
1

Low Latency Variational Autoencoder on FPGAs
Zhiqiang Que, Minghao Zhang, Hongxiang Fan, He Li, Ce Guo, and Wayne Luk, Fellow, IEEE

Abstract—Variational Autoencoders (VAEs) are at the forefront
of generative model research, combining probabilistic theory
with neural networks to learn intricate data structures and
synthesize complex data. However, designs targeting VAEs are
computationally intensive, often involving high latency that pre-
cludes real-time operations. This paper introduces a novel low-
latency hardware pipeline on FPGAs for fully-stochastic VAE
inference. We propose a custom Gaussian sampling layer and
a layer-wise tailored pipeline architecture which, for the first
time in accelerating VAEs, are optimized through High-Level
Synthesis (HLS). Evaluation results show that our VAE design is
respectively 82 times and 208 times faster than CPU and GPU
implementations. When compared with a state-of-the-art FPGA-
based autoencoder design for anomaly detection, our VAE design
is 61 times faster with the same model accuracy, which shows that
our approach contributes to high performance and low latency
FPGA-based VAE systems.

I. INTRODUCTION

Variational Autoencoders (VAEs) are powerful generative
models that combine probabilistic and neural network ap-
proaches to learn and generate complex data. The foundational
concept behind VAEs is their ability to infer and distill the
latent distribution that underlies the data, which facilitates the
generation of new, representative samples. This makes VAEs
a potent tool for generative tasks, allowing them to create
and reproduce the intricate structures within data. VAEs have
been used in applications such as image generation [1], natural
language processing [2], and anomaly detection [3], [4].

Deep Neural Network (DNN) models, including VAEs,
while powerful, face limitations in real-world applications due
to their inference times, which can range from tens to hundreds
of milliseconds [5]. VAEs, as a specialized subset of DNNs,
are designed for generative tasks. Their unique architecture,
which includes an encoder-decoder structure, and a distinct
learning objective to effectively model a probabilistic latent
space, distinguish them from other DNNs. To address the
inference time issues, FPGAs have been used to speed up the
inference of DNN [6]–[8], which offer advantages of reduced
latency and lower power consumption compared to CPUs or
GPUs, making them a viable solution for enhancing DNN
deployment efficiency.

However, existing research on accelerating VAEs on FPGAs
is limited. A notable recent contribution [9] involves a low-
latency VAE network on FPGAs to detect outliers in particle
collision signals. Although their full VAE model achieves best
model accuracy in all the designs, they avoid the complexity of
Gaussian sampling in hardware and use only the encoder part

Z. Que, M. Zhang and C. Guo are with Imperial College London, UK.
E-mail:{z.que, minghao.zhang17, c.guo}@imperial.ac.uk. H. Fan is with
Samsung AI Center & University of Cambridge Cambridge, UK. H. Li is
with Southeast University, China. W. Luk is with Imperial College London,
UK. E-mail:w.luk@imperial.ac.uk

in hardware. There is another FPGA-based VAE design [5] for
attack detection to secure 5G communication, where ultra-low
latency is essential. In the design, Gaussian random numbers
are generated in large batches on CPUs and then fed into
the FPGA, resulting in increased latency. More details can
be found in Section II-B on related work

As explained above, research into FPGA-based VAE ac-
celeration remains scarce. Some existing studies avoid full
VAE implementations and adopt simplified versions that omit
critical steps like Gaussian sampling. This paper introduces
a novel low-latency hardware pipeline on FPGAs for fully-
stochastic VAE inference. In this work, a custom layer of ran-
dom sampling from a Gaussian distribution in the latent space
is proposed and designed to enable full stochastic processing
in hardware for low latency. A Pseudo Random Number
Generator (PRNG) is used to ensure the reproducibility of the
generated random number sequence. Moreover, our approach
splits the entire VAE into several sub-layers and adopts a layer-
wise tailor-made pipeline architecture with independently opti-
mized components in each layer of the VAE using High-Level
Synthesis (HLS). The layer-wise pipeline architecture has been
used to speedup Convolutional Neural Networks (CNNs) [10]–
[12], Recurrent Neural Networks (RNNs) [13], [14], Graph
Neural Networks (GNNs) [15], [16] and transformer neural
networks [17], but it has not been used in accelerating VAEs.

To realize the above tailor-made pipeline architecture, we
propose novel code transformation to control design unrolling
due to limited hardware resources on a given FPGA. It restruc-
tures the HLS-based VAE inference design into a perfect loop
using a Finite-State Machine (FSM) based structure to improve
the overall latency and initiation interval, enabling real-time
operation within the bounds of limited hardware resources.
This work uses VAE-based anomaly detection algorithm for
detecting gravitational waves as an end-to-end application.
Improving both accuracy and speed of VAEs are challeng-
ing, as higher accuracy usually requires a more complicated
model and longer processing time. Accelerating VAE inference
using FPGA-based accelerators would enable sophisticated
algorithms, such as anomaly detection, to run in real time on
input data streams, leading to improved model accuracy and
low processing latency with a fast response.

To the best of our knowledge, this work is the first to
propose a low latency hardware pipeline design of VAEs with
full stochastic processing in hardware, enabling sophisticated
real-time analysis on streaming data. Our contributions in this
paper are as follows:

1) A low latency hardware architecture of VAEs with full
Gaussian sampling in hardware and a layer-wise tailored
pipeline architecture.

2) An HLS-based code transformation which restructures
the VAE inference into a perfect loop using an FSM-

based structure to achieve low latency.
3) A comprehensive evaluation of the proposed method and

hardware architecture.
While the design and parameters of the VAE are tailored

for anomaly detection in gravitational wave observation, the
optimizations for low latency would benefit many other appli-
cations, especially those requiring real-time response such as
VAE-based Learned Image Compression (LIC) system [18],
adaptive radiotherapy [19] and electronic trading [20].

The rest of this paper is as follows: Section II details the
foundational concepts behind VAEs and the related work.
Section III describes the VAE design, including the encoder-
decoder structure, Gaussian Sampling Layer, Pseudo Random
Number Generator, Gaussian Random Number Generator,
Quantization of the GRNG, Layer-wise Architecture, and
Parallelization. Section IV evaluates the performance and
scalability of the proposed VAEs. We discuss related work
in Section II-B and conclude in Section V.

II. BACKGROUND

A. Variational Autoencoder

A conventional Autoencoder contains an encoder and a
decoder, as shown in Fig. 1 (left). The encoder encrypts
inputs into a compressed representation (latent layer), while
the decoder tries to reconstruct the compressed representation
back to the original inputs [21]. In practice, such classical
autoencoders do not lead to particularly useful or nicely
structured latent spaces. The conventional AE does not lead
to nicely structured latent spaces, as the parameters in the
latent vector are selected randomly when generating the out-
put [21], [22]. To address this issue, VAE is proposed in
Ref. [22] by Kingma and Welling, which converts the inputs
into a representation of a Gaussian distribution: a mean and
a variance. These parameters are used to randomly sample
an element that is then decoded back to the original inputs,
shown Fig. 1 (right). This Stochastic process improves the
design robustness and forces the latent vectors to encode
meaningful representations. The latent vector Z has a Gaussian
distribution:

Z = µ+ (σ ⊙ ϵ) (1)

where µ and σ are mean and standard deviation of the input
data. ⊙ denotes element-wise multiplication. ϵ is a random
vector sampled from a standard Gaussian distribution. This
equation is referred as Gaussian sampling.

