ⊢ e : thread for some
Σ′′ ⊆ Σ andΓ;Σ′,c : ρ ⊢ e ′ : thread .

C Proof of Theorem 8.2

We list the omitted inference rules in Fig. C.1 and Fig. C.2.

An environment session scheme isε-freeif all its predicates are running session type
schemes different fromε. The following lemma states that:

• session environment schemes obtained by applying inference substitutions to in-
ferred session environment schemes for expressions areε-free and they never
containl as predicate, and

• session environment schemes obtained by applying inference substitutions to in-
ferred session environment schemes for threads areε-free.
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ChanI
Γ,c : sch ⊢ ok

Γ,c : sch ⊢ c :φ ⌊⌉ /0; /0

NullI
Γ ⊢ ok ⊢ t : tp

Γ ⊢ null : t ⌊⌉ /0; /0

OidI
Γ,o : C ⊢ ok C <: D

Γ,o : C ⊢ o :D ⌊⌉ /0; /0

TrueI
Γ ⊢ ok

Γ ⊢ true :bool ⌊⌉ /0; /0

FalseI
Γ ⊢ ok

Γ ⊢ false :bool ⌊⌉ /0; /0

VarI
Γ,x : t ⊢ ok

Γ,x : t ⊢ x : t ⌊⌉ /0; /0

ThisI
Γ, this : C ⊢ ok C <: D

Γ, this : C ⊢ this :D ⌊⌉ /0; /0

FldI
Γ ⊢ e :C ⌊⌉ Σ;S f t ∈ fields(C)

Γ ⊢ e .f : t ⌊⌉ Σ;S

SeqI
Γ ⊢ e : t ⌊⌉ Σ;S Γ ⊢ e ′ : t ′ ⌊⌉ Σ′;S ′

Γ ⊢ e ;e ′ : t ′ ⌊⌉ Σ◦Σ′;S ⊎S ′

FldAssI
Γ ⊢ e :C ⌊⌉ Σ;S Γ ⊢ e ′ : t ⌊⌉ Σ′;S ′ f t ∈ fields(C)

Γ ⊢ e .f := e ′ : t ⌊⌉ Σ◦Σ′;S ⊎S ′

NewCI
Γ ⊢ ok C∈D(CT) C <: D

Γ ⊢ new C:D ⌊⌉ /0; /0

NewSI
Γ ⊢ ok

Γ ⊢ new (s , s) :(s , s) ⌊⌉ /0; /0

SpawnI
Γ ⊢ e : t ⌊⌉ Σ;S

Γ ⊢ spawn{ e } :Object⌊⌉ Σ↓;S

NullPEI
Γ ⊢ ok ⊢ t : tp

Γ ⊢ NullExc : t ⌊⌉ /0; /0

Fig. C.1. Inference Rules for Values and Standard Expressions II

The proof by induction on deductions is standard.

Lemma C.1 (1) If Γ ⊢ e : t ⌊⌉ Σ;S andσ is an inference substitution, thenσ(Σ)
is ε-free andu :ρ ∈ σ(Σ) impliesρ 6=l;

(2) If Γ ⊢ P: thread ⌊⌉ Σ andσ is an inference substitution, thenσ(Σ) is ε-free.

A second lemma gives useful properties of inference substitutions and⋐ .

Lemma C.2 (1) If Σ is a session environment scheme andσ(Σ) is a session envi-
ronment, thenσ(Σ\u) = σ(Σ)\u .

(2) If Σ is a session environment scheme andσ(Σ) is a session environment, then
σ(Σ↓) = σ(Σ)↓.
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ReceiveIfI
Γ ⊢ e i :t i ⌊⌉ Σi;Si Σi((u)) = ρi Si ⊆ {u} i ∈ {1,2}

σ = E({〈t1;t2〉}∪{〈Σ1(u
′);Σ2(u

′)〉 | ∀u ′ 6= u .u ′ ∈D(Σ1)∩D(Σ2)}∪
{〈Σi(u

′);ε.end〉 | ∀u ′ 6= u .u ′ ∈D(Σi) & u ′ 6∈D(Σ j) i, j ∈ {1,2}})

ρ′
i =

{
ρi ↓ if ρ j is an ended session type scheme,

ρi otherwise
i 6= j, i, j ∈ {1,2}

Σ = {u ′ :ε.end | ∀u ′ 6= u .u ′ ∈D(Σ2) & u ′ 6∈D(Σ1)}

Γ ⊢ u .receiveIf {e1 }{e2 } :σ(t ) ⌊⌉ σ(Σ1\u ,u :?〈ρ′
1
,ρ′

2
〉)∪Σ;{u}

SendWhileI

Γ ⊢ e :t0 ⌊⌉ /0; /0 Γ ⊢ e ′ :t ⌊⌉ Σ;S

Σ ⊆ {u :π} S ⊆ {u} σ = E({〈t0;bool〉})

