
Using AutoMed Metadata in Data Warehousing
Environments

Hao Fan, Alexandra Poulovassilis
School of Computer Science and Information Systems

Birkbeck College, University of London {hao, ap@dcs.bbk.ac.uk}

ABSTRACT
What kind of metadata can be used for expressing the mul-
tiplicity of data models and the data transformation and in-
tegration processes in data warehousing environments? How
can this metadata be further used for supporting other data
warehouse activities? We examine how these questions are
addressed by AutoMed, a system for expressing data trans-
formation and integration processes in heterogeneous database
environments.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data models, Normal forms, Schema
and subschema

General Terms
Design

Keywords
Metadata, Data warehouse, Data integration

1. INTRODUCTION
Metadata is essential in data warehouse environments since

it enables activities such as data integration, data transfor-
mation, OLAP and data mining. Typically, the metadata
in a data warehouse includes information about both data
and data processing. The former includes the schemas of the
data sources, warehouse and data marts, ownership of the
data, time information etc. The latter includes rules for data
extraction, cleansing and transformation, data refresh and
purging policies, the lineage of migrated and transformed
data etc.
Up to now, in order to transform and integrate data from

heterogeneous data sources, a conceptual data model (CDM)
has been used. For example, [16, 5] use a dimensional model;
[4, 1, 19, 12] use an ER model, or extensions of it; [20] uses a
multidimensional CDM called MAC; [10] describes a frame-
work for data warehouse design based on its Dimensional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
DOLAP’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011 ...$5.00.

������� ���
	� ���

	 � � �� � � ���
	 � � �� � � ���

	 � � �� � � ���

��� � � � � � � ��� � � � � � ���� � � � � � �

� � �� � �� � �

� � � � � � � � � � � � ���

������� ���
	
� ���

!#" � � �$� � �%� � � & � � � �� � � ���

� � � � � � � � � � � � �$�

!�" � � �$�
���
	� � � ���

!�" � � �$� ���
� � � �$�

�D��&'0�)UDPHZRUN �%��$XWR0HG�)UDPHZRUN

��� � � � � � ���� � � � � � ���� � � � � � �

Figure 1: Frameworks of Data Integration

Fact Model; [21] presents a conceptual model and a set of ab-
stract transformations for data extraction-transformation-
loading (ETL); and [11] adopts the relational data model
as the CDM. All these approaches assume a single CDM
for the data transformation/integration — see Figure 1(a).
Each data source has a wrapper for translating its schema
and data into the CDM. The integrated schema is then de-
rived from these CDM schemas by means of view definitions,
and is expressed in the same modelling language as them.
AutoMed is a data transformation and integration sys-

tem which adopts a low-level hypergraph-based data model
(HDM) as its common data model[14, 15]1. So far, research
has focused on using AutoMed for virtual data integration.
This paper describes how AutoMed can also be used for
materialized data integration.
Using AutoMed for materialised data integration, the data

source wrappers translate the source schemas into their equiv-
alent specification in terms of AutoMed’s low-level HDM —
see Figure 1(b). AutoMed’s schema transformation facilities
can then be used to incrementally transform and integrate
the source schemas into an integrated schema. The inte-
grated schema can be defined in any modelling language
which has been specified in terms of AutoMed’s HDM. We
will examine in this paper the benefits of this alternative
approach to data transformation/integration in data ware-
housing environments.
Section 2 gives an overview of the AutoMed framework, to

the level of detail necessary for our purposes here. Section
3 shows how AutoMed metadata has enough expressivity to
describe the data integration and transformation processes
in a data warehouse. Section 4 discusses how the AutoMed
metadata can be used for some key data warehousing ac-
tivities. Section 5 discusses the benefits of our approach.

1See http://www.doc.ic.ac.uk/automed for a full list of
technical reports and papers relating to AutoMed.

Section 6 gives our concluding remarks and directions of
further work.
An earlier paper [18] proposed using the HDM as the com-

mon data model for both virtual and materialised integra-
tion, and a hypergraph-based query language for defining
views of derived constructs in terms of source constructs.
However, that paper did not focus on expressing data ware-
house metadata, or on warehouse activities such as data
cleansing or populating and maintaining the warehouse.