VAEs calculate the joint probability distribution P(X,Z)
for input X and latent variable Z. Joint probability P (X =
x1, Z = z1) is the probability of X = x1 and Z = z1
happening at the same time. Joint probability distribution
P (X,Z) refers to all the possible value pairs of X and Z;
from Bayes Theorem, it can be calculated by:

P (X,Z) = P (X|Z)P (Z) (2)

P (X|Z) is the probability distribution of X given the value
of Z. P(Z) is the probability distribution of latent variable Z
and is defined to be a standard Gaussian.

Latent
Layer

X X’Z

Input
Layer

Output
Layer

Encoder

Decoder

X Z

𝑄(𝑍|𝑋)
Encoder

Decoder

Input
Layer

Latent
Layer

𝑃(𝑋|𝑍)

Fig. 1. An AE (left) maps inputs to a fixed latent representation and then
decodes it back; a VAE (right) maps inputs to a probability distribution which
samples an element and then decodes it back.

The loss function of the VAE combines the reconstruction
loss (ELBO, Evidence Lower Bound) and KL (Kullback-
Leibler) loss:

Loss(X; θ, λ) = ELBO(X; θ, λ) +DKL[Q(Z|X)||P (Z)]

=
1

L

L∑
l=1

logPθ(X|Zl) +
1

2

J∑
j=1

1− µ2
j − σ2

j + log σ2
j

(3)

The reconstruction loss calculates the difference between input
X and output X ′. P (X|Z) is equivalent to P (X|X ′), as X ′

is constructed from latent variable Z. The KL loss calculates
the distance between variational posterior distribution Q(Z|X)
and the output distribution P (Z). Q(Z|X) is an approximation
of the posterior distribution P (Z|X), which is the probability
distribution of Z given evidence X . θ and λ are hyperparam-
eters to reduce the loss.

B. Related Work

Existing research on accelerating VAEs on FPGAs is scarce.
A low-latency FPGA-based VAE [9] is designed to detect
particle collision signals in the massive data from the Large
Hadron Collider (LHC) in the Level-1 Trigger (L1T) system.
To minimize latency, their approach omits Gaussian random
number generation, which is typically a crucial step in VAEs.
Instead, KL divergence DKL and z-score RZ (defined as
the summed ratio of squared mean and squared standard
deviation) are used to fine-tune a custom parameter (β), which
ranges between 0 and 1. This parameter helps balance the
reconstruction loss (ELBO) and KL loss. They achieve nice
accuracy in multiple collision scenarios (AUC > 80%) but
the proposed VAE is incomplete, as it lacks the capability
to reconstruct the input. In contrast, our work implements a
full VAE with Gaussian random number generation on FPGAs
while still maintaining low latency.

Another low-latency FPGA-based VAE design [5] focuses
on attack detection for secure 5G communication. In this
design, normally distributed random numbers are generated
in large batches on CPUs and then fed into the FPGA as a
secondary input, resulting in increased latency. The latency
achieved by their design is several hundred microseconds,
significantly higher than our system; it fails to meet the deploy-
ment requirements for scientific applications such as particle
detection in LHC [9]. The latency introduced by random
number generation on CPUs and data transfer can significantly
hinder real-time processing capabilities, which is critical for

2

applications requiring fast response times. By implementing
Gaussian sampling directly on the FPGA, we eliminate the
need for data transfer from the CPU, thereby streamlining the
inference process and enhancing the efficiency of the design.

VAEs also have been used in a fundamental framework
in end-to-end learning-based image coding schemes [23],
[24]. More recently, the F-LIC framework [18] leverages an
FPGA-based Learned Image Compression (LIC) system with
a Fine-grained Pipeline, utilizing the VAE framework. The
low-latency hardware architecture of VAE developed in this
work has the potential to be adapted to support such systems.
Exploring this possibility is a promising direction for our
future work.

Generative Adversarial Networks (GANs) are another
widely recognized type of generative network. Similar to
VAEs, GANs comprise two principal components: a generator
and a discriminator. These components work together to
learn the distribution of input data, enabling the generation
of new, synthetic data. There has been significant research
on accelerating GANs on FPGAs, as highlighted in these
studies [25]–[30]. Despite the advancements in GANs, our
current research is specifically concentrated on enhancing the
efficiency of VAEs on FPGAs.

III. DESIGN, OPTIMIZATIONS AND IMPLEMENTATIONS

A. The overview of the VAE design

Figure 2 shows an overview of the VAE model used in this
work. It consists of three main components: the encoder and
the decoder, with a Gaussian sampling layer in between that
connects the two. The details of the Gaussian sampling layer
is shown in Figure 3.

The encoder network processes input data through hidden
layers, which vary based on the data type and desired model
complexity. Dense layers, also known as Fully Connected (FC)
layers, are generic and provide a strong baseline for many
tasks. LSTM (Long Short-Term Memory) layers are special-
ized for sequential data, capturing long-term dependencies in
time series or text. CNN layers excel with spatial data, such as
images, by leveraging their structure to reduce the number of
parameters and improve efficiency. Each type of layer brings
distinct advantages to the encoder network, optimizing it for
different kinds of input data and learning tasks.

One branch of the encoder network’s final layer outputs
the mean (µ) of the latent space representation. Another
branch outputs the log variance (log(σ2)). These parameters
are learned for each data point and represent the encoder’s
belief about where the input data should be encoded in the
latent space.

The mean and log variance are used in the Gaussian
sampling layer, where a random sample Z is drawn. This
is where the reparameterization trick comes into play, which
allows for the gradient of the loss function to backpropagate
through this stochastic process during training. The sampled
latent vector Z is then fed into the decoder network that
attempts to reconstruct the input data. The decoder network
also consists of several hidden layers, which can be of the
same types as the encoder network (Dense, LSTM, CNN).

Dense/
LSTM/
CNN

Dense/
LSTM/
CNN

Encoder DecoderGaussian
Sampling layer

Hidden Layers
Dense

Dense

Layer4mean

Layer4var

Hidden Layers𝞵

log(𝞼2)

Input OutputZ

Fig. 2. The overall block diagram of the proposed design.

𝞵 𝞼exp()

Pseudo Random
Number Generator

To Gaussian
Random Number

𝝐

Z

Seed

0.5
Gaussian

Sampling Layer

log(𝞼2)

Fig. 3. The Gaussian sampling layer.

