
Lifecycle Management of Service-based Applications on
Multi-Clouds: A Research Roadmap

George Baryannis, Panagiotis Garefalakis, Kyriakos Kritikos, Kostas Magoutis,
Antonis Papaioannou, Dimitris Plexousakis and Chrysostomos Zeginis

Institute of Computer Science
Foundation for Research and Technology - Hellas

Vassilika Vouton, P.O. Box 1385, GR 711 10, Heraklion, Greece
{gmparg,pgaref,kritikos,magoutis,papaioan,dp,zegchris}@ics.forth.gr

ABSTRACT
In this paper we identify current challenges in the deploy-
ment of complex distributed applications on multiple Cloud
providers and review the state of the art in model-driven
Cloud software engineering. Challenges include lack of sup-
port for heterogeneous Cloud providers; limited matchmak-
ing between application requirements and Cloud capabili-
ties; lack of meaningful cross-platform Cloud resource de-
scriptions; lack of lifecycle management of Cloud applica-
tions; inadequate cross-layer monitoring and adaptation based
on event correlation; and others. In this paper we propose
solutions to these challenges and highlight the expected ben-
efits in the context of a complex distributed application.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems; H.3.5 [Information
Storage and Retrieval]: Online Information Systems—
Web-based services

Keywords
Cloud Computing, Multi-Clouds, Service Management

1. INTRODUCTION
Cloud computing is having a transformational effect on

enterprise IT operations, software engineering, service-oriented
computing, and society as a whole. Despite its undisputed
market traction, to this day there are a number of issues that
require solutions for Cloud computing to develop further [8].
In this paper we specifically focus on the need to break the
current lock-in experienced by application developers on the
Cloud provider they design for and deploy on, and to allow
them to simultaneously use (and seamlessly arbitrate be-
tween) several Cloud providers. We refer to this goal as the
Multi-Cloud approach. Our focus is holistic: namely, we
describe an end-to-end lifecycle management approach for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2050-4/13/04 ...$15.00.

Service-Based Applications (SBAs) and a research roadmap
for realizing it.

Application development for Cloud platforms today fol-
lows two main (often complementary) approaches: Com-
position and use of Software-as-a-Service (SaaS) instances
exported by providers such as Salesforce (CRM and ERM
applications), Google (Google Apps), etc.; and, development
of the application over middleware offered via Platform-as-
a-Service (PaaS) providers (such as Amazon Elastic Beans)
or at a lower level of abstraction, over Infrastructure-as-a-
Service (IaaS) providers (such as Amazon EC2 or Microsoft
Azure). In the former approach (Figure 1(a)), each SaaS
instance can be implemented and deployed over a differ-
ent Cloud provider, naturally supporting heterogeneity (al-
though at a fairly coarse level of granularity). In the latter
approach (Figure 1(b)), a SaaS instance is typically devel-
oped using model-driven software engineering methodologies
targeting individual Cloud providers. A problem with cur-
rent methodologies is that –although addressing portability
via the use of generic platform APIs such as jclouds – they
tie all Cloud resources (referred to as ResourceSets) to a
single Cloud provider and thus preclude deployment of the
application on multiple Cloud providers.

A key contribution of this paper is proposing extensions
to the above approaches to allow deployment of applications
over multiple, heterogeneous Cloud providers (as depicted
in Figure 1(c)). While offering more flexibility, certainly not
all applications are expected to benefit from it: applications
whose ResourceSets exhibit significant cross-talk could suffer
from excessive Internet charges and performance issues (high
latency, low bandwidth across Cloud providers). On the
other hand, decomposing complex applications at increas-
ingly coarser boundaries may eventually reach the service
interfaces between organizations, resembling the approach
of Figure 1(a). We thus believe that one needs to make a
careful decomposition of application components, at a lower
level than the service interfaces between organizations but
higher than software component interfaces involving tightly-
coupled resources in order for the design of Figure 1(c) to
make sense (more on that in Section 2). Reasoning about
effective Multi-Cloud deployment at this level requires cap-
turing component dependencies in application models.

There are several reasons justifying deployment of com-
plex applications on Multi-Clouds. For instance, an appli-
cation may have dependencies on software components or
services offered by different Cloud providers. In addition,
different components of an application may have different

13

(a) SaaS composition (b) Single-Cloud deployment (c) Multi-Cloud deployment

Figure 1: Cloud application development approaches

resource requirements that are best satisfied by different
Cloud providers. For instance, provider A may offer spe-
cialized VMs of a certain kind –e.g., featuring graphics ac-
celerators, solid-state storage devices, etc.– while provider B
may specialize in another –e.g., higher core-count or dynam-
ically reconfigurable VMs–. Cloud providers may also differ-
entiate on their offered cost for different types of resources
(e.g., CPU is cheaper on provider A while provider B deliv-
ers cheaper I/O throughput). Two components of the same
application may need to be deployed on different geograph-
ical zones for proximity, to stay local to these geographies
–data, sensors, etc.– or to minimize chances of catastrophic
failure [26]. In the latter case, an application provider typi-
cally deploys redundant parts of the application to different
Cloud providers. Generally, decomposition of a complex ap-
plication on Multi-Clouds may be either functional (different
parts of the application logic placed on different providers)
or data-driven (redundant functionality with state/data split
to different providers) or a combination of them.

