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Abstract—This work proposes a novel reconfigurable archi-
tecture for reducing the latency of JEDI-net, a Graph Neural
Network (GNN) based algorithm for jet tagging in particle
physics, which achieves state-of-the-art accuracy. Accelerating
JEDI-net is challenging since it requires low latency to deploy
the network for event selection at the CERN Large Hadron
Collider. This paper proposes an outer-product based matrix
multiplication approach customized for GNN-based JEDI-net,
which increases data spatial locality and reduces design latency.
It is further enhanced by code transformation with strength
reduction which exploits sparsity patterns and binary adjacency
matrices to increase hardware efficiency while reducing latency.
In addition, a customizable template for this architecture has
been designed and open-sourced, which enables the generation
of low-latency FPGA designs with efficient resource utilization
using high-level synthesis tools. Evaluation results show that our
FPGA implementation is up to 9.5 times faster and consumes up
to 6.5 times less power than a GPU implementation. Moreover,
the throughput of our FPGA design is sufficiently high to enable
deployment of JEDI-net in a sub-microsecond, real-time collider
trigger system, enabling it to benefit from improved accuracy.

I. INTRODUCTION

Real-time data processing from high-energy proton colli-
sions at the CERN Large Hadron Collider (LHC) is challeng-
ing since the particle detectors around the LHC ring produce
hundreds of terabytes of data per second [1] from collisions
that occur every 25 ns. The large data produced from the
detectors are reduced by a real-time processing system, known
as the trigger, which keeps interesting collision events while
discarding the others. In the trigger system, jet tagging is
an important but challenging task. It identifies the decays of
high-momentum heavy particles produced at the LHC and
distinguishes them from ordinary jets which come from the
hadronization of quarks and gluons. High accuracy in the
trigger is crucial to keep only the most interesting events
while keeping the output bandwidth low. [1, 2] utilize Multi-
Layer Perceptrons (MLP) networks for jet tagging on FPGAs,
which achieve an accuracy of around 75%. [3] presents JEDI-
net, a Graph Neural Network (GNN) based algorithm, which
achieves the state-of-the-art accuracy of over 80% for jet
tagging and is in high demand in the trigger system.

However, the GNN-based JEDI-net is more complex than
MLPs. It involves three MLP networks and three matrix-matrix
multiplication units with large adjacency matrices. It requires
large amounts of computation and suffers from large inference
latency, which makes it impossible to be deployed in real-time

in the level-1 trigger (L1T) system of an LHC experiment [3].
The L1T, using only FPGAs, requires processing latencies of
applications in a fixed time, within ˜1µs, in the updated High-
Luminosity Large Hadron Collider (HL-LHC) [4]. If algorithm
latency exceeds the limit, data or interesting events are lost.
Hence, accelerating JEDI-net inference using reconfigurable
accelerators such as FPGAs is essential in the LHC since it
would enable sophisticated processing to run in real time on
the data stream from detectors. This work proposes several
optimizations to accelerate the GNN-based JEDI-net using
high-level synthesis (HLS) on FPGAs. We also open-source
the HLS templates of the graph neural network of JEDI-net
for the community.

To efficiently accelerate the GNN-based JEDI-net, this work
proposes an outer-product based matrix-matrix multiplication
(MMM) approach for the GNN aggregation function com-
putation, which inputs and outputs the data in a column-
major order to increase the data spatial locality and reduce
the design latency. The design pipeline also adopts column-
major order instead of the conventional row-major order for
the data layout of the intermediate results traversed along the
hardware datapath. Working together with the column-major
order representation, the outer-product based MMM enables
a coarse-grained pipeline with a low Initiation Interval (II)
to improve the design throughput. Additionally, this approach
is further enhanced by a custom strength reduction for the
matrix multiplication operations based on the characters of the
adjacency matrices of JEDI-net. It not only avoids expensive
multiplication and involves just a few additions, but also
removes the input of the adjacency matrix to save memory
bandwidth. The outer-product MMM enhanced by the strength
reduction largely reduces the computation cost and memory
access as well as the power consumption of JEDI-net to
improve the hardware design throughput. Moreover, this work
introduces a two-level parallelism scheme which explores
potential design parallelism. Furthermore, design space ex-
ploration is performed to identify the appropriate parallelism
parameters. Finally, a fine-tuning step is conducted to find
the design with not only low II but also low end-to-end la-
tency. Our FPGA implementation of JEDI-net achieves a sub-
microsecond initiation interval, which makes the algorithm
compatible to LHC conditions where there are strict latency
constraints, while enabling improved accuracy.