B. Gaussian Sampling layer

Figure 3 shows the hardware architecture of the Gaussian
sampling layer. This layer starts with a seed value that is
input to a PRNG. The seed ensures the reproducibility of the
random number sequence generated by the PRNG. The output
from the PRNG is then transformed into a Gaussian random
number (denoted by ϵ). This transformation is necessary be-
cause PRNGs generate numbers that are uniformly distributed,
not normally distributed. The input log variance log(σ2) is
passed through an exponential function to get the standard
deviation (σ). The generated Gaussian random number ϵ is
then multiplied by the standard deviation (σ). This scales the
random number by the desired spread of the distribution. The
scaled random number is then added to the mean (µ), which
effectively shifts the distribution so that it is centered around
the mean. Finally, the output of the Gaussian Sampling Layer
(Z) is a sample from a Gaussian distribution with the specified
mean (µ) and standard deviation (σ).

The proposed Gaussian sampling layer requires Gaussian
random numbers ϵ generated by a Gaussian random number
generator (GRNG). The traditional method for producing
Gaussian random numbers requires two components: a uni-
form PRNG and a transform to the Gaussian distribution. This
work first produces a uniform random number (step 1) and
then transforms it into a Gaussian random number (step 2) in
hardware. The Mersenne Twister is used in step 1, while the
Box-Muller transform is used in step 2. Details are described
in the following two subsections.

C. Pseudo Random Number Generator

The Mersenne Twister is a low latency, long period,
hardware-efficient PRNG [31], [32]. The most commonly used
Mersenne Twister, MT19937, has a period of 219937 − 1 and
uses a 1024-depth array (state vector) to hold 624 word-sized
(32-bit) elements. As a twisted GFSR (Generalized Feedback
Shift Register), the Mersenne Twister updates the state vector
by twisting recurrently. Figure 4 shows the hardware archi-

3

32’h9908B0DF

32’h9D2C5680 32’hEFC60000

Output

, }{

Fig. 4. The hardware architecture of the transformation and tempering stages
in the Mersenne Twister PRNG Algorithm.

32’h6C07896532’h6C078965

32’h00010DCD

32’h6C078965

> 32’hFFFEF232

Fig. 5. The hardware architecture of the state vector initialization.

tecture of the MT19937 algorithm using HLS, specifically the
transformation and tempering stages.

The transformation stage mainly includes a conditional
bitwise operation based on the Least Significant Bit (LSB)
of the right-shifted value of the concatenation of the (32-R)
most significant bits of xt and the R least significant bits of
xt+1. If the LSB is 1, the result of the right-shift is combined
(using a bitwise XOR operation, indicated by the symbol ∧.)
with a constant. The result of the transformation is then used
to update the state vector, creating the state vector for the next
iteration (t+1).

The output of the PRNG is not taken directly from the
state vector but is instead ’tempered’ to improve the statis-
tical properties of the output. This process involves several
bitwise operations, such as bitwise left shift and bitwise AND
operations as well as bitwise XOR, with different parts of
the internal state being combined with constants to produce
a tempered value. The result of the tempering process is the
output of the PRNG for that iteration.

The initialization step shown in Figure 5 is crucial for the
Mersenne Twister, as the quality of the pseudorandom number
sequence it generates depends on the initial state vector being
properly seeded and diversified, ensuring a high degree of ran-
domness and uniform distribution in the generated sequence.

During each iteration, three words are read from position 0,
1, and M (called bias) and one word is written at position N.
However, reading three values from one array causes difficulty
in running multiple reads concurrently. Therefore, this work
separates the 1024-depth state vector into two 512-depth arrays
(even and odd), which doubles the performance with little
increase in hardware resource usage.

PRNG PRNG

log

sqrt

sin cos
log

sqrt

sin cos

Fig. 6. The architecture of the Gaussian Random Number Generator (GRNG),
which converts uniform random numbers generated by a Pseudo-Random
Number Generator (PRNG) into Gaussian-distributed random numbers. U1
and U2 are two independent uniform random numbers while X and Y are the
generated pair of independent Gaussian random numbers. The left diagram
shows the GRNG implemented with a uniform 16-bit precision, while the right
diagram illustrates a mixed-precision GRNG for optimized performance.

D. Gaussian Random Number Generator

To transform random numbers from a uniform distribution
into numbers from a normal distribution, this work adopts the
Box-Muller transform [33], a method for generating pairs of
independent standard normally distributed (Gaussian) random
numbers, given pairs of uniform random numbers.

The process starts with two independent random numbers
from a uniform distribution, U1 and U2, as shown in Figure 6.
For U2, the logarithm (log) is taken and is then square-rooted
(sqrt). This part of the transformation ensures that the variance
of the normal distribution is correct. For U1, it is multiplied
by 2π to convert the uniform random number into an angle,
as the 2π represents the full circle in radians. It is then fed
into sine (sin) and cosine (cos) functions. These functions are
periodic and will convert the uniformly distributed U1 into two
variables that follow the standard normal distribution. All these
functions are implemented by using HLS math library.

E. Quantization of the GRNG

The original implementation is based an unified 32-bit
floating-point representation for all the variables in GRNG. Al-
though floating-point numbers are accurate and flexible, they
are less efficient than fixed-point numbers when implemented
on FPGAs. To improve the hardware efficiecny, quantization
is applied. Figure 6(Left) shows a fixed-point GRNG with
unified 16-bit width, including 6 integer bits. However, setting
all variables to a unified 16-bit representation results in low
model accuracy since some functions/modules may require
more integer bits while others may need more fractional bits.

To improve the model accuracy and maintain the low
latency, a mixed-precision is proposed, as shown in Fig-
ure 6(Right). We concatenate and split the two 32-bit random
numbers into a 48-bit variable and a 16-bit variable, which
have the [0, 1−2−48] and [0, 1−2−16] respectively. The 48-bit
variable is used for logarithm (log) while the short one is used
for sin and cos. The output of logarithm function requires 7
bits for the integer as the output is in the range of (0, 66.5421].
The lower bound is determined by −2ln(1 − 2−48) while
the upper bound is calculated from −2ln(2−48). The 16-bit

4

BUS

DDRHOST

Engine Local
Memory

Control FPGA

Other I/O

(a)

BUS

DDRHOST

Control
La

ye
r 0

Lo
ca

l M
em

La
ye

r 1

Lo
ca

l M
em

La
ye

r N

Lo
ca

l M
em

…

FPGA

Other I/O

AXI AXI

(b)
Fig. 7. Comparison of architectures. (a) A single engine hardware architecture
with a single computation engine capable of processing multiple layers in an
DNN model. (b) A stream-based layer-wise pipeline hardware architecture
with several custom engines, each processing a whole layer or even multiple
layers in an DNN model.

random number (U1) is passed to the sin and cos functions.
The bit-width of U1 is much lower than U2 because the output
range of sin and cos is (0, 1], much smaller than the output
range of log, which is (0,∞). Only 1-bit is reserved for the
integer of the output for sin and cos.