The paper is organized as follows. Section 2 motivates our
work through a specific Multi-Cloud management scenario,
while also identifying the related challenges and research
issues. Section 3 offers a critical overview of the state of
the art for each activity of the model-driven Cloud-based
SBA lifecycle. Section 4 analyzes our proposed solution and
Section 5 concludes.

2. MOTIVATION
To motivate our work, we use the example of a service-

based application that predicts and controls traffic in ur-
ban areas. The application consists of three tasks (services)
shown in Figure 2: (a) the monitor/check task TM respon-
sible for collecting air pollution and traffic data from envi-
ronmental sensors deployed in urban areas, while also taking
into account the timing of special events such as high traffic
hours, etc.; (b) the assessment task TA gathers information
produced from TM and assesses the current and future sit-
uations and plans appropriate actions to manage traffic; (c)
the device configuration task TD is responsible for receiving
actions from TA and (re-)configures traffic control devices.

Tasks TM , TA, and TD are mostly self-contained. Infor-
mation is exchanged periodically (e.g., every hour) and low
response time in cross-task communication is not a priority.
TA requires high computation, availability and throughput,
whereas TM and TD do not. TM and TA require stor-

Figure 2: Multi-Cloud Traffic Management

age capacity while TD does not. TA has moderate storage
throughput capabilities since, while a high amount of infor-
mation is exchanged, this happens rather infrequently. Fi-
nally, TM and TD should be deployed geographically close to
the sensor infrastructure (the urban areas) while TA can be
deployed anywhere. Based on these characteristics, a Multi-
Cloud deployment can be created that places TM and TD

on a private/municipal Cloud (different instances of them in
different cities) close to the sensor infrastructure. The VMs
chosen can be of low computational power; TM however
should be coupled with a storage service. TA can be placed
in any Cloud that can provide high-computation VMs with
storage capacity at the best reliability/price ratio.

The process of mapping application requirements to the
appropriate Cloud infrastructures outlined above is also re-
ferred to as matchmaking, depicted in the diagram of Fig-
ure 3. In a Multi-Cloud scenario, keys to effective match-
making are the specification of application requirements, uni-
form (cross-Cloud) resource descriptions, and the exploita-
tion of semantics. The latter in particular can improve the
accuracy of matchmaking compared to syntactic, structural
description-based approaches [23]. Besides the initial SBA
deployment to multiple Cloud platforms, there is a need to
manage the application throughout its lifecycle via cross-

14

Figure 3: Lifecycle of Service-based Applications deployed on multiple Cloud infrastructures.

layer monitoring and adaptation. The rest of this section
describes our motivation to address problems in this space.

Requirements specification. A Multi-Cloud deploy-
ment of an application (as shown in Figure 1-(c)) is possible
when the resource requirements as well as the dependencies
between resources are clearly expressed. For example, de-
ploying all three tasks of our example application onto a
private/municipal Cloud is a feasible scenario; however, the
availability of cheap high-computational power VMs in a dif-
ferent Cloud is a preferable solution for deploying TA. This
Multi-Cloud solution is made possible not just by declaring
TA’s computational requirements but also by expressing the
low-bandwidth, high-latency dependency between TA and
the other two tasks. Thus, capturing dependencies (such
as the amount of communication between components, the
type of resource requirements, etc.) between application
components is key to enabling a Multi-Cloud setting.

Infrastructure Description. Heterogeneity in Multi-
Clouds requires that resources (e.g., VM types, storage, etc.)
across different Cloud infrastructures are expressed in a uni-
form, platform-independent manner. For example, the rela-
tion between a provider’s “medium” CPU instance to an-
other’s “medium” instance is not clear from the perspective
of our application. Modeling thus needs to go beyond simple
properties such as CPU speed offered by a VM, to a deeper
description of performance capabilities that make more sense
to applications while also allowing for comparisons across
Clouds. A few Cloud providers have defined their own met-
rics (Amazon EC2 units, Google Compute Engine units,
etc.); however these cannot readily extend to Multi-Cloud
units. There is a stronger disparity of descriptions across
vendors regarding quality of service (QoS) metrics, raising
the need for cross-platform specification of QoS capabilities.

Matchmaking. Current approaches to matching appli-
cation requirements with infrastructure offerings at appli-
cation deployment time face several challenges. They are
either completely manual, exposing a human administrator
to a potentially unmanageable space of possibilities, or when
attempting to automate a solution, they tend to oversimplify
the problem by degrading the specification of application re-
quirements to the level of resource descriptions. To achieve
a breakthrough, we need to use application requirements de-
scribed at a higher level than infrastructure offerings (e.g.
not resource-related but application-related conditions) and
to come up with cross-platform resource descriptions and
a general classification of them in a Multi-Cloud setting.