We make the following contributions in this paper:



• An outer-product based matrix multiplication approach
for the GNN-based JEDI-net with custom strength re-
duction as well as column-major order data layout, which
exploits the sparse adjacency matrix and the nature of the
column-based algorithm architecture to increase hardware
efficiency while reducing design latency.

• A scalable and low latency JEDI-net template which
enables the generation of low-latency FPGA designs with
efficient resource utilization by HLS tools. We open-
source the template1 for the community.

• A comprehensive evaluation of the proposed method and
hardware architecture.

II. BACKGROUND

A. Interaction Network

The JEDI-net is a graph neural network based on inter-
action network [5] architecture. The interaction network is a
powerful graph based framework for reasoning about objects
and relations in complex and dynamic systems. The input to
an interaction network is a graph of objects and the relations
between them. It learns to capture the complex interactions
that can be used to predict future states and abstract physi-
cal properties. The acceleration of interaction-network based
GNNs has also been studied for charged particle tracking at
the CERN LHC on FPGAs [6].

B. JEDI-net for Jet Tagging

The JEDI-net can be represented as a graph, G = ⟨I,R⟩
with the nodes, I , corresponding to physics particles, and the
edges, R, to the relations. The input of nodes (I) is defined
as a P ×No matrix, whose columns represent the node’s P -
length feature vectors, and No is the number of particles in a
jet. The relations are a triplet, R = ⟨Rr, Rs, Rr

T ⟩, where Rr

and Rs are No×NE binary matrices which index the receiver
and sender nodes, respectively. Each column of Rr and Rs is
a one-hot vector and it indicates the receiver node’s index; Rs

indicates the sender similarly. The number of the edges, Ne,
is No × (No − 1) since JEDI-net is a fully connected graph
with directional edges.

Fig. 1 shows the dataflow of JEDI-net. The input I matrix
is multiplied by the Rr and Rs matrices and the results are
then concatenated to form a B matrix, having dimension
2P × Ne. A trainable deep neural network (DNN) function
fR : R2P → RDe is then applied to each column of B
and produces a matrix E. Then Ē = ERT

r is conducted in
the MMM3 to gather the cumulative effects of interactions
received by a given node. The Ē and I are then concatenated
to form the C matrix. Each column of the C matrix represents
a constituent in the jet, containing P input features and De

hidden features, representing the combined effect of all the
interactions between particles. Another trainable function fO
is introduced to build a post-interaction representation of each
jet constituent. It is applied to each column of C to produce
the O matrix, having dimension Do × No. A final trainable

1https://github.com/walkieq/GNN-JEDInet-FPGA
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Fig. 1: Overview of the JEDI-net architecture
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Fig. 2: Outer-product based matrix multiplication

function ϕO returns the probability for that jet to belong to
each of the five categories. fR, fO and ϕO are implemented
as 3-layer DNNs using Multi-Layer Perceptrons (MLPs).

III. DESIGN AND OPTIMIZATION

This section introduces several optimizations to accelerate
the GNN for JEDI-net. Although this work focuses on the ar-
chitecture of JEDI-net for jet tagging, the proposed techniques
could be adapted to optimize other GNN-based networks with
applications beyond jet tagging.