2. AUTOMED
The basis of AutoMed is the HDM data model. An HDM

schema consists of a set of nodes, edges and constraints,
and so each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes,
edges and constraints. For any modelling languageM spec-
ified in this way (via the API of AutoMed’s Model Defi-
nitions Repository), AutoMed automatically provides a set
of primitive schema transformations that can be applied to
schema constructs expressed in M. In particular, for ev-
ery construct of M there is an add and a delete primitive
transformation which (conceptually) add to, or delete from,
the underlying HDM schema the corresponding set of nodes,
edges and constraints. For those constructs ofM which have
textual names, there is also a rename primitive transforma-
tion.
In AutoMed, schemas are incrementally transformed by

applying to them a sequence of primitive transformations
t1, . . . , tr. Each primitive transformation ti makes a ‘delta’
change to the schema by adding, deleting or renaming just
one schema construct. Thus, intermediate schemas may con-
tain constructs of more than one modelling language.
Each add or delete transformation is accompanied by a

query specifying the extent of the new or deleted construct
in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language, IQL2.
Also available are contract and extend transformations which
behave in the same way as add and delete except that they
indicate that their accompanying query may only partially
construct the extent of the new/removed schema construct.
Moreover, their query may just be the constant Void, indi-
cating that the extent of the new/removed construct cannot
be derived even partially, in which case the query can be
omitted.
We term a sequence of primitive schema transformations

from one schema S1 to another schema S2 a transformation
pathway from S1 to S2, denoted S1 → S2. All source, inter-
mediate and integrated schemas, and the pathways between
them, are stored in AutoMed’s Schemas & Transformations
Repository. The queries present within transformations that
add or delete schema constructs mean that each primitive
transformation has an automatically derivable reverse trans-
formation. In particular, each add/extend transformation is
reversed by a delete/contract transformation with the same
arguments, while each rename transformation is reversed by
swapping its two arguments.
Once a set of source schemas S1, . . . , Sn have been in-

tegrated into an integrated schema S by means of a set of
pathways, we will see in Section 4.1 how these pathways can

2IQL is a comprehensions-based functional query language.
Such languages subsume query languages such as SQL and
OQL in expressiveness [3].

be used for populating S if it is going to be a materialised
schema.
If S is a virtual schema, then view definitions defining its

constructs in terms of the constructs of S1, . . . , Sn can au-
tomatically be derived from the pathways, and in particular,
from the add, extend and rename steps within them. This
is done by traversing the pathways S1 → S, . . . , Sn → S

backwards from S down to each Si (see [13]). These view
definitions can then be used for global query processing by
substituting them into queries expressed over the integrated
schema in order to reformulate them into queries expressed
on the source schemas.

2.1 Representing a Multidimensional Model
Previous work has shown how conceptual modelling lan-

guages such as relational, ER, UML and XML can be repre-
sented in terms of the HDM. Here we illustrate how a simple
multidimensional data model can be represented.
An HDM schema is a triple (Nodes, Edges, Constraints).

Nodes and Edges define a labelled, directed, nested hy-
pergraph. It may be ‘nested’ in the sense that edges can
link any number of both nodes and other edges. A query
q over a schema is an expression whose variables are mem-
bers of Nodes ∪ Edges. Constraints is a set of boolean-
valued queries over the schema which are satisfied by all
instances of the schema. Nodes are uniquely identified by
their names. Edges and constraints have an optional name
associated with them. Edges need not be uniquely named
within an HDM schema but are uniquely identified by the
combination of their name and the components they link.
The constructs of any higher-level modelling languageM

may be nodal, linking, nodal-linking or constraint constructs
(see [14]), or possibly a combination of these. The scheme of
a construct (delimited by double chevrons) uniquely identi-
fies it within a schema. Our simple multidimensional data
model has four basic modelling constructs: Fact, Dim (di-
mension), Att (non-key attribute) and Hierarchy; for sim-
plicity, we model a measure as any other non-key attribute.
Fact and Dim are nodal, Att is nodal-linking, and Hierarchy
is a constraint:

Dimensional Construct HDM Representation
construct: Fact
class: nodal node: ¿ RÀ
scheme: ¿ R, k1, . . . , kn À
construct: Dim
class: nodal node: ¿ RÀ
scheme: ¿ R, k1, . . . , kn À
construct: Att
class: nodal-linking node: ¿ R : aÀ
scheme: ¿ R, aÀ edge: ¿ , R, R : aÀ
construct: Hierarchy constraint:
class: constraint [xi|(x1, . . . , xn)
scheme: ¿ R, R′, ki, k