To achieve both, we need to introduce formal specifications:
formality in specifications, especially if combined with se-
mantics when necessary, is indispensable when attempting
to answer whether properties of a specification hold, in an
automated way. For instance, formalizing requirements as a
set of application-related conditions and following a similar
procedure for describing what a provider offers, one can use
verification techniques, constraint optimization, or mixed-
integer programming techniques, to answer whether a par-
ticular offering satisfies a requirement.

Monitoring and Adaptation. An important concern
for any Cloud-based application is to maintain its desired
level of service along its entire lifecycle. This can be achieved
by either setting up appropriate service-level agreements
(SLAs) with Cloud providers or by explicitly managing their
level of service through monitoring of the underlying in-
frastructure and adapting to changes to it. Leading Cloud
providers are just starting to roll out solutions in both areas
(see Section 3 for existing approaches), while most of the in-
dustry is still lagging behind. Looking forward, applications
designed for Multi-Cloud environments will be facing chal-
lenges stemming from the lack of uniform (cross-platform)
support for monitoring and adaptation solutions. Assum-
ing that these challenges are eventually met, a number of
other problems still need attention: (1) cross-layer (IaaS,
PaaS and SaaS) monitoring and alignment of the monitored
events; (2) cross-layer coordination of adaptation actions;
(3) proactive as well as reactive adaptation policies.

3. RELATED WORK
In this section we review related work following the gen-

eral structure of Figure 3. Several related approaches as-
cribe to model-driven software engineering (MDE) princi-
ples. MDE has received significant attention in recent years,
including in the context of Cloud computing [4, 22]. It of-
fers indisputable advantages for software development but
challenges as well. As pointed out in [18], MDE allows de-
velopers to work at higher levels of abstraction, improving
software quality, reducing complexity and facilitating reuse.
However, it is prone to redundancy issues and the fact that
updates in one model may affect other inter-related models
(the round-trip problem). In the context of Cloud comput-
ing, MDE involves defining Platform Independent Models
(PIMs) to describe the deployment of an application in the
Cloud, independent of specific Cloud realizations. Model

15

Figure 4: PIM4Cloud DSL Metamodel [11].

transformations can then result in Platform Specific Mod-
els (PSMs) that capture the details of actual deployment
environments.

With the advent of Cloud computing, the Software-as-a-
Service (SaaS) delivery model gained significant traction in
the software market and with it, the Service-Oriented Archi-
tecture (SOA) discipline received a significant boost. Effec-
tive development with SaaS and SOA technologies is driven
by modeling frameworks such as SoaML [6], a UML-based
language for specifying Service-Oriented Architectures, namely
defining components and their capabilities as well as com-
ponent dependencies at the business and service levels.

Requirements specification. Model-driven develop-
ment of service systems for Cloud platforms requires that
high-level specifications (e.g. SoaML) are transformed to
more concrete application models, independent of specific
Cloud platforms. Recent research in abstracting Cloud plat-
forms to PIMs has resulted in three interrelated metamodels
and languages, namely PIM4Cloud DSL [11], PIM4Cloud [5]
and CloudML1 [12]. PIM4Cloud DSL provides a way to
model software applications and their deployment require-
ments by employing a component-based approach (Figure 4).
While addressing basic deployment requirements, it does not
provide the ability to express formal, detailed resource re-
quirements (such as, minimum performance required) nor
semantic annotations; it also fails to capture dependencies
between resources (e.g. amount of communication).

Infrastructure Description. PIM4Cloud is another
platform independent language devoted to the modeling of
both private and public Cloud infrastructures through the
description of the resources exposed by these infrastructures
and required by a specific application. PIM4Cloud enables
the expression of the intent of a service model without cap-
turing its realization in a runtime framework. It can be
exploited in matchmaking scenarios involving the discovery
of a Cloud that offers the resources required by a specific
application. A limitation of PIM4Cloud however is that it
ignores other phases of an application’s lifecycle (Figure 3).
Additionally, its infrastructure descriptions are too low-level
(e.g., CPU frequency). Other approaches that model Cloud
infrastructure at the resource level are Cloudify [3] and Ama-
zon’s CloudFormation [1]. Cloudify offers advanced support
for application lifecycle management, while CloudFormation
is platform-specific. None of the aforementioned modeling
efforts support information inference via the use of formal
logic, which is a powerful tool for automated matchmaking.

1Note that CloudML is also the name of the Cloud modeling
language that is the focus of standardization efforts by sev-
eral new FP7 projects, such as PaaSage and MODAClouds.

Figure 5: CloudML Metamodel [12].