A. Outer-product based matrix multiplication with strength
reduction for JEDI-net

To multiply a matrix by another matrix we often do the
inner-product of rows from the 1st matrix and columns from
the 2nd matrix. For example, to compute the Ē = ERT

r in
the MMM3 unit, it requires a whole row of the E matrix
and a whole column of RT

r to perform the inner-product for
each entry of Ē. However, in JEDI-net, the input matrix of
the MMM3 unit comes from the output of fR, as shown
in Fig. 1, which produces the results column by column. With
an inner-product based MMM in the MMM3 unit, this unit
needs to wait for a long time until a whole row of E matrix
is ready, resulting in long latency. To solve this issue, this
work proposes an outer-product based matrix multiplication
for MMM3 to process the Ē = ERT

R for JEDI-net. Instead
of using a whole row from E matrix, now a whole column
of E matrix is multiplied by one element from RT

r matrix to
generate the partial result of the first column of result matrix Ē
as shown in Fig. 2. The partial result will then be accumulated
to form the column of the result matrix. Since the E matrix
is generated column by column, MMM3 can start as soon as
the first column of E is ready. It largely reduces the waiting
time of the MMM3 unit and reduces the design latency. It also



Algorithm 1: The pseudocode of the outer-product
based MMM with strength reduction for JEDI-net.

1 Function MMM3( E, Ē):
2 for i = 0 to No do
3 for k = 0 to No − 1 do
4 // Reduced from No × (No − 1) to No − 1

because of the 1-hot feature.
5 for j = 0 to De do
6 index = i× (No − 1) + k;
7 tmp = (k == 0) ? 0 : acc[j];
8 acc[j] = tmp+ E[index][j];
9 // Multiplications can be avoided since

RT
r is binary.

10 end
11 end
12 for m = 0 to DE do
13 Ē[i][m] = acc[m];
14 end
15 end
16 End Function

enables a low initiation interval coarse-grained pipeline for the
whole design.

To efficiently support the outer-product based MMM, this
work adopts a column-major order data format for representing
the intermediate results (i.e., 2D matrix arrays) in the JEDI-
net instead of the conventional row-major order, which can in-
crease the spatial locality and design performance. Generally a
C/C++ based HLS tool, e.g., Xilinx Vivado/Vitis HLS, utilizes
a row-major order format when mapping a 2D matrix onto
memories, in which the consecutive elements of a row reside
next to each other. However, in JEDI-net, the DNN functions
fR and fO process the input matrix column by column as
well as output the result matrix column by column. Besides,
the proposed outer-product based MMM also performs the
calculation based on columns of input and output matrices.
Hence, if the data sits in memory in the default row-major
order, it is very time-consuming to collect a whole column for
these functions since elements in a column are not contiguous
in memory. But conversely, with the column-major order, the
input elements can be grouped as a vector (i.e., a whole
column as a vector) and can be processed efficiently in these
functions with high parallelism because the data can be fetched
sequentially.

Moreover, this work performs code transformation using
strength reduction to enhance the outer-product matrix mul-
tiplication of Ē = ERT

r , which exploits the sparsity patterns
of the adjacency matrix of RT

r as well as the binary feature. It
avoids costly multiplications but involves only load and store
operations with a small number of additions. The detailed
pseudocode of the strength reduction enhanced outer-product
based MMM3 has been illustrated in Algorithm 1. The input
Rr matrix is binary and each of its columns is one-hot
as introduced in Subsection II-B. Thus, the multiplication
operations are unnecessary since RT

r is binary. Besides, it

K

K

K

K K K

K KN
um

be
r o

f o
pe

ra
tio

ns
 

Fig. 3: The reduction in the number of multiplications, addi-
tions and iterations for MMM3 in JEDI-net-50p model.

has a fixed pattern, in which the element (Rr)ij is set to 1
when the ith node receives the jth edge and is 0 otherwise.
Hence, only 1