Γ ⊢ u .sendWhile (e){e ′} :σ(t ) ⌊⌉ σ({u :!〈π〉∗});{u}

ReceiveWhileI
Γ ⊢ e :t ⌊⌉ Σ;S Σ ⊆ {u :π} S ⊆ {u}

Γ ⊢ u .receiveWhile{e} :t ⌊⌉ {u :?〈π〉∗};{u}

Fig. C.2. Inference Rules for Communication Expressions II

(3) If Σ,Σ′ are session environments andΣ′ ⋐ Σ,u :η, thenΣ′ \u ⋐ Σ.
(4) If Σ,Σ′ are session environment schemes andσ(Σ),σ(Σ′) are session environ-

ments andσ(Σ)||σ(Σ′) is defined, thenσ(Σ9Σ′) = σ(Σ)||σ(Σ′).
(5) If Σ1,Σ2,Σ′

1,Σ
′
2 are session environments andΣ′

1||Σ
′
2 is defined andΣ′

1∪Σ′
2 is

ε-free, thenΣ1 ⋐ Σ′
1 andΣ2 ⋐ Σ′

2 implyΣ1||Σ2 ⋐ Σ′
1||Σ

′
2.

Proof (1) and (2) are immediate.

(3) follows from the definitions of⋐ .

(4) Easy by definition of9 on session environment schemes.

(5) By induction onΣ1. The basic case,Σ1 = /0, is trivial. For the induction case,
Σ1 = Σ0,u :l is trivial too. ForΣ1 = Σ0,u :ρ, we need to consider different sub-cases.
We always haveΣ′

1(u) ∈ {ρ,ρ↓} by definition of⋐ .

If u 6∈D(Σ′
2), thenu 6∈D(Σ2) andΣ1||Σ2(u) = Σ′

1(u).

If u : ρ′ ∈ Σ2, thenΣ′
2(u) ∈ {ρ′,ρ′ ↓}. Being Σ′

1||Σ
′
2 defined, we haveρ = ρ′, or

ρ↓= ρ′, or ρ = ρ′↓. In all cases we getΣ1||Σ2(u) = Σ′
1||Σ

′
2(u) =l.

If u 6∈ D(Σ2) andu : ρ′ ∈ Σ′
2, then as in previous caseρ = ρ′, or ρ ↓= ρ′. Being

Σ′
1||Σ

′
2 defined, we haveρ′ 6=l and we concludeρ′ = ε.end, sinceΣ′

1∪Σ′
2 is ε-free.
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SoΣ1||Σ2(u) = ε.end, which impliesΣ′
1||Σ

′
2(u) =l.

Theorem 8.2 (1) If Γ;Σ;S ⊢ e :t without using ruleWeakB, thenΓ⊢ e :t ′ ⌊⌉Σ′;S ′

whereσ(t ′) = t andσ(Σ′) ⋐ Σ for some inference substitutionσ andS ′ ⊆ S .
(2) If Γ ⊢ e : t ⌊⌉ Σ;S , then for all inference substitutionsσ such thatσ(Σ) is a

session environment andσ(t ) is a type, we get:Γ;σ(Σ);S ⊢ e :σ(t ).
(3) If Γ;Σ ⊢ P: threadwithout using ruleWeakB, thenΓ ⊢ P: thread ⌊⌉ Σ′ where

σ(Σ′) ⋐ Σ for some inference substitutionσ.
(4) If Γ ⊢ P: thread ⌊⌉ Σ, then for all inference substitutionsσ such thatσ(Σ) is a

session environment, we get:Γ;σ(Σ) ⊢ P: thread .

Proof The proofs of all points are by induction on derivations and we only consider
the more interesting cases.

(1) If the last applied rule is

Conn
Γ; /0; /0 ⊢ u :begin.η Γ\u ; Σ,u :η;{u} ⊢ e : t

Γ;Σ; /0 ⊢ connect u begin.η{e} : t

by induction hypothesis we have

Γ\u ⊢ e : t ′ ⌊⌉ Σ′;S ′ (C.1)

with σ(t ′) = t andσ(Σ′) ⋐ Σ,u :η for some inference substitutionσ andS ′ ⊆ S .
Let Σ′((u)) = ρ, we getσ(ρ↓) = η. If σρ is the restriction ofσ to the type variables
which occur inρ we have alsoσρ(ρ↓) = η. If u is a variable, thenΓ(u) <: s by
Lemma A.1(1). Ifu is a name, thenΓ(u) = sch by Lemma A.1(2). By applying
rule ConnI to (C.1) we derive

Γ ⊢ connect u begin.η{e} :σρ(t
′) ⌊⌉ σρ(Σ′)\u ; /0

If σ− is the restriction ofσ to the type variables which do not occur inρ (and so
σ− ◦σρ = σ) we getσ−(σρ(t

′)) = t andσ−(σρ(Σ′ \u)) = σ−(σρ(Σ′))\u ⋐ Σ by
Lemma C.2(1) and (3), and this concludes the proof of this case.