′

j À ←¿ R, k1, . . . , kn À] ⊆
[yj |(y1, . . . , ym)
←¿ R′, k′

1, . . . , k
′

m À]

We see that a fact or dimension table R with primary
attributes k1, . . . , kn (n ≥ 1) is uniquely identified by the
scheme¿ R, k1, . . . , kn À. This translates in the HDM to a
nodal construct¿ RÀ the extent of which is the projection
of the table R onto its primary key attributes k1, . . . , kn.
Each non-key attribute a of a fact or dimension table R is

uniquely identified by the scheme¿ R, aÀ. This translates
in the HDM into a nodal-linking construct comprising a new
node ¿ R : a À and an edge ¿ , R, R : a À. The extent
of the edge is the projection of table R onto k1, . . . , kn, a.

Hierarchy constructs reflect the relationship between a pri-
mary key attribute ki in a fact table R and its referenced
foreign key attribute k′

j in a dimension table R′, or between
a primary key attribute in a dimension table R and its ref-
erenced foreign key attribute in a sub-dimension table R′.

3. EXPRESSING DATA WAREHOUSE SCH-
EMAS AND TRANSFORMATIONS

':6

�������

� �����

� �����

� �����

	����

	 ���

	 ���

	 ���

�
�
�

�
� �

�
���

�
���

� ���

� ���

���

� ��

� � �

� � �

� � �

� ���

�������

7UDQVIRUPLQJ
6LQJOH�6RXUFH

&OHDQLQJ

0XOWL�6RXUFH

&OHDQLQJ
,QWHJUDWLQJ 6XPPDUL]LQJ

����� �

��� ���

&UHDWLQJ�'DWD

0DUWV

':6� 'DWD�:DUHKRXVH�6FKHPD

'6� 'HWDLOHG�6FKHPD

69� 6XPPDU\�9LHZ

'06� 'DWD�0DUW�6FKHPD

'66� 'DWD�6RXUFH�6FKHPD

76� 7UDQVIRUPHG�6FKHPD

66� 6LQJOH�&OHDQHG�6FKHPD

06� 0XOWL�&OHDQHG�6FKHPD

Figure 2: Data Transformation and Integration

Figure 2 illustrates the data transformation and integra-
tion process in a typical data warehouse. Generally, the
ETL process includes extracting and transforming data from
the data sources, and loading the transformed data into the
warehouse schema. In this paper we assume that data ex-
traction has already happened i.e. that all the ‘data sources’
are local copies of data extracted from remote data sources.
Thus, the data transformation/integration process is divided
into the six stages shown in Figure 2: transforming, single-
source cleansing, multi-source cleansing, integrating, sum-
marizing, and creating data marts.
In Figure 2, the data source schemas (DSSi) may be ex-

pressed in any modelling language that has been specified in
AutoMed. The transforming process translates each DSSi

into a transformed schema TSi. Each TSi may be defined
in the same, or a different, modelling language as DSSi and
other TSs. The translation from a DSSi to a TSi is ex-
pressed as a transformation pathway DSSi → TSi. Such
translation may not be necessary if the data cleansing tools
to be employed can be applied directly to DSSi, in which
case TSi and DSSi are identical.
The single-source data cleansing process transforms each

TSi into a single-source-cleaned schema SSi, which is defined
in the same modelling language as TSi but may be a different
from it. The single-source cleansing process is expressed as
a transformation pathway TSi → SSi. Multi-source data
cleansing removes conflicts between sets of single-source-
cleaned schemas and creates a multi-source-cleaned schema
MSi from them. Between the single-source-cleaned schemas
and the detailed schema (DS) of the data warehouse there
may be several stages of MSs, possibly represented in differ-
ent modelling languages.
In general, if during multi-source data cleansing, n schemas