No
of total additions are required. Fig. 3 shows

that the number of additions can be reduced to 29.4k from
1470k while the multiplications can be totally removed for
the Ē = ERT

r in a JEDI-net-50p model with the proposed
approach. Moreover, the input of the adjacency matrices can
be also avoided to save memory bandwidth since their patterns
can be statically fused into the loop index. The technique of
strength reduction can also be applied to compute the MMM1
(B1 = IRr) and MMM2 (B2 = IRs) as shown in our
previous work [7]. Our proposed methods not only eliminate
the expensive matrix multiplication operation and reduce the
iterations but also avoid the input of the adjacency matrices
to improve the memory access efficiency, which reduces the
design latency and increases the throughput as well as the
hardware efficiency.

The latency could be further reduced by inputting multiple
columns of E. But this requires multiple fR hardware units to
be deployed and all the previous hardware units can process
the corresponding number of columns of their input matrix
in each cycle using more hardware resources. We quantify
the trade-off between the design initiation interval (II) and
the hardware resources from supporting 1-column to several
columns in our evaluation section.

B. Two-level parallelism

The trade-off between latency, throughput and FPGA re-
source usage is determined by the parallelization of the design.
This work exploits a two-level parallelism scheme. First, we
adopt the reuse factor [1] to fine tune the parallelism of the
MLPs in a JEDI-net model. The reuse factor is configured to
set the number of times a multiplier is used in the computation
of a module. The code transformation is performed manually
using strength reduction to optimize the matrix multiplications
in JEDI-net to avoid multiplications. Hence, only the three
MLPs (fR, fO, ϕO) consume multipliers in the design. We
apply the reuse factors RfR, RfO and RϕO to these three
MLPs. This work always tries to achieve extremely low latency
by using as many hardware resources as possible, such as
unrolling all the layers in the MLPs by adopting a reuse factor
value of 1.

Second, this work deploys multiple copies of the fR unit to
further increase the design parallelism. The fR is applied to
each column of the B matrix, as mentioned in Section II-B,
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Fig. 4: Design space exploration of JEDI-net-50p model
targeting Xilinx U250 FPGAs with various configurations of
parallelism parameters (RfR, RfO, NfR).

resulting in a significant number of iterations since there are
NO × (NO − 1) columns in the B matrix. Fully unrolling
all the iterations requires thousands of hardware copies of
fR, leading to a large hardware resource consumption that
will easily exceed a given FPGA. Hence, this work partially
unrolls it with a factor, NfR, resulting in NfR copies of the
fR hardware units, each processing a vector of B matrix.

C. Implementation of the hardware accelerator

Fig. 4 shows the results of the design space exploration of
the JEDI-net-50p [3] model based on reuse factors and NfR

from value 0 to 15. For simplicity, we set the same reuse factor
for fO and ϕO which are cascaded. Additionally, both NfO

and NϕO are set to 1 since only DNN1 is the bottleneck.
Each blue dot is an explored design while the red dots are
Pareto designs, forming the Pareto front. The sweet spot shows
the explored design candidates which have a good trade-off
between the Initiation Intervals (IIs) and the total DSPs on
the targeted U250 FPGA which has 12288 DSPs.

This work splits the whole JEDI-net into several sub-layers
and adopts a layer-wise hardware architecture [1, 8, 9, 10,
11, 12] to map all the sub-layers on-chip which is flexible and
able to take full advantage of the customizability of FPGAs. In
addition, different sub-layers run in a fashion of coarse-grained
pipeline to further increase the design throughput. Moreover,
we perform the calculation for different sub-layers on their
own units using dedicated optimization to achieve low latency
and high design throughput.

IV. EVALUATION AND ANALYSIS

This section presents the evaluation results of the GNN-
based JEDI-net on FPGAs demonstrating the scalability of the
proposed optimization for GNNs.