F. Layer-wise Architecture

Many existing neural network accelerators on FPGAs are
designed using a single engine architecture like GPUs, as
shown in the Figure 7(a). It employs a single computational
engine with multiple Processing Elements (PEs) to process one
sub-layer (block) or an entire layer at a time, such that the en-
tire DNN is processed by repeatedly running the engine [34],
[35]. This method, while straightforward, forces each network
layer to adapt to a uniform level of parallelism since there is
only one single engine, which limits the flexibility and fails
to leverage the full customizability potential of FPGAs [14].

This work splits the whole VAE into several sub-layers and
adopts a stream-based layer-wise tailor-made pipeline hard-
ware architecture. Unlike the single engine architecture, this
architecture allocates each layer or a few cascaded layers to
a dedicated hardware engine, and these engines are connected
together to form a seamless pipeline, as shown in Figure 7(b).
This architecture reduces off-chip memory access by retaining
data on-chip, thereby reducing latency. In addition, it enables
dedicated and layer-specific optimizations for each layer in
VAEs since each layer is implemented independently in this
architecture. Specifically, this work maps each layer of the
VAE shown in Figure 2 on-chip and performs the computation
for different layers on their own hardware unit. It accepts AXI
bus based streamed data and outputs the results also via AXI
bus. Inspiring by FPGA-based accelerators for low-precision
quantized neural networks or binarized neural networks, such
as those created using FINN [36] and HLS4ML [37], [38]
frameworks, this works adopts a tailored accelerator design
strategy aimed at using as many hardware resources as possible
to achieve low latency. This work fully flattens computations
within each component and implements each operation phys-
ically on-chip using dedicated hardware circuits, leading to
significant low latency and high throughput. For example, all
multiplication operations are conducted in parallel, utilizing
the maximum possible number of multipliers on hardware.

Algorithm 1: The pseudocode of a VAE inference.

1 Function VAE_Inference():
2 #pragma HLS PIPELINE
3 VAE Encoder;
4 for j = 0 to NS − 1 do
5 #pragma HLS PIPELINE
6 VAE Gaussian;
7 VAE Decoder;
8 end
9 End Function

G. Parallelization

Algorithm 1 illustrates the pseudocode of a typical VAE
inference design. The function VAE Encoder performs the
encoder network and outputs a statistical distribution with a
mean and log variance. The function VAE Gaussian performs
the Gaussian sampling and outputs the sampled latent vector
Z which is then fed to the decoder, VAE Decoder. The NS

denotes the number of samples.
To pipeline the whole VAE inference, one could set the

#pragma of ”PIPELINE” at line 2, but it leads to automatically
unrolling all loops in the hierarchy below. As a result, this
would completely unroll the inner loop at line 4, resulting
in NS hardware copies of VAE Decoder and VAE Gaussian,
significantly consuming hardware resources. If the required
hardware resources exceed the given budget, one must limit
the number of instances of VAE Decoder and VAE Gaussian.
For example, if the total budget can support only NS

2 instances
of VAE Decoder and VAE Gaussian, this loop can only be
unrolled by a factor of NS

2 . However, using a #pragma of
unrolling with a factor for the inner loop will not manage to
reduce the number of copies since the ”PIPELINE” at line
2 has priority and will force the full unrolling of the inner
loop. Thus, one has to move the #pragma of ”PIPELINE” to
line 5 to only pipeline the inner loop, excluding pipelining the
VAE Encoder, which leads to a poor design with large latency
as well as large initiation interval.

To address this issue, this work proposes a code trans-
formation which transforms the VAE inference design into
a perfect loop using a FSM-based structure with a target
initiation interval (IInew), as shown in Algorithm 2. In Xilinx
HLS, it is a perfect loop when only the innermost loop has
loop body content and there is no logic specified between the
loop statements and all the loop bounds are constant [39].
With this transformation, now all the HLS code can be run in
pipeline while before the transformation the VAE Encoder is
not pipelined as described above, which increases the overall
latency.

If the number of instances of VAE Decoder and
VAE Gaussian that can be deployed under the given resource
budget is ND, then IIT equals Ceiling(NS−1

ND
). The loop can

now run with an initiation interval of one, but the equivalent
initiation interval is the target initiation interval. With this
code transformation, we can deploy as many instances as
permitted by the hardware budget, thereby improving the de-
sign performance of the VAE and reducing the overall design
latency. Such code transformation, which involves finding the

5

Que, Zhiqiang

Algorithm 2: Code transformation with an FSM-based
structure to improve the design latency and initiation
interval.

1 Function VAE_Inference_New():
2 for i = 0 to IInew do
3 #pragma HLS PIPELINE
4 // The loop II will be 1 but the equivalent II

is the IInew
5 switch (curr state) do
6 case 0 do
7 // Encoder is used only once
8 VAE Encoder;
9 for j = 0 to Ceiling(NS−1

IInew
) do

10 VAE Gaussian;
11 VAE Decoder;
12 end
13 curr state ++;
14 break;
15 end
16 case 1 do
17
18 end
19
20 case (IInew − 1) do
21 for

j = (Ceiling(NS−1
IInew

)× (IInew − 1))

to (NS − 1) do
22 VAE Gaussian;
23 VAE Decoder;
24 end
25 curr state = 0;
26 break;
27 end
28 Default: break;
29 end
30 end
31 End Function

optimal number of instances to enhance performance, can be
automated [40].

IV. EVALUATION AND ANALYSIS

This section presents the evaluation results of the VAE mod-
els across two generations of Xilinx FPGAs, demonstrating the
scalability of the proposed optimizations for low latency VAEs
with good hardware efficiency.

A. Experimental Setup

Events related to Gravitational Wave (GW) signal dataset
are created by simulating GW production from compact
binary coalescences using the PyCBC toolkit [41], which
incorporates algorithms from LIGO’s LAL Suite [42]. Signal
events containing GWs were created overlaying simulated
GWs, with the SEOBNRv4 Approximant, on top of detector
noise. Noise events occur when there is no GW signal but only
detector noise. The detector noise is generated at a specified
Power Spectral Density (PSD) [42] to mimic normal detector

TABLE I
RESOURCE UTILIZATION ON A XILINX ZYNQ 7045 AND U250 FPGAS.

Task Z7045 LUT FF BRAM DSP

Available 218600 437200 1090 900

VAE Used [↓] 12708 12929 9 175

(Nvae = 2) Utili. [%, ↓] 5.8% 3.0% 0.8% 19.4%

VAE Used [↓] 62590 63817 53 860

(Nvae = 10) Utili. [%, ↓] 28.6% 14.6% 4.9% 95.6%

Task U250 LUT FF BRAM DSP

Available 1728000 3456000 5376 12288

VAE Used [↓] 188350 29496 62 1032

(Nvae = 12) Utili. [%, ↓] 10.9% 0.9% 1.2% 8.4%

background conditions using PyCBC [41]. This method of
event generation does not consider glitches, blips, or other
transient noise sources in the detector. Following generation,
the data are whitened and band-passed, and are then normal-
ized. Further details about this dataset are available in [21].