S1, . . . , Sn need to be transformed and integrated into one
schema S, we can first automatically create a ‘union’ schema
S1 ∪ . . . ∪ Sn (after first undertaking any renaming of con-
structs necessary to avoid any naming ambiguities). We

can then express the transformation/integration process as
a pathway S1 ∪ . . . ∪ Sn → S.
After multi-source data cleansing, the resulting MSs are

then transformed and integrated into a detailed schema, DS,
expressed in the data model supported by the data ware-
house. The DS can then be enriched with summary views
by means of a pathway from DS to the final data warehouse
schema DWS.
Data mart schemas (DMS) can subsequently be derived

from the DWS and these may be expressed in the same,
or a different, modelling language as the DWS. Again, the
derivation is expressed as a pathway DWS → DMS.
Using AutoMed, four steps are needed in order to create

the metadata expressing the above schemas and pathways:
1. Create AutoMed repositories: AutoMed meta-

data is stored in the Model Definitions Repository (MDR)
and the Schemas & Transformations Repository (STR). The
API to these repositories uses JDBC to access an underlying
relational database. Thus, these repositories can be imple-
mented using any DBMS supporting JDBC. If the DBMS
of the data warehouse supports JDBC, then the AutoMed
repositories can be part of the data warehouse itself.
2. Specify data models: All the data models that will

be required for expressing the various schemas of Figure 2
need to be specified in terms of AutoMed’s HDM, via the
API of the MDR (if they are not already specified within
the MDR).
3. Extract data source schemas: Each data source

schema is automatically extracted and translated into its
equivalent AutoMed representation using the appropriate
wrapper for that data source.
4. Define transformation pathways: The remaining

schemas of Figure 2 and the pathways between them can
now be defined, via the API of the STR. After any prim-
itive transformation is applied to a schema, a new schema
results. After any add(c,q) transformation step, it is possible
to materialise the new construct c by creating, externally to
AutoMed, a new local data source whose local schema in-
cludes c and populating this data source by the result of
evaluating the query q (we discuss this process in more de-
tail in Section 4.1 below). Thus, in general, a schema may
be a materialised schema (all its constructs are materialised)
or a virtual schema (none of its constructs are materialised)
or partially materialised.
In the following sections, we discuss in more detail how

AutoMed transformation pathways can be used for describ-
ing the data transformation/integration process of Figure
2. We firstly give a simple example, assuming that no data
cleansing is necessary.

3.1 An Example

7UDQVIRUPDWLRQ

3DWKZD\

���� �
� �
� �

� �
� ��� �
� �
� ��� �
���
 ! ��� � 'HSW

LG

GHSWBQDPH

WRWDOBVDODU\
'HSWBLG QDPH

" ���
� �
� � � �

� � � � � � � # �

$ ��� � �
%
� �

% ��&'�

Figure 3: Data Integration/Transformation

Figure 3 shows a multi-dimensional schema consisting of
a fact table Salary and two dimension tables Person and Job;
an HDM schema consisting of two nodes Dept id and name

and an (un-named) edge between them; and a relational
schema consisting of a single table Dept into which the other
two schemas need to be transformed and integrated.
We discussed in Section 2.1 how a multidimensional model

can be represented in AutoMed. For the HDM itself, the
modelling constructs are Node, Edge and Constaint. We as-
sume here a simple relational model which is represented
similarly to our multidimensional model: each relation R

with key attributes k1, . . . , kn and non-key attributes a1, . . . ,

am is represented by a Rel construct ¿ R, k1, . . . , kn À
whose extent is the projection of R onto k1, . . . , kn, plus a
set of Att constructs ¿ R, a1 À, . . . , ¿ R, am À, where
the extent of each ¿ R, ai À is the projection of R onto
k1, . . . , kn, ai (we refer the reader to [14] for an encoding of
the full relational model in the HDM).
In order to integrate the two source schemas into the tar-

get schema we first form their union schema. The follow-
ing three primitive transformations are then applied to this
schema in order to add the Dept relation to it, defining the
extent of its id key attribute to be the same as the extent
of the Dept id HDM node, the extent of its dept name at-
tribute to be the same as that of the HDM edge from Dept id
to name, and the extent of its total salary attribute to be ob-
tained by summing the salaries for each department in the
Salary table. In the last step, the IQL function gc is a higher-
order function that takes as its first argument an aggrega-
tion function and as its second argument a bag of pairs; it
groups the pairs on their first component, and then applies
the aggregation function to each bag of values formed from
the second components.