Matchmaking. CloudML is a domain-specific language
that supports matchmaking between deployment require-
ments and infrastructure descriptions. CloudML includes
a runtime that performs provisioning actions on the Cloud
provider deemed most suitable. As depicted in Figure 5, ap-
plication requirements are modeled as templates consisting
of nodes that need to be provisioned in the Cloud. Dur-
ing the provisioning process, an engine creates instances for
each node and attempts to find Cloud resources for each one
of them. Runtime instances follow the models@run.time [9]
approach, which allows the user to query their status or
any other runtime-related information. Once provisioning
is completed and all runtime instances have started, de-
ployment can be performed. Just like PIM4Cloud DSL,
CloudML does not support Multi-Cloud provisioning: a sin-
gle application cannot be spread across multiple providers.
Finally, CloudML node models are characterized by sim-
ple textual descriptions of RAM, CPU, disk and location
properties and thus cannot support advanced reasoning for
Multi-Cloud cross-platform provisioning decisions.

An interesting approach to matchmaking Cloud services
based on application requirements, focusing solely on Cloud
storage services has been proposed by Alvarez et al. [24].
This work proposes an XML-based language to describe the
storage capabilities of Cloud services and requirements of
user applications. Apart from the selection of Cloud storage
services, this work shows how to estimate the cost savings
from switching between different Cloud storage services as
well as the evolution over time of cost and storage perfor-
mance. Garg et al. [17] propose a framework for ranking
Cloud services based on their performance on QoS properties
and the weights given to these properties, by exploiting an
Analytical Hierarchy Process (AHP)-based algorithm. Zeng
et al. [31] propose a Wordnet-based matching algorithm that
considers the semantic similarity of the concepts mapping
to the I/O parameters of the services. Finally, Buyya et
al. [13] propose the federated Cloud computing environment
to match user-provided QoS targets (as well as energy man-
agement goals) to appropriate Cloud services. Matchmaking
and selection of PaaS services is proposed by D’Andria et
al. [14]. Their algorithm searches among available PaaS of-
ferings and ranks them based on the number of satisfied user
preferences. The ranking technique employed currently does
not take into consideration service semantics or weighting of
the search criteria, returning all compatible platforms to the
end user. Garćıa-Gómez et al. [16] perform matchmaking via
the use of blueprints. In their approach, requirements con-

16

tained in an input blueprint are compared against existing
blueprints in a repository, producing a set of alternative Ab-
stract Resolved Blueprints (ARBs). Each ARB is a possible
combination of blueprints constituting a Cloud application.

Cloud Abstraction Layers. Employing a Cloud ab-
straction layer eases application portability across Cloud
platforms by allowing users to manipulate virtual machines
as objects. A variety of libraries such as jclouds (www.
jclouds.org) and Apache libcloud (libcloud.apache.org) can
abstract away the differences among Cloud providers. They
provide a Cloud abstraction API that works as a wrapper
around a number of Cloud provider APIs. Jclouds and lib-
cloud are the most popular solutions, each supporting over
30 different Cloud providers and software stacks. They con-
sist of multiple, relatively self-sustained components that
expose a simple API. There is significant similarity in the
terminology and models used across these libraries.

Monitoring and Adaptation. A prime example of
Cloud monitoring services is Amazon’s CloudWatch, which
provides support for Amazon Web Services (AWS) produc-
tion services as well as custom data. Production services au-
tomatically push metrics to CloudWatch; in addition, users
can manually define custom metrics and calculate statistics.
The available metrics can be considered adequate for of-
fering applications a view of their operation. The custom
metrics, possibly derived from available CloudWatch met-
rics, can also cater for the measurement of important miss-
ing parameters in application requirements. For example,
service availability can be calculated based on the number
of successful invocations. CloudWatch was recently enriched
with an alarm feature that informs users of metric violations.
Unfortunately, the current solutions in the Cloud space do
not provide any uniform way for measuring metrics. While
some providers (e.g., Eucalyptus, GreenQloud) exploit the
Amazon API, there are various others using different metrics
and/or metric measurements, creating the need for metric
alignment and mapping. PaaS monitoring discussed in [14]
considers latency and throughput metrics. Adaptation poli-
cies are currently mostly handled explicitly by applications.
When this is not an option, applications can opt for guar-
anteed service levels via Service-Level Agreements (SLAs)
with Cloud providers. Unfortunately, SLA management in
Cloud computing is still at a primitive stage and supported
by few providers. Thus, Cloud abstraction layers are far
from including SLA management among their operations.

Application Lifecycle. A modeling approach must ad-
dress the complete Cloud application lifecycle through ap-
propriate processes and plans. TOSCA [10] is such a recent
specification language, derived from a long line of work in
software provisioning, deployment and management of dis-
tributed services. TOSCA is a middle-level language for the
specification of the topology and orchestration of an IT ser-
vice in the form of a service template. The language focuses
on the semi-automatic creation and management of an IT
service independent of any Cloud providers. The manage-
ment of an IT service is achieved through the specification
and execution of process models (BPMN, BPEL), which de-
fine an orchestration of services. Three types of plans are
envisioned: build and termination plans associated to the
deployment and termination of an IT service as well as mod-
ification plans associated to the IT service management. In
a Cloud computing context, TOSCA requires mapping to
models expressing Cloud notions. Such a mapping could

be performed through a model transformation to a domain-
specific Cloud-based language, such as PIM4Cloud. Issues
such as matchmaking resources to application requirements
and supporting non-functional services aspects are consid-
ered as falling under the domain-specific model that TOSCA
maps to and thus are not explicitly modeled by it.