The dataset for training comprises 240k events, while
the validation and test sets contain 60k and 50k events,
respectively. The training is performed on a Nvidia GPU
2080Ti (CUDA 11.8) based on Tensorflow 2.6 framework.
During each training iteration, both the reconstruction loss
and the Kullback-Leibler loss are computed and minimized
to update the model’s weights and biases. An early stopping
mechanism with a patience setting of 10 epochs is employed
to enhance training efficiency. To study the performance and
limitations of the proposed optimizations and the hardware
architecture, the designs are implemented using Vivado HLS
20.1. Two different generations of Xilinx FPGAs, the ZYNQ
7045 and the U250, are evaluated. The operating frequencies
are 142MHz on the ZYNQ 7045 and 200MHz on the U250.

B. Resource Utilization

Table I shows the resource utilization of the proposed VAE
designs on Xilinx Zynq 7045 and U250 FPGAs with various
parallelism parameters. The encoder is comprised of three FC
layers. The initial FC layer has 64 neurons, providing output
to the subsequent two FC layers, named Layer4mean and
Layer4var, dedicated to producing the mean and log variance.
Both the layers accept an input size of 64 and output a
dimension of 1 to match the specified mean and log variance
size in this design. Meanwhile, the decoder is designed with
a single FC layer, mirroring the initial encoder layer with
64 neurons, ensuring a symmetrical architecture for effective
decoding. The encoder contains 3 FC layers. The first FC layer
contains 64 neurons and output to the other two FC layer
which generates the mean and log variance. The decoder has
a single FC layer with size of 64. The first design is a baseline
which has two VAE units, including one GRNG unit. The
second design involves 10 VAE units with 5 GRNG units.
The big design consumes most of the available DSP resources
with good utilization on ZYNQ 7045 FPGAs. It consumes
4.9× more DSP blocks than the first design, showing the good
scalability of our optimization. With more VAE units, a larger
FPGA can be selected, such as the U250 FPGA. Table I also

6

AUC = 0.76

LIGO Unsupervised VAE Anomaly Detection
Tr

ue
 P

os
iti

ve
 R

at
e

False Positive Rate

Fig. 8. AUCs and ROC curves for variational autoencoder with various types
of neural network layers. The right figure shows a zoomed-in view of the
red frame in the left figure. The X-axis denotes the False Positive Rate on a
logarithmic scale, which is the ratio of incorrect positive predictions to the
total number of negative cases

A
U
C
s

Fig. 9. Comparison of the AUCs of our design with other two designs (Que
et al. [13] and Moreno et al. [21]).

shows a design which contains 12 VAE units and 6 GRNG
units. This design consumes 1026 DSPs which are more than
the given DSP numbers on a ZYNQ 7045 FPGA. By deploying
more optimized VAE units on the given FPGA, we can achieve
higher throughput, reduced latency, and improved hardware
efficiency. In addition, both the encoder and decoder in the
VAE model are quantized to 16-bit, which achieves the same
model accuracy as the one using single-precision float-point
representation.

C. Model Accuracy

To quantify the performance of the proposed variational
autoencoders for anomaly detection in detecting gravitational
waves, which are implemented by various neural networks,
we use the AUC metric, or area under the Receiver Operating
Characteristic (ROC) curve, as shown in Figure 8 and Figure 9,
with higher AUC corresponding to better performance. AUC is
a common metric for evaluating models as it is classification-
threshold-invariant. The threshold for detecting an anomaly is
determined by setting a False Positive Rate (FPR) on the noise
events. The higher the threshold, the lower the FPR will be.
Then the corresponding True Positive Rate (TPR) is calculated
with this threshold on gravitational signal events.

We evaluate the AUCs of VAE networks with different
hyperparameters, including the type of hidden layers and the
size of hidden layer, using the same performance matrix (ROC
and AUC) as [13] and [21]. We observe that with the proposed
VAEs, the designs show good consistency and are not affected
by the type of hidden layers, as shown in Fig. 8. The ROC
curves (TPR vs FPR) of all the VAEs with various type of
hidden layers are highly overlapped. The differences are only

TABLE II
COMPARISON OF TRUE-POSITIVE RATES (TPR) FOR GW DETECTION AT
10% AND 1% FALSE-POSITIVE RATES (FPR) WITH OTHER WORK.THE

HIGHER, THE BETTER.

FPR AE [21]
(LSTM)

This
work

AE [21]
(GRU)

This
work

AE [21]
(CNN)

This
work

0.1 0.461 0.531 0.348 0.531 0.302 0.531

0.01 0.304 0.381 0.186 0.381 0.120 0.381

0.001 - 0.261 - 0.261 - 0.261

TABLE III
THE LATENCY AND HARDWARE USAGE OF THE VAES WITH DIFFERENT

GRNGS ON U250

Types Latency Initiation
Interval LUT DSP BRAM

Float32 24 1 16128 147 4

Unified 16-bit 16 1 15045 109 5

Mixed Precision 17 1 15570 113 12

visible when zooming in the low FPR part of the ROCs.
In addition, the ROC curves of different sizes of hidden
layers show the same feature. Furthermore, our VAEs achieve
best AUCs for all the existing autoencoder-based designs for
anomaly detection in detecting gravitational waves, as shown
in Fig. 9.

In practice, the TPR values at particular FPR values are
important for gravitational wave detection. An FPR of 0.01
corresponds to about 100 false alarms a day, while an FPR of
0.001 corresponds to 10 false alarms. The TPRs of the pro-
posed VAEs are much higher than the conventional AE-based
designs [21], as shown in Table II. This table demonstrates that
the VAE (this work) consistently outperforms LSTM, GRU,
and CNN based AE in gravitational wave detection across all
false positive rates, indicating a more robust and generalized
model with superior detection capabilities, particularly at
lower false positive thresholds.

D. Performance of the Optimized GRNG

The most important part of the VAE is the Gaussian random
number generator, GRNG. This section evaluates the quality
of the presented GRNG.

The accuracy of the GRNG can be assessed by the high
sigma test, which examines the number of sigmas that the
Gaussian tail can accurately reaches. Each GRNG is used to
generate 100,000,000 Gaussian random samples to conduct
the high sigma test. The probability distribution histogram
generated by the GRNGs is shown in blue, while the ideal
Gaussian probability distribution function is shown in orange,
as shown in Figure 10.

The GRNG with unified precision (Figure 6(left)) can reach
an accuracy of 3.7 sigmas. The value of the Probability
Density Function (PDF) at sigma = 3.7 is higher than the ideal
curve, as the probability density of the Gaussian tail beyond
3.7 sigmas is added to it. The GRNG with mixed precision
(Figure 6(right)) improves the accuracy to 5.5 sigma as shown
in Figure 10(lower). It is lower than the 8.2 sigma achieved
in [43]. [43] implements custom logarithm, square root and

7

P
D
F(
x)

P
D
F(
x)

x x

x x

Fig. 10. Probability Density Function (PDF) of Gaussian Random Numbers.
X-axis denotes the random number value and the Y-axis shows the probability
density. The upper figures show the GRNG with unified precision while the
lower ones illustrate the GRNG with mixed precision.