addRel (<<Dept,id>>,<<Dept_id>>);

addAtt (<<Dept,dept_name>>,<<_,Dept_id,name>>);

addAtt (<<Dept,total_salary>>,

gc sum [(d,s)|(i,j,s)<-<<Salary,salary>>;

(i’,j’,d)<-<<Salary,dept_id>>;

i=i’; j=j’]);

The following transformations can then be applied to the
current schema to remove the HDM constructs from it —
the queries show how the extents of these constructs could
be reconstructed from the remaining schema constructs:

delEdge (<<_,Dept_id,name>>,<<Dept,dept_name>>);

delNode (<<name>>,[n|(d,n)<-<<Dept,dept_name>>);

delNode (<<Dept_id>>,(<<Dept,id>>);

Finally, the following transformations remove the multi-
dimensional schema constructs — note that contract rather
than delete transformations are used since their extents can-
not be reconstructed from the remaining schema constructs:

contractHierarchy(<<Salary,Person,id,id>>);

contractHierarchy(<<Salary,Job,job_id,job_id>>);

contractAtt (<<Salary,salary>>);

contractAtt (<<Salary,dept_id>>);

contractFact (<<Salary,id,job_id>>);

contractAtt (<<Job,job_descr>>);

contractDim (<<Job,job_id>>);

contractAtt (<<Person,name>>);

contractDim (<<Person,id>>);

3.2 Transforming
The above example illustrates how a schema expressed in

one data model can be transformed into a schema expressed

in another. The general approach is to first add the new
schema constructs in the target data model (relational in the
above example) and then to delete or contract the schema
constructs expressed in the original data model(s) (HDM
and multi-dimensional in the above example).

3.3 Data Cleansing
Data cleansing deals with detecting and removing errors

and inconsistencies from data in order to improve its quality,
and is typically required before loading the transformed data
into the data warehouse. In [17], the data cleansing prob-
lem is classified into two aspects, single-source and multi-
source. For each of these, there are two levels of problems,
schema-level and instance-level. Schema-level problems can
be addressed by evolving the schema as necessary. Instance-
level problems refer to errors and inconsistencies in the ac-
tual data which are not visible at the schema level. In this
section, we describe how AutoMed metadata can be used
for expressing the data cleansing process, for both single
and multiple data sources, and for both schema-level and
instance-level problems.
Single-Source Cleansing. Schema-level single-source

problems may arise within a transformed schema TSi in
Figure 2 and they can be resolved by means of an Au-
toMed transformation pathway that evolves TSi as neces-
sary. Single-source instance-level problems include value,
attribute and record problems. Value problems occur within
a single value and include problems such as a missing value,
a mis-spelled value, a mis-fielded value (e.g. putting a city
name in a country attribute), embedded values (putting mul-
tiple values into one attribute value), using an abbreviation,
or a mis-expressed value (e.g. using the wrong order of first
name and family name within a name attribute). Attribute
problems relate to multiple attributes in one record and in-
clude problems such as dependence violation (e.g. between
city and zip, or between birth-date and age). Record prob-
lems relate to multiple records in the data source, and in-
clude problems such as duplicate records or contradictory
records.
Some instance-level problems do not require the schema

to be evolved, only the extent of one or more schema con-
structs to be corrected. In general, suppose that the ex-
tent of a schema construct c needs to be replaced by a new,
cleaned, extent. We can do this using an AutoMed pathway
by following these steps:
1. Add a new temporary construct temp to the schema,

whose extent consists of the ‘clean’ data that is needed to
generate the new extent of c. This clean data is derived from
the extents of the existing schema constructs. This deriva-
tion may be expressed as an IQL query, or as a call to an
‘external’ function or, more generally, as an IQL query with
embedded calls to external functions. The IQL interpreter
is easily extensible with new built-in functions, implemented
in Java, and these may themselves call out to other external
functions. If the extent of a new schema construct depends
on calls to one or more external functions, then the new
construct must be materialised. Otherwise, if the extent of
a new construct is defined purely in terms of IQL and its
own built-in functions then the new construct need not be
materialised.
2. Contract the construct c from the schema.
3. Add a new construct c whose extent is derived from

temp.