Another approach to support the lifecycle of SBAs over
different Cloud providers is brokerage. Existing Cloud bro-
kers include CompatibleOne (www.compatibleone.org), Jam-
Cracker (www.jamcracker.com/jamcracker-platform), and Du-
raCloud (www.duracloud.org). While these brokers support
the deployment of applications in a variety of Clouds, they
either do not support multi-Cloud deployments or concen-
trate on specific application types or services (e.g., storage).

4. PROPOSED SOLUTIONS
Application Lifecycle. To address the full lifecycle of

complex SBAs we propose to unify TOSCA topology and
orchestration specifications with existing Cloud service de-
scription languages. This integration will combine the gen-
erality of addressing multiple Cloud domains with the ability
to support complete Cloud services lifecycle management via
BPMN/BPEL workflows. We propose that the unified ap-
proach be logic-based, expressing requirements and capabil-
ities as a set of predicate constraints that impose conditions
on the application deployment. The names for predicate
constraints and attributes could be derived from a common
vocabulary, defined as a set of ontologies for Cloud-based de-
ployment. Semantic annotation through ontologies provides
a shared understanding of domain concepts [7] and facilates
the expression of requirements for the wide range of SBAs
that can be deployed in the Cloud and the description of
different infrastructure solutions and their capabilities.

Infrastructure description. We aim for modeling and
analyzing the performance of a Cloud-provided VM at a
level of description higher than the bare-hardware, enabling
cross-platform comparisons of Cloud resources. Our moti-
vation is similar to that behind the traditional use of bench-
marking to set a baseline for comparing computer architec-
tures [2]. Thus we use a broad set of benchmarks to build
a multi-dimensional profile of the performance of a VM. We
focus on four areas: CPU, disk, memory as well as over-
all system performance. Each benchmark is classified into
a group associated with one of the areas above. We cre-
ate a vector-based performance profile of each VM, drawing
from previous work in the area of application-specific bench-
marking [29]. The VM profile consists of four vectors used
to represent the set of results of each benchmark group. We
believe that this vector-based technique is key to providing
a meaningful way of comparison between VMs.

The first group of benchmarks focuses on CPU perfor-
mance. A parameter in such benchmarks is their stress on
parallelism (ability to utilize multiple cores). While we as-
sign a higher weight to benchmarks that exploit parallelism,
we note that their applicability depends on the degree of
concurrency available in the application. The second set of
benchmarks focuses on disk I/O performance for both re-
mote and local storage options, where available. In most
cases, remote storage systems provide more durability and
availability of data as they can survive a VM failure. In
contrast, data in a local storage system live as long as the
VM is running, but such solutions offer higher throughput
at lower cost. We focus on measuring the throughput and

17

latency characteristics of the underlying storage system in
all cases. The third group of benchmarks focuses on memory
I/O, a metric of interest for applications that involve heavy
data movement. While memory size is a key aspect, memory
throughput can also affect system performance. The fourth
group consists of higher-level application benchmarks such
as SPECjvm2008 [28] and Unixbench [27] that can charac-
terize the overall system performance. These benchmarks
combine multiple tests that examine various aspects of sys-
tem performance, in particular CPU and memory properties.

To allow a cross-platform categorization of resources to
different classes of service (”small”, ”medium”, ”large”, and
possibly others) for different resource types, we use cluster-
ing techniques to separate VM instances of different providers.
We use the k-means [20] clustering method for the bench-
mark results of each VM aspect. Alternatively, we offer a
cost-normalized view of resources by taking monetary cost
into account. Based on the VM performance profiles derived,
we use a logic-based formal specification language to de-
scribe infrastructure offerings. For instance, a VM support-
ing multi-core processing, offering high CPU performance,
and employing a remote storage system is described as:

CPUCores(VM,many) ∧ CPUPerformance(VM, high)
∧ Storage(VM, remote)