If the last applied rule is

ReceiveS
Γ\ x ; {x :η};{x} ⊢ e : t η 6= ε.end

Γ;{u : ?(η)};{u} ⊢ u .receiveS (x){e} : Object

by induction hypothesis we have

Γ\ x ⊢ e : t ′ ⌊⌉ Σ′;S ′ (C.2)
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with σ(t ′) = t andσ(Σ′) ⋐ {x :η} for some inference substitutionσ andS ′ ⊆ {x}.
Fromσ(Σ′) ⋐ {x :η} we getΣ′ = {x :ρ}, andσ(ρ↓) = η for someρ 6= ε. We can
conclude by applying ruleReceiveSIto (C.2).

If the last applied rule is

SendIf
Γ;Σ0;{u} ⊢ e :bool Γ;Σ,u :ρi ;{u} ⊢ e i : t i ∈ {1,2}

Γ;Σ0◦{Σ,u :!〈ρ1 ,ρ2 〉};{u} ⊢ u .sendIf (e){e1 }{e2 } : t

by induction hypothesis we have

Γ ⊢ e : t0 ⌊⌉ Σ′
0;S0 Γ ⊢ e i : t i ⌊⌉ Σi ;Si i ∈ {1,2} (C.3)

with σ0(t0) = bool , σ0(Σ′
0) ⋐ Σ0, σi(t i) = t , σi(Σi) ⋐ Σ,u :ρi for some inference

substitutionσ0,σi , andS0 ⊆ {u}, Si ⊆ {u}, i ∈ {1,2}. Fromσi(Σi) ⋐ Σ,u :ρi we
getσi(Σi)((u)) ⋐ ρi. By Lemma C.2(2)σi(Σi) ⋐ Σ,u :ρi impliesσi(Σi)\u ⋐ Σ, and
then eitherσ1(Σ1)(u

′) = σ2(Σ2)(u
′), σ1(Σ1)(u

′)↓= σ2(Σ2)(u
′), or σ1(Σ1)(u

′) =
σ2(Σ2)(u

′)↓ for all u ′ 6= u .u ′ ∈D(Σ1)∩D(Σ2). Moreover by Lemma C.1(1)u ′ 6=
u , andu ′ :ρ ∈ σ1(Σ1), andu ′ 6∈D(Σ2) imply ρ = ε.end. Symmetricallyu ′ 6= u , and
u ′ :ρ ∈ σ2(Σ2), andu ′ 6∈D(Σ1) imply ρ = ε.end. Since by assumption the variables
in Σ0,Σ1,Σ2 are disjoint, thenσ0◦σ1◦σ2 is defined. Letσ = E({〈Σ1(u

′);Σ2(u
′)〉 |

∀u ′ 6= u .u ′ ∈ D(Σ1)∩D(Σ2)} ∪ {〈Σ1(u
′);ε.end〉 | ∀u ′ 6= u .u ′ ∈ D(Σ1) & u ′ 6∈

D(Σ2)}∪{〈Σ2(u
′);ε.end〉 | ∀u ′ 6= u .u ′ ∈D(Σ2) & u ′ 6∈D(Σ1)}): by construction

there isσ′ such thatσ◦σ′ = σ0◦σ1◦σ2. We conclude by applying ruleSendIfI to
(C.3).

(2) If the last applied rule is

ConnI

Γ\u ⊢ e : t ⌊⌉ Σ;S Σ((u)) = ρ s = begin.σ(ρ↓) S ⊆ {u}
if u is a variableΓ(u) <: s

if u is a nameΓ(u) = sch

Γ ⊢ connect u s {e} :σ(t ) ⌊⌉ σ(Σ)\u ; /0

by induction hypothesis for allσ′ we have

Γ\u ;σ′(Σ);S ⊢ e :σ′(t )

and this holds in particular for those inference substitutionsσ′ such thatσ′ = σ′′◦σ
for someσ′′. If S= /0 by rule Weak we getΓ \ u ;σ′(Σ);{u} ⊢ e : σ′(t ). Let Σ′ =
σ′(Σ) if u ∈ D(Σ) andΣ′ = σ′(Σ),u : ε.end otherwise. In both cases (using rules
WeakESandWeakE in the second case) we get

Γ\u ;Σ′;{u} ⊢ e :σ′(t ) (C.4)
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If u is a channel name, thenΓ(u) = sch andΓ; /0; /0 ⊢ u : s by rulesChan andSub.
If u is a variable name, thenΓ(u) <: s impliesΓ; /0; /0 ⊢ u : s by rulesVar andSub.
We can conclude applying ruleConn to (C.4).