4. Delete or contract the temp construct.
To illustrate, suppose we have available a built-in function

toolCall which allows a specified external data cleansing tool
to be invoked with specified input data. Then, we can in-
voke the QuickAddress Batch tool3 to correct the zip and
address attributes of a table Person(id, name, address,

zip, city, country, phoneAndFax, maritalStatus) by re-
generating these attributes given the combination of ad-
dress, zip and city information:

addRel (<<Temp,id,address,zip>>,

toolCall ’QuickAddress Batch’

’<<Person,address>>’

’<<Person,zip>’ <<Person,city>>’);

contractAtt (<<Person,zip>>);

contractAtt (<<Person,address>>);

addAtt (<<Person,zip>>,

[(i,z)|(i,a,z)<-<<Temp,id,address,zip>>]);

addAtt (<<Person,address>>,

[(i,a)|(i,a,z)<-<<Temp,id,address,zip>>]);

deleteRel (<<Temp,id,address,zip>>,

[(i,a,z)|(i,a)<-<<Person,address>>;

(i’,z)<-<<Person,zip>>;i=i’]);

Some instance-level problems will also require the schema
to be evolved e.g. if we have available a built-in function
split phone fax which slits a string comprising a phone num-
ber followed by one or more spaces followed by a fax number
into a pair of numbers, then the following AutoMed path-
way converts the attribute phoneAndFax of the Person table
above into two new attributes phone and fax:

addRel (<<Temp,id,phone,fax>>,

[(i,p,f)|(i,pf)<-<<Person,phoneAndFax>>;

(p,f)<-split_phone_fax pf]);

addAtt (<<Person,phone>>,

[(i,p)|(i,p,f)<-<<Temp,id,phone,fax>>]);

addAtt (<<Person,fax>>,

[(i,f)|(i,p,f)<-<<Temp,id,phone,fax>>]);

contractAtt (<<Person,phoneAndFax>>);

delRel (<<Temp,id,phone,fax>>,

[(i,p,f)|(i,p)<-<<Person,phone>>;

(i’,f)<-<<Person,fax>>;i=i’]);

Multi-Source Cleansing. After single-source data clea-
nsing, there may still exist conflicts between different single-
source cleaned schemas in Figure 2, leading to the process
of multi-source cleansing.
Schema-level problems in multi-source cleansing include

attribute and structure conflicts. Attribute conflicts arise
when different sources use the same name for different con-
structs (homonyms) or different names for the same con-
struct (synonyms), and they can be resolved by applying
appropriate rename transformations to one of the schemas.
Structure conflicts arise when the same information is mod-
elled in different ways in different schemas, and they can
be resolved by evolving one or more of the schemas using
appropriate AutoMed pathways.
Instance-level problems in multi-source cleansing include

attribute, record, reference, and data source problems. At-
tribute problems include different representations of the same

3http://www.techie.techieindex.com/cug/qas
/product/search/search.jsp

attribute in different schemas (e.g. for a maritalStatus at-
tribute) or a different interpretations of the values of an
attribute in different schemas (e.g. US Dollar vs Euro in a
currency attribute).
Such problems can be resolved by generating a new extent

for the attribute in one of the schemas by applying an ap-
propriate conversion function to each its values. In general,
suppose we wish to convert each of the values within the
extent of a construct c in a schema S by applying a function
f to it. First a new construct c new is added to S, whose
extent is populated by iterating over the extent of c and ap-
plying f to each of its values. Then, the old construct c is
deleted or contracted from the schema, and finally c new is
renamed to c. For example, the following pathway converts
a ’M’/’S’ representation for themaritalStatus attribute in the
above Person table into a ’Y’/’N’ representation, assuming
the availability of a built-in function convertMS which maps
’M’ to ’Y’ and ’S’ to ’N’:

addAtt (<<Person,maritalStatus_new>>,

[(i,convertMS s)|

(i,s)<-<<Person,maritalStatus>>]);

contractAtt (<<Person,maritalStatus>>);

renameAtt (<<Person,maritalStatus_new>>,

<<Person,maritalStatus>>);

Note that if there is also available an inverse function con-
vertMSinv which maps ’Y’ to ’M’ and ’N’ to ’S’, then a
delete transformation could have been used in the second
step above instead of a contract:

deleteAtt (<<Person,maritalStatus>>,

[(i,convertMSinv s)|

(i,s)<-<<Person,maritalStatus_new>>]);