Requirements specification. We propose to extend
existing application deployment models (Section 3) in two
directions. First, we consider the explicit modeling of com-
ponent and resource dependencies as key to reasoning about
Multi-Cloud deployments. These dependencies can be ei-
ther described by an expert or discovered by a dependency
discovery system [21]. We also propose incorporating in
the models certain aspects of component behavior (such
as use of concurrency, need for persistence, etc.). Second,
we propose to align application requirements with infras-
tructure descriptions by expressing the former as a set of
predicate constraints that impose conditions on the appli-
cation deployment. Table 1 depicts an encoding in logic
of the requirements expressed for the Traffic Management
example of Section 2. Requirement 1 expresses the fact
that TA has high computation demands. Optionally, we
could express the fact that the task is highly concurrent,
via Parallelism(TA, high). Requirements 2 and 3 refer to
a software component (an Enterprise Java Bean) of a task.
References to the quality of resources required, expressed as
“high”, “medium”, “low”, etc., imply a cross-platform mech-
anism to classify resources as such, as was described for our
infrastructure description methodology. Another way to as-
sign a meaning to “high” is by comparing it to a deployment
history (i.e., “higher” compared to the resource used in exe-
cution of “1-FEB-2013-12:47”) of the same application or of
applications that are deemed similar based on some defined
patterns [15]. Finally, under an “expert” mode, a developer
should be allowed to express the exact requirements of their
application, in relation to a particular benchmark, e.g.

Throughput(TA, EJBx, > 80 in SPECjvm2008-Derby).

It should be stressed that the requirements expressed here
are closely related to the infrastructure description approach
described earlier and at a lower level than goals defined in
Service-Level Agreements (SLAs). Such requirements can
be expressed directly by the application developer and also

Table 1: Traffic Management requirements
Task Requirements

Nat. Language Logic
1 TA high computation CPUPerformance(TA, high)

2 TA high availability Availability(TA , EJBx, high)

3 TA high throughput Throughput(TA, EJBx, high)

4 TM low computation CPUPerformance(TM , low)

5 TD low computation CPUPerformance(TD, low)

6 TA persistent storage DiskStorage(TA, persistent)

7 TA
moderate disk

DiskThroughput(TA, medium)
throughput

8 TM non-persistent storage DiskStorage(TM , nonpersist)

9
TM geographically close Proximity(TM , TD, high)
TD

Table 2: Traffic Management deployment rules
Rule

1
Parallelism(Tx, high) ⇐

Deploy(Tx, V M) ∧ CPUCores(VM,multiple)

2
DiskStorage(Tx, persistent) ⇐

Deploy(Tx, V M) ∧ Storage(VM, remote)

3
DiskStorage(Tx, nonpersist) ⇐

Deploy(Tx, V M) ∧ Storage(VM, local)

4
Proximity(Tx, Ty, high) ⇐

Deploy(Tx, V M1) ∧Deploy(Ty, V M2)∧
Host(VM1, Cloudx) ∧Host(VM2, Cloudx)

5
Throughput(Tx, EJBy , high) ⇐

Deploy(Tx, V M) ∧ CPUPerformance(VM, high)

derived indirectly from application attributes (e.g. concur-
rency or functional characteristics).

Matchmaking. Combining formal application require-
ments with the infrastructure descriptions/capabilities pro-
posed is the basis for a powerful matchmaking process, as
shown in Figure 6. A detailed specification of requirements
(such as the one presented earlier) is given as input to the
matchmaker engine, which also accesses infrastructure de-
scriptions through a knowledge base. Constraint satisfaction
rules, stored in a rule base, are employed in order to match
requirements with existing infrastructure offerings, result-
ing in one or more proposed plans for deployment. Table 2
shows some example rules that guide the matchmaking pro-
cess for the example of Figure 2. Rule 1 expresses the fact
that a highly-concurrent task should be deployed in a VM
supporting multiple cores. Rules 2 and 3 choose remote or
local storage systems depending on the persistence require-
ments of a task. Rule 4 deploys two tasks in VMs hosted
by the same Cloud provider, when they are required to be
tightly coupled (such as TM and TD in our example).

Such rules can either be expressed by deployment experts
or result from learning processes based on the deployment
history of the application (or similar applications). Based
on the use of such rules and due to the need for solving
an optimization problem, we follow a constraint logic pro-
gramming approach to matchmaking which simultaneously
considers the optimization of many objectives and provides
the best (deployment) solution even when the requirements
posed are over-constrained. To enable the most suitable and
fair ranking of the deployment solution we will consider ex-
ploiting the AHP process to indicate the relative importance

18

Figure 6: Matchmaking process.

of the optimization criteria as well as particular utility func-
tions for uniformly normalizing the values of these criteria.

Rule-based reasoning techniques are often associated with
high computation complexity or issues of looping and/or
contradicting rules. We expect the computation complexity
of our approach to be moderate, given the fact that rules
correspond to the limited number of dimensions expressed
in infrastructure descriptions. Looping cases are improba-
ble, given the fact that the heads and bodies of rules al-
most always would refer to different entities (application
requirements and infrastructure features respectively). Fi-
nally, contradiction can only be imagined when there is a
cost-related rule (e.g. low cost requirement contradicting
high CPU performance), which can be solved by imposing
an ordering between rules based on the user’s preferences.