A. Experimental setup

This study focuses on JEDI-net-30p [3] models targeting a
dataset of 30 particles [13] and JEDI-net-50p models targeting
a 50 particles dataset [14]. To study the performance and
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Fig. 6: The AUCs of five jet taggers

limitations of the proposed optimizations and hardware archi-
tecture, the design is implemented using Xilinx Vivado HLS
19.2 on a Xilinx Alveo U250 board to do the evaluation and
comparison with other implementations. It runs at 200MHz so
each cycle is 5ns. FPGA power consumption is reported by
the Xilinx Vivado tool. Besides, the weights and inputs of the
JEDI-net are quantized to 24-bit: one sign bit, 11 integer bits
and 12 fractional bits. It achieves the same accuracy as the
floating-point model.

B. Model quantization and accuracy

To find a proper fixed-point precision that can achieve no
reduction in the physics performance of the algorithm, we scan
the fixed-point precision with total bit widths from 16 to 26
bits and integer bits from 6 to 13, including the sign bit, as
shown in Fig. 5. For simplicity, a unified bitwidth is applied.
With 24 total bits and 12 integer bits, the fixed-point model
effectively achieves the same accuracy as the FP32 floating-
point counterpart. In addition, JEDI-net achieves much higher
accuracy than the previous work based on DNNs [1, 2] with an
accuracy below 75%. We also evaluate the Receiver Operating
Characteristic (ROC) curves with the area under the curve
(AUC) for the 5 jet classifiers, including gluon, light quarks,
W boson, Z boson and top quark, as shown in Fig. 6. The AUC



TABLE I: Resource utilization

Task LUT FF BRAM DSP

Available 1728k 3456k 5376 12288

JEDI-net 30P Used [↓] 303k 104k 284 1831

(NfR = 1) Utilized [%, ↓] 17 3 5 14

JEDI-net-30P Used [↓] 1158k 246k 1392 11504

(NfR = 13) Utilized [%, ↓] 67 7 25 93

JEDI-net-50P Used [↓] 886k 31k 1511 7342

(NfR = 1) Utilized [%, ↓] 51 8 28 59

JEDI-net-50P Used [↓] 1515k 533k 1607 12284

(NfR = 4) Utilized [%, ↓] 87 15 29 99

TABLE II: Performance comparison of JEDI-net-50p FPGA
implementations with various parallelism parameters

U1 U2 U3 U4 U5

NN Model / FPGA JEDI-net-50p / U250

RfR 1 1 1 1 1

RfO 1 1 1 12 4

NfR 1 2 3 4 4

DSP used 7342
(59%)

10062
(81%)

12894
(104%)

11440
(93%)

12284
(94%)

Latency (cycles) 6519 3474 2493 2565 2131

Latency (µs) 32.60 17.37 12.47 12.83 10.66

II (cycles) 2462 1242 854 650 650

II (µs) 12.31 6.21 4.27 3.25 3.25

of the light quarks tagger (blue lines) using 24-bit fixed-point
data representation seems different from the floating-point one,
but note there is a logarithmic scale on the x-axis of Fig. 6
and the AUC loss of the q tagger is less than 1%.

C. Resource Utilization

Table I shows the resource utilization of our designs on
the U250 FPGA with different parallelism parameters. For the
model JEDI-net-30p, the input particle number NO is 30 with
a feature size P as 16, which are defined in the dataset. For
JEDI-net-50p, NO is 50 with the same size of P . The number
of edges, NE , increases dramatically when NO increases. It
is NO ∗ (NO −1) which equals 870 when NO = 30 and 2450
when NO = 50. The two models also have different sized
fR, fO and ϕO.