Record problems include duplicate records or contradic-
tory records among different data sources. For duplicate
records, suppose that constructs c and c′ from different sche-
mas are to be integrated into a single construct within some
multi-source cleaned schema. Then, prior to the integra-
tion, we can create a new extent for c comprising only those
values not present in the extent of c′:

add (c_new, [v|v<-c; not (member c’ v)];

contract (c);

rename (c_new, c)

For contradictory records, we can similarly create a new
extent for c comprising only those values which do not con-
tradict values in the extent of c′. For example, suppose we
have tables Person and Emp in different schemas, both with
key id, and the attributes << Person,maritalStatus >> and <<

Emp,maritalStatus >> are going to be integrated into a single
attribute of a single table within some multi-source cleaned
schema. Then the following transformation removes values
from << Person,maritalStatus >> which contradict values in <<
Emp,maritalStatus >> (assuming that the latter is the more
reliable source — the opposite choice would also of course
be possible);

addAtt (<<Person,maritalStatus_new>>,

<<Person,maritalStatus>> --

[(i,s)|(i,s)<-<<Person,maritalStatus>>;

(i’,s’)<-<<Emp,maritalStatus>>;

i = i’; not (s = s’)]);

contractAtt (<<Person,maritalStatus>>);

renameAtt (<<Person,maritalStatus_new>>,

<<Person,maritalStatus>>);

Reference problems occur when a referenced value does
not exist in the target schema construct and can be re-
solved by removing the dangling references. For example,
if an attribute << Emp,dept id >> references a table << Dept
>> with key dept id, then the following transformation re-
moves values from << Emp,dept id >> for which there is no
corresponding dept id value in << Dept >> :

addAtt (<<Emp,dept_id_new>>,

[(i,d)|(i,d)<-<<Emp,dept_id>>;

member <<Dept>> d]);

contractAtt (<<Emp,dept_id>>);

renameAtt (<<Emp,dept_id_new>>,<<Person,dept_id>>);

Finally, data source problems relate to whole data sources,
for example, aggregation at different levels of detail in dif-
ferent data sources (e.g. sales may be recorded per prod-
uct in one data source and per product category in another
data source). Such conflicts can be resolved either by re-
taining both sets of source data within the target multi-
source schema MSi (with appropriate renaming of schema
constructs as necessary) or by selecting the ‘coarser’ aggre-
gation and creating a view over the more detailed data which
summarises this data at the coarser level, ready for integra-
tion with the more coarsely aggregated data from the other
data source.
Summary. In this subsection we have shown how Au-

toMed metadata has enough expressivity to express the data
cleansing process in a data warehouse environment. For all
categories of data cleansing problems, the general approach
is to add new constructs to the current schema and to pop-
ulate them by ‘clean’ data generated from the extents of the
existing schema constructs by means of IQL queries and/or
or calls to external functions. The old, ‘dirty’, schema con-
structs are then contracted from the schema.

3.4 Integrating
After data cleansing, the multi-source-cleaned schemas

MS1, . . . , MSn are ready to be transformed and integrated
into the detailed schema, DS. First, a union schema MS1

∪ . . .∪ MSn is automatically generated. The transforma-
tion/integration process is then expressed as a pathway MS1

∪ . . .∪ MSn → DS. Section 3.1 above illustrated this.

3.5 Summarizing
Data summarization builds either virtual or materialized

views over the detailed data. This can be expressed by
means of a transformation pathway from DS to the final
data warehouse schema DWS, consisting of a series of add
steps defining the new summarised constructs as views over
the constructs of DS.

3.6 Creating Data Marts
Data mart schemas (DMS) can subsequently be derived

from the DWS, again by means of a pathway DWS→ DMS.
Unlike the previous, summarizing, step the target schema
may be expressed in a different modelling language to the
DWS. In fact, this step can be regarded as a separate in-
stance of Figure 2 where the DWS now plays the role of
the (single) data source and the DMS plays the role of the
target warehouse schema. The scenario is a simplification of

Figure 2 since there is only one data source, and there are
no single-source or multi-source cleaned schemas.