D
S

P
U

se
d

LU
T

U
se

d

log sin & cos sqrt

Fig. 11. The hardware usage of the main functions within the GRNG with
different precision configurations.

sine/cosine functions, specific to the input precision. As these
functions are approximated by polynomials, the coefficients of
each term are also optimized in terms of their implementations.
In this work, these functions are implemented using the Vivado
HLS package due to flexibility. Also the GRNG in [43] only
has a period of 288. More GRNGs in hardware can be found
in this survey [44].

As shown in Table III, changing the floating-point GRNG
to fixed-point reduces the inference latency by 50% and
also reduces the DSP, FF, and LUT usage. The latency and
initiation interval of the VAE excludes the initialization of
the PRNG since the initialization only run once. The fixed-
point high-sigma GRNG has consumed a little more BRAMs
but still maintains the low latency. Moreover, we achieve an
initiation interval of 1 for all the three cases.

The hardware usage of the main functions within the GRNG
is shown in Figure 11. The log function used by floating-

N
um

be
r o

f C
yc

le
s

Number of VAE units

Fig. 12. The latency of the designs with multiple VAE units

point GRNG consumes more DSPs to compensate for the low
LUT usage. Compare to the custom log in the fixed-point
16-bit GRNG, the log in the high sigma GRNG increase
DSP consumption from 3 to 7 because the input precision
of hls::log rises from 16 bits to 48. In summary, the fixed-
point high sigma GRNG reaches a high accuracy without
the significant extra cost of hardware resources. The strategy
of allocating more bits for log and fewer bits for sin/cos
arranges the hardware resource efficiently and boosts the
model performance.

E. Performance and Efficiency Comparison

Figure 12 shows performance improvement when deploying
multiple VAE units in parallel for running 10,000 inferences
on an U250 FPGA platform. The Latency (represented by
blue diamonds) covers the VAE inference units after the
PRNG initialization while the Total Latency (represented by
red diamonds) also includes the latency of such initialization.
As the number of VAE units increases from 1 to 12, both the
Latency and the Total Latency decrease significantly. However,
the decline in latency is larger when going from 1 to around 6
VAE units. Beyond 6 units, the decline flattens out, indicating
that adding more VAE units does not significantly reduce the
latency further. With a design frequency of 200MHz, where
each cycle is 5ns, the Total Latency for 10,000 VAE inferences
using a single VAE unit is 11,267 cycles as shown in Figure 12,
resulting in an average latency of 5.6ns per VAE inference.
As more VAE units are added, the Total Latency decreases,
reaching a minimum of 2,448 cycles when there are 8 units.
Moreover, the total latency is 17 cycles (85ns) for a single
VAE unit with a single inference.

With a single VAE unit, the PRNG initialization contributes
approximately 11.1% to the Total Latency. However, as the
number of VAE units increases to 12, the PRNG initialization
accounts for roughly 67% of the Total Latency. This indicates
that the initialization latency becomes more significant as the
system scales up. We leave this for our future work since it
has little impact on the conclusion of this work.

The proposed VAE design, as a gravitational wave detection
approach, uses significantly less hardware resource than pre-

8

TABLE IV
COMPARISON OF THE FPGA, CPU AND GPU DESIGNS

Platform CPU
E5-2620

GPU
GeForce 2080Ti

FPGA
U250 [13]

FPGA U250
This work a

Application
Domain Anomaly Detection

Model VAE VAE AE VAE

AUC 0.76 0.76 0.76 0.76

Precision Float32 Float32 Fixed 16 Fixed 16

DSP - - 2221 113

Average Late. (ns) 461.7 1162.5 343 5.6

Latency ratio
with ours 82 208 61 1

a For a fair comparison, the design with a single VAE unit is used.

vious approaches such as LSTM-based Autoencoder (LSTM-
AE) [13]. The LSTM-AE optimized in [13] consumes many
more DSPs (2k to 9k) and LUTs (more than 449k), while
our design with a single optimized VAE unit (including one
GRNG) only requires 113 DSPs, however, our design is 61
times faster than [13] and achieves the same model accuracy
with an AUC of 0.76, as shown in Table IV. Expanding our
architecture to 12 VAE units scales up the resource demand
modestly to 1,032 DSPs and 188k LUTs, but it delivers an
additional 4.4 times speedup. This significant performance
advantage shows the strength of our VAE-based design for
real-time anomaly detection.

Power consumption is a vital metric for evaluating the
efficiency of FPGA-based accelerators. For the proposed VAE
design with 12 units (denoted as Nvae = 12) on the U250,
the Xilinx Vivado tool reports on-chip power consumption of
5.755W, which includes a static power of 2.997W. Please note
that this power consumption only reflects the energy consumed
by the entire computational kernel in the U250’s dynamic
region. These numbers are reported by the Xilinx Vivado tool
after the place & route stage.

To compare the performance of the proposed design on
FPGA with other platforms, we implement the same VAE
on Intel CPU and NVIDIA GPU. The CuDNN libraries are
used for optimizing GPU performance. As GPUs always show
advantages in multi-batch workload, we set the batch size to be
10k events on all hardware platforms for a fair comparison.
Compared with the design running on CPU and GPU, our
FPGA design is 82 and 208 times faster, as shown in Table IV.

Although Hardware implementation of Gaussian sampling
does indeed consume more FPGA resources than conducting
it on CPUs, and may potentially increase the critical path
delay, affecting the maximum clock frequency, the benefits of
reduced latency are considerable. This is particularly true for
applications where inference speed is critical. In such cases,
the trade-off is justified as the performance gain in latency
outweighs the cost in resource consumption. Furthermore, the
critical path delay can be managed and minimized through
careful design and optimization techniques. Modern FPGA
architectures offer substantial flexibility and resources that can
be leveraged to mitigate the impact on clock frequency.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new low-latency hardware architecture
for VAE inference. The novel aspects of this architecture
include a custom Gaussian sampling layer and a layer-wise
tailored pipeline architecture, both optimized for latency re-
duction. The proposed VAE design, when implemented in an
FPGA, is shown to be 208 times faster than a GPU and 82
times than a CPU implementation. Our FPGA design is also 61
times faster than a recent FPGA-based autoencoder design for
the same anomaly detection application with the same model
accuracy. Future work includes extending the proposed VAEs
beyond anomaly detection to application domains such as
real-time image and video processing and other time-sensitive
tasks. Additionally, we aim to automate the proposed opti-
mizations using techniques such as meta-programming [45],
applying it to a wide variety of applications targeting FPGAs
and ASICs, particularly those that can benefit from the low-
latency features of our architecture.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (grant numbers
EP/V028251/1, EP/L016796/1, EP/N031768/1, EP/P010040/1,
EP/S030069/1, and EP/X036006/1), CERN, AMD and SRC is
gratefully acknowledged.