D. Performance and analysis

To achieve low latency and high throughput, each of the
layers in the fR, fO, ϕO units are firstly fully unrolled. Be-
sides, the proposed strength reduction enhanced outer-product
MMM is applied with a column-major data format. The
initiation interval of our design reduces from sub-millisecond
to a few microseconds. To further improve the latency and
II, multiple fR hardware units are deployed since it is the
design bottleneck. But simply increasing the copy of fR could
work but may not be able to result in the optimal design.
The II decreases from 12.31µs to 6.21µs when NfR increases
from 1 to 2 as shown in Table II. When NfR increases to
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Fig. 7: The latency and initiation interval (II) with various
NfR for JEDI-net-30p.

3, the required number of DSPs has exceeded the total DSPs
on this FPGA. To solve this issue, we re-allocate some DSP
blocks from DNN2 (fO) and DNN3 (ϕO) to DNN1 (fR)
to decrease the design II. TO get the appropriate values of
the parallelism parameters (RfR, RfO, NfR), we conduct the
design space exploration as shown in Fig. 4. The candidate
design is (1,12,4), which is shown as design U4 in Table II.

Although the II is often the most important metric of the
design since it decides the throughput, some other metrics are
also important, such as the end to end latency. Besides, the
number of the DSPs on an FPGA is fixed and if we do not
use up all the DSPs, the left ones will be wasted. Thus, if
we take the latency into consideration, an extra fine-tuning
step can be applied to achieve a better design, e.g., the design
U5. First, the U4 is found, which is on the Pareto Front. And
then we check if there is a design which has the same II and
demands more DSP blocks but does not exceed the total DSPs
of the given FPGA. Since the Pareto Front line is based on
the II and DSP blocks, it always gives the minimum number
of DSP blocks that can achieve the lowest II. But there might
be some unused DSPs in this FPGA, which are not sufficient
to be used to reduce the II. However, they can still be used
to achieve a better latency. Thus, the final design is based
on the (RfR, RfO, NfR) of (1,4,4), which achieves not only
a smaller II than U3 but also a smaller latency. The JEDI-
net-30p model is much smaller than the large one, JEDI-net-
50p. With the (RfR, RfO, NfR) as (1,1,1), it only cost 14%
DSPs while the JEDI-net-50p costs near 60% DSPs with the
same parameters. With the proposed approach, the optimal II
of JEDI-net-30p is 0.40µs based on the (RfR, RfO, NfR) of
(1,1,13) as shown in Fig. 7.

When the jet tagging is part of the whole processing in
the trigger, our approach can still lead to an appropriate set
of parameters to get the optimal II and latency with a given
hardware budget, as shown in Fig. 7 and Table II. Besides, in
a realistic use case, the cardinality of the input dataset might
be much smaller. In that case, one would be able to speed up
the algorithm even more than what we show in this work, as
well as to reduce the resource utilization.