Monitoring and Adaptation. We plan to extend pre-
vious work on cross-layer event-based monitoring and adap-
tation of SBAs [30] to all three layers (SaaS, PaaS, IaaS) of
a Multi-Cloud environment. This framework guarantees the
correct and timely ordering of the delivered events, by ex-
ploiting distributed time protocol algorithms. Events span
both functional and non-functional service aspects and can
lead to the detection of a particular root problem through
the exploitation of component/service dependencies andmet-
ric derivation trees (MDTs). MDTs explain how a high-level
metric (e.g., the parent) is measured through mathemati-
cal formulas applied to lower-level metrics (MDT children)
which can in turn be measured based on further lower level
metrics. In this way, the root of an MDT is eventually mea-
sured based on all metrics residing at the leaf level. Besides
the measurement of QoS parameters and subsequent evalu-
ation of application requirements, they can also be used to
detect which low-level metrics are to blame for the violation

of a specific requirement. MDTs can also be used to define
and measure (previously non-existing) QoS metrics through
existing lower-level metrics in a specific infrastructure. For
instance, if the unavailable metric A can be computed from
metrics B and C, while the unavailable metric C can be
computed from the available metrics D and E, then even-
tually metric A will be computed based on metrics B, D,
and E. We plan to extend this framework to define ser-
vice/component dependencies and MDTs in Multi-Clouds.

The framework forms event-to-action correlation rules [25]
by capturing event patterns and mapping them to particular
adaptation actions using rule derivation techniques. This
approach to adaptation can be exploited in Multi-Clouds
by mapping cross-layer and cross-platform event patterns
(e.g., an event at one IaaS provider may cause an event
at a different PaaS provider) to suitable adaptation strate-
gies. For instance, an event detected by monitoring indi-
cates that the storage volume on which TA depends per-
forms at a lower data rate than the resource’s description.
This change means that task TA’s throughput requirement
Throughputdisk(TA,medium) is no longer satisfied. Based
on our event history, we anticipate that such a violation
reduces the availability of the EJB component (increase in
failed/aborted transactions) of the task. A pattern is thus
detected, comprising these two events and immediately af-
ter the occurrence, a failover with minimum downtime is
performed (e.g. switch TA to a backup VM). This is an ex-
ample of proactive adaptation to reduce the unavailability
of a higher-level service. This behavior is encoded in the
following Condition-Action rule:

¬DiskThroughput(TA, medium)∧¬DiskThroughput(TA, high)

∧¬Availability(TA , EJBx, high) → Failover(TA)

By moving TA to a healthy VM, we reduce the probabil-
ity that the high availability requirement of the EJB is vio-
lated. Our proposed monitoring and adaptation actions for
Multi-Clouds can be described through process plans similar
to the ones supported by TOSCA. In this way, our frame-
work uniformly covers provisioning and adaptation of SBAs
throughout their lifecycle.

Besides adaptation, the need to re-define application re-
quirements (as they may have been underestimated) or to
re-provision resources (as the initial provisioning may not be
meeting requirements) is a key lifecycle management task,
as depicted in Figure 3. For example, if a throughput re-
quirement is frequently violated, there is a need to either
increase application requirements or upgrade resources to-
wards higher performance. Our adaptation framework sup-
ports re-design by maintaining the history of adaptation ac-
tions and informing the user when their frequency exceeds a
specific threshold or when there is a change in the Cloud ser-
vice space (e.g., a storage service satisfying the user-provided
requirements is not available any more) which may lead to
repeated execution of particular adaptation actions.

Finally, in a Multi-Cloud monitoring system, in addition
to establishing a common vocabulary using ontologies, it is
necessary to correlate different but related terms used in
specifications of requirements and capabilities. For exam-
ple, differently defined but equivalent or related QoS metrics
may be measuring the same QoS parameter. In the former
case, we plan to use QoS metric matching algorithms [19]
to align requirement and capability specifications. For re-
lated QoS metrics, such as metrics of average and minimum
availability, we can define a comparison operator indicating

19

that minimum availability is less than equal to the aver-
age one. Such relations, expressed through rules, establish
connections between specifications containing such metrics,
thus enabling previously not possible matchmaking.

5. CONCLUSIONS
In this paper we described a research roadmap for ad-

dressing current challenges in the lifecycle management of
service-based applications on Multi-Clouds. Key elements
of this roadmap are: extensions to current Cloud models to
capture dependencies and behavioral attributes; use TOSCA
to tie several Cloud-specific models together and to connect
with workflows; using a logic-based approach expressing re-
quirements and capabilities as a set of predicate constraints;
supporting matchmaking via a constraint logic programming
approach; and realize cross-layer and cross-platform moni-
toring and adaptation. We believe these are key challenges
to address on the road to realize Multi-Cloud platforms.

6. ACKNOWLEDGMENTS
We thankfully acknowledge the support of the PaaSage

(FP7-317715) EU project.

7. REFERENCES
[1] AWS CloudFormation.

http://aws.amazon.com/cloudformation.

[2] Cloud Harmony.
http://cloudharmony.com/benchmarks.

[3] Cloudify. http://www.cloudifysource.org/.

[4] CloudMDE 2012 Workshop (collocated with
ECMFA’12, Copenhagen), 2-5 July, 2012.