REFERENCES

[1] A. Vahdat and J. Kautz, “NVAE: A deep hierarchical variational autoen-
coder,” Advances in neural information processing systems, vol. 33, pp.
19 667–19 679, 2020.

[2] W. Xu, H. Sun, C. Deng, and Y. Tan, “Variational autoencoder for semi-
supervised text classification,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

[3] A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini,
“Anomaly detection with conditional variational autoencoders,” in 18th
IEEE international conference on machine learning and applications
(ICMLA), 2019, pp. 1651–1657.

[4] L. Valente, L. Anzalone, M. Lorusso, and D. Bonacorsi, “Joint Varia-
tional Auto-Encoder for Anomaly Detection in High Energy Physics,” in
International Symposium on Grids and Clouds (ISGC), vol. 19, no. 31,
2023.

[5] C. Coldwell, D. Conger, E. Goodell, B. Jacobson, B. Petersen,
D. Spencer, M. Anderson, and M. Sgambati, “Machine learning 5g attack
detection in programmable logic,” in IEEE Globecom Workshops (GC
Wkshps), 2022, pp. 1365–1370.

[6] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A Configurable
Cloud-Scale DNN Processor for Real-Time AI,” in Proceedings of the
45th Annual International Symposium on Computer Architecture. IEEE
Press, 2018, pp. 1–14.

[7] Z. Que, H. Nakahara, E. Nurvitadhi, H. Fan, C. Zeng, J. Meng, X. Niu,
and W. Luk, “Optimizing Reconfigurable Recurrent Neural Networks,”
in IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2020, pp. 10–18.

[8] H. Fan, S. Liu, Z. Que, X. Niu, and W. Luk, “High-performance
acceleration of 2-D and 3-D CNNs on FPGAs using static block floating
point,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, no. 8, pp. 4473–4487, 2021.

[9] E. Govorkova, E. Puljak, T. Aarrestad, T. James, V. Loncar, M. Pierini,
A. A. Pol, N. Ghielmetti, M. Graczyk, S. Summers et al., “Autoencoders
on field-programmable gate arrays for real-time, unsupervised new
physics detection at 40 MHz at the Large Hadron Collider,” Nature
Machine Intelligence, vol. 4, no. 2, pp. 154–161, 2022.

[10] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf, and
P. H. Leong, “Unrolling ternary neural networks,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 4, pp.
1–23, 2019.

9

[11] H. Nakahara, Z. Que, and W. Luk, “High-Throughput Convolutional
Neural Network on an FPGA by Customized JPEG Compression,” in
IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2020, pp. 1–9.

[12] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNExplorer: a framework for modeling and exploring a novel
paradigm of FPGA-based DNN accelerator,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[13] Z. Que, E. Wang, U. Marikar, E. Moreno, J. Ngadiuba, H. Javed,
B. Borzyszkowski, T. Aarrestad, V. Loncar, S. Summers et al., “Accel-
erating recurrent neural networks for gravitational wave experiments,”
in IEEE 32nd International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2021, pp. 117–124.

[14] Z. Que, “Reconfigurable acceleration of Recurrent Neural Networks,”
PhD dissertation, 2023.

[15] Z. Que, M. Loo, H. Fan, M. Pierini, A. Tapper, and W. Luk, “Optimizing
Graph Neural Networks for Jet Tagging in Particle Physics on FPGAs,”
in 32nd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2022, pp. 327–333.

[16] Z. Que, H. Fan, M. Loo, H. Li, M. Blott, M. Pierini, A. D. Tapper, and
W. Luk, “LL-GNN: Low Latency Graph Neural Networks on FPGAs
for High Energy Physics,” ACM Transactions on Embedded Computing
Systems (TECS), 2024, (Accepted).

[17] F. Wojcicki, Z. Que, A. D. Tapper, and W. Luk, “Accelerating Trans-
former Neural Networks on FPGAs for High Energy Physics Ex-
periments,” in 2022 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2022, pp. 1–8.

[18] H. Sun, Q. Yi, F. Lin, L. Yu, J. Katto, and M. Fujita, “F-LIC: FPGA-
based Learned Image Compression with a Fine-grained Pipeline,” in
IEEE Asian Solid-State Circuits Conference (A-SSCC), 2022, pp. 1–3.

[19] D. Thorwarth and D. A. Low, “Technical Challenges of Real-Time
Adaptive MR-Guided Radiotherapy,” Frontiers in Oncology, vol. 11, p.
332, 2021.

[20] S. Denholm, H. Inoue, T. Takenaka, T. Becker, and W. Luk, “Low
latency fpga acceleration of market data feed arbitration,” in 2014
IEEE 25th International Conference on Application-Specific Systems,
Architectures and Processors. IEEE, 2014, pp. 36–40.

[21] E. A. Moreno, B. Borzyszkowski, M. Pierini, J.-R. Vlimant, and
M. Spiropulu, “Source-agnostic gravitational-wave detection with recur-
rent autoencoders,” Machine Learning: Science and Technology, 2022.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[23] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational autoencoder for
low bit-rate image compression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2018, pp.
2617–2620.

[24] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image com-
pression with discretized gaussian mixture likelihoods and attention
modules,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 7939–7948.

[25] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati, K. Samadi,
N. S. Kim, and H. Esmaeilzadeh, “FlexiGAN: An end-to-end solution
for fpga acceleration of generative adversarial networks,” in 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2018, pp. 65–72.

[26] S. Liu, C. Zeng, H. Fan, H.-C. Ng, J. Meng, Z. Que, X. Niu, and W. Luk,
“Memory-efficient architecture for accelerating generative networks on
FPGA,” in 2018 International Conference on Field-Programmable Tech-
nology (FPT). IEEE, 2018, pp. 30–37.

[27] N. Shrivastava, M. A. Hanif, S. Mittal, S. R. Sarangi, and M. Shafique,
“A survey of hardware architectures for generative adversarial net-
works,” Journal of Systems Architecture, vol. 118, p. 102227, 2021.

[28] K. Nakamura and H. Nakahara, “Optimizations of Ternary Generative
Adversarial Networks,” in 2022 IEEE 52nd International Symposium on
Multiple-Valued Logic (ISMVL). IEEE, 2022, pp. 158–163.

[29] A. S. Rakin, S. Angizi, Z. He, and D. Fan, “PIM-TGAN: A processing-
in-memory accelerator for ternary generative adversarial networks,” in
2018 IEEE 36th International Conference on Computer Design (ICCD).
IEEE, 2018, pp. 266–273.

[30] K. Nakamura and H. Nakahara, “A Consideration on Ternary Adversar-
ial Generative Networks,” in 2023 IEEE 53rd International Symposium
on Multiple-Valued Logic (ISMVL). IEEE, 2023, pp. 1–6.