TABLE III: Comparison of the FPGA, CPU and GPU designs

Platform CPU
Gold 6154

GPU
GeForce 2080Ti FPGA U250

Frequency 3.00 GHz 1.63 GHz 200 MHz

Technology 14 nm 12 nm 28 nm

Precision F32 F32 24 Fixed

NN Model
JEDI-net 50p 30p 50p 30p 50p 30p

Power (W) 103 106 250 245 61.3 37.9

Batch Size 1000

Average Lat.
(µs) 593.1 56.9 16.8 3.8 3.25 0.40

Throughput
(KGPS) 1.69 17.6 59.52 263.2 307.7 2500

Power Effic.
(KGPS/W) 0.02 0.17 0.24 1.07 5.02 65.96

E. Comparison with GPUs and CPUs

To compare the performance of the proposed design on
FPGA with other platforms, we run the JEDI-net models
implemented in [3] on Intel Xeon Gold 6154 CPU and
NVIDIA GeForce RTX 2080 Ti (CUDA 10.2) based on
PyTorch (1.8.1) framework. The CuDNN libraries are used
for optimizing the hardware performance on GPUs. Each
batch has 1000 graph events (samples) according to [3], so
we set the same batch size for all the hardware platforms
for a fair comparison. CPU power consumption is measured
by the pcm-power utility [15], excluding the DRAM power
consumption. GPU power consumption is measured using
nvidia-smi utility. We adopt KGPS (Kilo Graphs Per Second),
which denotes the number of graph events inferences that run
per second, as an indicator of throughput. This work uses the
same CPU and GPU implementations like the one in [3].
Compared with the JEDI-net implementation on GPU, our
FPGA design is 5.2∼9.5 times faster and consumes 4.1∼6.5
times less power. In terms of the power efficiency, which
is denoted as KGPS per Watt, our design is 21∼62 times
higher than the GPU implementation. When compared to the
CPU implementation, our FPGA implementation is 142∼185
times faster. In addition, our design achieves 306∼397 times
higher power efficiency than the CPU implementation. We
believe the proposed custom strength reduction can also be
applied to CPU and GPU implementations, but the latency
profiling shows that the three MMMs cost less than 15%
of the total latency. We leave that for future work since it
has a limited impact on the conclusions in this paper. The
FPGA implementation is faster and more efficient because it
is unrolled on-chip with a coarse-grained pipeline and benefits
from tailor-made optimizations for the JEDI-net based on the
proposed approach.

V. RELATED WORK

There have been some studies exploring GNNs for particle
physics applications, such as jet tagging [3], charged particle
tracking [16], and calorimeter energy measurements [17]. To

achieve low latency, FPGAs are involved. [6] extends the
hls4ml [1] tool to translate GNNs into FPGA firmware auto-
matically for charged particle tracking. Besides, GarNet [18],
a GNN-based algorithm, is proposed for calorimeter energy
regression. Our previous work [7] only focuses on accelerating
the JEDI-net-30p with an II reduced to 0.6µs. With the newly
proposed technique, the II in this work is 50% better.

There are also many studies about general GNN acceler-
ations [19, 20, 21, 22, 23]. AWB-GCN [19] is based on a
column-wise-product architecture for GCN acceleration. The
updated version I-GCN [22] proposes Islandization, a new
runtime graph restructuring algorithm, which can increase the
regularity of the adjacency matrix to improve data locality
for better performance. BoostGCN [20] presents a novel
hardware-aware Partition-Centric Feature Aggregation (PCFA)
scheme to enable pipelined execution of GCN inferences
on FPGAs. [21] proposes to accelerate GCNs using HLS
with several hardware-friendly optimizations. [23] proposes
a model-architecture co-design with a light-weight algorithm
for temporal GNN inferences on FPGAs. Some previous
studies focus on accelerating GNN training [24, 25, 26].
GraphACT [24] introduces an FPGA-based accelerator with a
subgraph-based algorithm for Graph Convolutional Networks
(GCNs) training. [25] presents an efficient graph sampling
accelerator on high bandwidth memory based FPGAs for
training GNNs. [26] proposes HP-GNN which maps GNN
training on the CPU-FPGA platform automatically. All of
these studies utilize the single engine architecture. This work
focuses on layer-wise architecture and proposes several novel
optimizations for ultra low latency and high throughput. These
previous studies are orthogonal to our proposed approach and
hardware architecture. Their techniques can be complementary
to our approach, which could be extended in future to achieve
even lower latency.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for minimizing the
initiation interval and latency for the GNN-based JEDI-net on
an FPGA. It involves execution optimizing the matrix oper-
ations and coarse-grained pipeline to support next-generation
low-latency collider trigger systems, key to many fundamental
physics experiments including jet tagging. We propose an
outer-product based matrix multiplication approach enhanced
by code transformation of strength reduction and column-
major order representation. Results show up to 9.5 times
reduction in latency over the existing GPU-based JEDI-net
implementation. Our future work includes exploring the use of
new FPGA resources such as the AI Engines [27] and the AI
Tensor Blocks [28], and incorporating the proposed techniques
into the design and implementation of the data processing
architecture for next-generation collider trigger systems.
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