If the last applied rule is

ReceiveSI
Γ\x ⊢ e : t ⌊⌉ {x :ρ};S S ⊆ {x} ρ 6= ε

Γ ⊢ u .receiveS (x){e} :Object⌊⌉ {u : ?(ρ↓)};{u}

by induction hypothesis for allσ we have

Γ\ x ;{x :σ(ρ)};S ⊢ e :σ(t )

If S= /0 by ruleWeak we getΓ\ x ;{x : σ(ρ)};{x} ⊢ e : σ(t ). By rule WeakE we
can derive

Γ\ x ;{x :σ(ρ)↓};{x} ⊢ e :σ(t ) (C.5)

whereρ↓6= ε.end, and we can conclude applying ruleReceiveSto (C.5).

If the last applied rule is

SendIfI

Γ ⊢ e : t0 ⌊⌉ Σ0;S0 Γ ⊢ e i : t i ⌊⌉ Σi ;Si Σi((u)) = ρi S j ⊆ {u} i ∈ {1,2} j ∈ {0,1,2}

σ = E({〈t1; t2〉,〈t0;bool〉}∪{〈Σ1(u
′);Σ2(u

′)〉 | ∀u ′ 6= u .u ′ ∈D(Σ1)∩D(Σ2)}∪
{〈Σ1(u

′);ε.end〉 | ∀u ′ 6= u .u ′ ∈D(Σ1) & u ′ 6∈D(Σ2)}∪
{〈Σ2(u

′);ε.end〉 | ∀u ′ 6= u .u ′ ∈D(Σ2) & u ′ 6∈D(Σ1)})

ρ′
1 =

{
ρ1↓ if ρ2 is an ended session type scheme,

ρ1 otherwise

ρ′
2 =

{
ρ2↓ if ρ1 is an ended session type scheme,

ρ2 otherwise
Σ = {u ′ :ε.end | ∀u ′ 6= u .u ′ ∈D(Σ2) & u ′ 6∈D(Σ1)}

Γ ⊢ u .sendIf (e){e1 }{e2} :σ(t ) ⌊⌉ σ(Σ0)◦(σ(Σ1\u ,u :!〈ρ′
1 ,ρ′

2 〉)∪Σ);{u}

by induction hypothesis for allσ′ we have

Γ;σ′(Σ0);S0 ⊢ e :σ′(t0) Γ;σ′(Σi);Si ⊢ e i :σ′(t i)

and this holds in particular for those inference substitutionsσ′ such thatσ′ = σ′′◦σ
for someσ′′. Using rulesWeak, WeakESandWeakE we can derive

Γ;σ′(Σ0);{u} ⊢ e :σ′(t0) Γ;σ′(Σ1\u ,u :ρ′
i)∪Σ;{u} ⊢ e i :σ′(t i). (C.6)

We can conclude applying ruleSendIf to (C.6).
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(3) If the last applied rule is

Par

Γ;Σ1 ⊢ P1 : thread Γ;Σ2 ⊢ P2 : thread

Γ;Σ1||Σ2 ⊢ P1 |P2 : thread

by induction hypothesis we have

Γ ⊢ P1 : thread ⌊⌉ Σ′
1 Γ ⊢ P2 : thread ⌊⌉ Σ′

2

and there areσ1, σ2 such thatσi(Σ′
i) ⋐ Σi for i ∈ {1,2}. By ruleParI we get

Γ ⊢ P1 |P2 : thread ⌊⌉ Σ′
19Σ′

2.

By Lemma C.1(2)ε is not a predicate inσ1(Σ′
1) ∪ σ2(Σ′

2). By Lemma C.2(5)
σi(Σ′

i) ⋐ Σi for i ∈ {1,2} imply σ1(Σ′
1)||σ2(Σ′

2) ⋐ Σ1||Σ2. By construction the sets of
variables occurring inΣ′

1 andΣ′
2 are disjoint. Letσ = σ1◦σ2, thenσ1(Σ′

1)||σ2(Σ′
2)=

σ(Σ′
1)||σ(Σ′

2) = σ(Σ′
19Σ′

2) by Lemma C.2(4).

(4) If the last applied rule is

ParI

Γ ⊢ P1 : thread ⌊⌉ Σ1 Γ ⊢ P2 : thread ⌊⌉ Σ2

Γ ⊢ P1 |P2 : thread ⌊⌉ Σ19Σ2

by induction hypothesis for allσ we have:

Γ;σ(Σ1) ⊢ P1 : thread Γ;σ(Σ2) ⊢ P2 : thread

Beingσ(Σ1)||σ(Σ2) = σ(Σ19Σ2) by Lemma C.2(4), we conclude by applying rule
Par.
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