[31] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R. Murray-
Smith, “Bayesian parameter estimation using conditional variational
autoencoders for gravitational-wave astronomy,” Nature Physics, vol. 18,
no. 1, pp. 112–117, 2022.

[32] M. Matsumoto and Y. Kurita, “Twisted GFSR generators,” ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), vol. 2, no. 3,
pp. 179–194, 1992.

[33] G. E. Box and M. E. Muller, “A note on the generation of random
normal deviates,” The annals of mathematical statistics, vol. 29, no. 2,
pp. 610–611, 1958.

[34] H. Fan, S. Liu, M. Ferianc, H.-C. Ng, Z. Que, S. Liu, X. Niu,
and W. Luk, “A Real-Time Object Detection Accelerator with Com-
pressed SSDLite on FPGA,” in International Conference on Field-
Programmable Technology (FPT). IEEE, 2018, pp. 14–21.

[35] Z. Que, H. Nakahara, E. Nurvitadhi, A. Boutros, H. Fan, C. Zeng,
J. Meng, K. H. Tsoi, X. Niu, and W. Luk, “Recurrent neural networks
with column-wise matrix–vector multiplication on FPGAs,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 2,
pp. 227–237, 2021.

[36] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized
neural network inference,” in Proceedings of the 2017 ACM/SIGDA
international symposium on field-programmable gate arrays, 2017, pp.
65–74.

[37] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran et al., “Fast inference
of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, p. P07027, 2018.

[38] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers, G. Di Guglielmo,
J. Duarte, P. Harris, D. Rankin, S. Jindariani, M. Liu et al., “Compressing
deep neural networks on FPGAs to binary and ternary precision with
hls4ml,” Machine Learning: Science and Technology, vol. 2, no. 1, p.
015001, 2020.

[39] Xilinx, “Vivado design suite user guide, high-level synthesis; 2020,”
UG902.

[40] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Performance
modeling and directives optimization for high-level synthesis on FPGA,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 7, pp. 1428–1441, 2019.

[41] A. Nitz, I. Harry, D. Brown, C. M. Biwer, J. Willis, T. D. Canton,
C. Capano, L. Pekowsky, T. Dent, A. R. Williamson, G. S. Davies,
S. De, M. Cabero, B. Machenschalk, P. Kumar, S. Reyes, D. Macleod,
F. Pannarale, dfinstad, T. Massinger, M. Tápai, L. Singer, S. Khan,
S. Fairhurst, S. Kumar, A. Nielsen, SSingh087, shasvath, I. Dorrington,
and B. U. V. Gadre, “gwastro/pycbc: Pycbc release v1.16.9,” Aug.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3993665

[42] LIGO Scientific Collaboration, “LIGO Algorithm Library - LALSuite,”
free software (GPL), 2018.

[43] D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong, “A hardware
Gaussian noise generator using the Box-Muller method and its error
analysis,” IEEE transactions on computers, vol. 55, no. 6, pp. 659–671,
2006.

[44] J. S. Malik and A. Hemani, “Gaussian random number generation: A
survey on hardware architectures,” ACM Computing Surveys (CSUR),
vol. 49, no. 3, pp. 1–37, 2016.

[45] Que, Zhiqiang and Liu, Shuo and Rognlien, Markus and Guo, Ce and
Coutinho, Jose G. F. and Luk, Wayne, “MetaML: Automating Cus-
tomizable Cross-Stage Design-Flow for Deep Learning Acceleration,”
in 2023 33rd International Conference on Field-Programmable Logic
and Applications (FPL), 2023, pp. 248–252.

Zhiqiang Que is a research associate in the depart-
ment of Computing, Imperial College London, UK.
He received his B.S in Microelectronics and M.S in
CS from Shanghai Jiao Tong University in 2008 and
2011, and the PhD from the Department of Com-
puting, Imperial College London, U.K. in 2023. He
worked on microarchitecture design and verification
of ARM CPUs with Marvell Semiconductor (2011-
2015) and low latency FPGA systems with CFFEX
(2015-2018). His research interests include computer
architectures, embedded systems, high-performance

computing and computer-aided design tools for hardware design optimization.

Minghao Zhang received the master’s degree from the Department of
Computing, imperial College London UK in 2022.

10

https://doi.org/10.5281/zenodo.3993665

Hongxiang Fan received the B.S. degree in elec-
tronic engineering from Tianjin University, Tianjin,
China, in 2017, and the M.Res. and D.Phil. de-
grees from the Department of Computing, Imperial
College London, London, U.K., in 2018 and 2022.
He is currently a research scientist at Samsung AI
Cambridge and an affiliated postdoctoral researcher
at the University of Cambridge. His current research
focuses on computer architecture, machine learning
and quantum computing.

He Li He Li holds a full professorship and serves
as the head of Circuits and Systems Department and
the head of Heterogeneous Intelligent and Quan-
tum Computing Lab in the School of Electronic
Science and Engineering, Southeast University as a
Professor. Before joining SEU, Dr. Li was a research
assocaite for quantum information at the Univeristy
of Cambridge, and a teaching staff at Trinity College
Cambridge. Before joining Cambridge, He received
the PhD degree at Imperial College London, 2020.
He serves on technical programme committees of

the top-tier EDA and reconfigurable computing conferences (DAC, IC- CAD,
ICCD, FCCM, FPL, FPT, ASP-DAC, ASAP and SOCC), and the editorial
board of Frontiers in Electronics. Dr. Li is the FPT’17 best paper presentation
award recipient. He serves as organisation committee members for multiple
IEEE/ACM international conferences.

Ce Guo Ce Guo is a Research Associate in Ac-
celerator Computing in the Department of Com-
puting at Imperial College London. His research
focuses on developing efficient computing systems
for large-scale temporal data analytics, agent-based
simulation, and causal structural learning. Ce holds a
master’s degree in Artificial Intelligence and a PhD
in Custom Computing, both from Imperial College
London.

Wayne Luk received the M.A., M.Sc., and D.Phil.
Degrees in Engineering and Computing Science
from the University of Oxford, Oxford, U.K. He is
a Professor of Computer Engineering with Imperial
College London, London, U.K. He was a Visiting
Professor with Stanford University, Stanford, CA,
USA. His current research interests include theory
and practice of customizing hardware and software
for specific application domains, such as multimedia,
networking, and finance.

11

	Introduction
	Background
	Variational Autoencoder
	Related Work

	Design, Optimizations and Implementations
	The overview of the VAE design
	Gaussian Sampling layer
	Pseudo Random Number Generator
	Gaussian Random Number Generator
	Quantization of the GRNG
	Layer-wise Architecture
	Parallelization

	Evaluation and Analysis
	Experimental Setup
	Resource Utilization
	Model Accuracy
	Performance of the Optimized GRNG
	Performance and Efficiency Comparison

	Conclusions and Future Work
	References
	Biographies
	Zhiqiang Que
	Minghao Zhang
	Hongxiang Fan
	He Li
	Ce Guo
	Wayne Luk