[5] REMICS Deliverable D4.1: PIM4Cloud.
http://www.remics.eu/system/files/REMICS
D4.1 V2.0 LowResolution.pdf, 2012.

[6] Service Oriented Architecture Modeling Language
(SoaML). http://www.omg.org/spec/SoaML/, 2012.

[7] G. Antoniou and F. van Harmelen. A Semantic Web
Primer, chapter 1, pages 10–13. MIT Press,
Cambridge, MA, 2008.

[8] M. Armbrust et al. A View of Cloud Computing.
Commun. ACM, 53(4):50–58, Apr. 2010.

[9] U. Aßmann, N. Bencome, B. H. C. Cheng, and R. B.
France. Models@run.time (dagstuhl seminar 11481).
Technical Report 11, Dagstuhl Reports, 2011.

[10] T. Binz, G. Breiter, F. Leymann, and T. Spatzier.
Portable Cloud Services Using TOSCA. IEEE Internet
Computing, 16(3):80–85, 2012.

[11] E. Brandtzæg, M. Parastoo, and S. Mosser. Towards a
Domain-Specific Language to Deploy Applications in
the Clouds. In Third International Conference on
Cloud Computing, GRIDs, and Virtualization(CLOUD
COMPUTING), pages 213–218, Nice, 2012.

[12] E. Brandtzæg, M. Parastoo, and S. Mosser. Towards
CloudML, a Model-based Approach to Provision
Resources in the Clouds. In H. Störrle, editor, 8th
European Conference on Modelling Foundations and
Applications (ECMFA), pages 18–27, 2012.

[13] R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud:
Utility-Oriented Federation of Cloud Computing
Environments for Scaling of Application Services. In
ICA3PP, LNCS, pages 13–31. Springer, 2010.

[14] F. D’Andria, J. Gorroñogoitia Cruz, J. Ahtes,
S. Bocconi, and D. Zeginis. Cloud4SOA: Multi-Cloud
Application Management Across PaaS Offerings. In
MICAS, 2012.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
Cambridge, MA.

[16] S. Garćıa-Gómez et al. Challenges for the
comprehensive management of Cloud Services in a
PaaS framework. Scalable Computing: Practice and
Experience, 13, 2012.

[17] S. K. Garg, S. Versteeg, and R. Buyya. SMICloud: A
Framework for Comparing and Ranking Cloud
Services. In UCC, 2011.

[18] B. Hailpern and P. L. Tarr. Model-driven
development: The good, the bad, and the ugly. IBM
Systems Journal, 45(3):451–462, 2006.

[19] K. Kritikos and D. Plexousakis. Semantic QoS Metric
Matching. In ECOWS, pages 265–274, Zurich,
Switzerland, 2006. IEEE Computer Society.

[20] J. MacQueen. Some Methods for Classification and
Analysis of Multivariate Observation. In Proc. of 5th
Berkeley Symposium on Mathematical Statistics and
Probability. University of California Press, 1967.

[21] K. Magoutis, M. Devarakonda, N. Joukov, and
N. Vogl. Galapagos: Model-Driven Discovery of
End-to-End Application-Storage Relationships in
Distributed Systems. IBM Systems Journal,
52(4/5):367–378, 2008.

[22] B. Nagel et al. Model-driven Specification of Adaptive
Cloud-based Systems. In Proc. of 1st Workshop on
Model-Driven Engineering for High Performance and
Cloud Computing, 2012.

[23] P. Plebani and B. Pernici. URBE: Web Service
Retrieval Based on Similarity Evaluation. IEEE
Transactions on Knowledge and Data Engineering,
21(11):1629–1642, 2009.

[24] A. Ruiz-Alvarez and M. Humphrey. An Automated
Approach to Cloud Storage Service Selection. In
ScienceCloud, San Hose, CA, USA, 2011. ACM.

[25] S. Sarkar, R. Mahindru, R. A. Hosn, N. Vogl, and
H. V. Ramasamy. Automated incident management
for a platform-as-a-service cloud. In Hot-ICE, 2011.

[26] J. Schectman. Netflix Amazon Outage Shows Any
Company Can Fail.
http://blogs.wsj.com/cio/2012/12/27/netflix-amazon-
outage-shows-any-company-can-fail.

[27] I. Smith. UnixBench.
http://code.google.com/p/byte-unixbench/.

[28] SPEC. Java virtual machine benchmark 2008.
http://www.spec.org/jvm2008/.

[29] Xiaolan Zhang. Application-Specific Benchmarking.
PhD thesis, Harvard University.

[30] C. Zeginis, K. Konsolaki, K. Kritikos, and
D. Plexousakis. Towards Proactive Cross-Layer
Service Adaptation. In WISE, pages 704–711, 2012.

[31] C. Zeng, X. Guo, W. Ou, and D. Han. Cloud
Computing Service Composition and Search Based on
Semantic. In CloudCom, LNCS. Springer, 2009.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