4. USING THE PATHWAYS

4.1 Populating the Data Warehouse
In order to use the AutoMed transformation pathways for

populating the data warehouse, a wrapper is required for
each kind of data store from which data will be extracted
or in which data will be stored. AutoMed’s wrappers are
implemented at two levels. A high level wrapper converts
between AutoMed queries and data and the standard repre-
sentation for a class of data sources e.g. the SQL92Wrapper
converts between IQL and SQL92. A low level wrapper deals
with differences between the class standard and a particular
data source e.g. the PostgresSQLWrapper converts between
SQL92 and Postgres databases.
In order to populate a construct c of a schema S, we need

to generate a view definition for each construct of S in terms
of its nearest ancestor materialised constructs within the
pathways from the data source schemas DSS1, . . . , DSSn to
S. This can be done using a modification of the view gener-
ation algorithm described in [13]. This algorithm traverses
the pathway from S to each DSSi backwards, all the way
to DSSi. The modified algorithm stops whenever a materi-
alised construct is encountered in a pathway. The result is
a view definition of the construct c in terms of already ma-
terialised constructs. This view definition is an IQL query
which can be evaluated, and the resulting data can be in-
serted into the data store linked with c, via a series of update
requests to that data store’s wrapper.

4.2 Incrementally Maintaining the DW Data
In order to incrementally maintain materialised warehouse

data, we need to use incremental view maintenance tech-
niques. If a materialised construct c is defined by an IQL
query q over other materialised constructs, [8] gives formu-
lae for incrementally maintaining c if one its ancestor con-
structs ca has new data inserted into it (an increment) or
data deleted from it (a decrement). We actually do not use
the whole view definition q generated for c, but instead track
the changes from ca through each step of the pathway. In
particular, at each add or rename step we use the set of in-
crements and decrements computed so far to compute the
increment and decrement for the schema constructed being
generated by this step of the pathway.

4.3 Tracing the Lineage of DW Data
The lineage of a data item t in the extent of a materialised

construct c of a schema S is a set of source data items from
which t was derived. The fundamental definitions regarding
data lineage were developed in [7], including the concept of a
derivation pool for tracing the data lineage of a tuple in a ma-
terialised view. Another fundamental concept was addressed
in [2], namely the difference between ‘why-provenance’ and
‘where-provenance’. Why-provenance refers to the source
data that had some influence on the existence of the inte-
grated data. Where-provenance refers to the actual data in
the sources from which the integrated data was extracted.
The problem of why-provenance has been studied for rela-
tional databases in [7, 22, 6].
We have developed definitions for data lineage in Au-

toMed based on both why-provenance and where-provenance,

which we term affect-pool and origin-pool. In [9] we give
formulae for deriving the affect-pool and origin-pool of a
data item t in the extent of a materialised construct c cre-
ated by a transformation step of the form add(c,q) applied
to a schema S. These formulae generate derivation tracing
queries [7] qAP

S (t) and qOP
S (t) which can be applied to S in

order to respectively obtain the affect-pool and origin-pool
of the data item t.
In [9] we give an algorithm for tracing the affect-pool and

origin-pool of a materialised data item t all the way back
to the data sources by using the AutoMed pathways from
the data source schemas DSS1, . . . , DSSn to the warehouse
schema. This algorithm traverses a pathway backwards, and
incrementally computes new affect- and origin-pools when-
ever an add or rename step is encountered, finally ending
with the required affect- and origin-pools for t from within
DSS1, . . . , DSSn.

5. DISCUSSION
We have shown how AutoMed metadata can be used to

express the ETL process in a data warehouse and how the
resulting transformation pathways can be used for some key
warehouse activities. There are three main differences be-
tween this approach and the traditional data warehousing
approach based on a single conceptual data model (CDM):
1. In the CDM approach, each data source wrapper trans-

lates the data source model into the CDM. Since both are
likely to be high-level conceptual models, semantic mismatch-
es may exist between the CDM and the source data model,
and there may be a loss of information between them. In
contrast, with the AutoMed approach the data source wrap-
pers translate each data source schema into its equivalent
AutoMed representation, without loss of information. Any
necessary inter-model translation then happens explicitly
within the AutoMed transformation pathways, under the
control of the data warehouse designer.
2. In the CDM approach, the data transformation and in-

tegration metadata is tightly coupled with the CDM of the
particular data warehouse. If the data warehouse is to be re-
deployed on a platform with a different CDM, it is not easy
to reuse the previous data transformation and implemen-
tation effort. In contrast, with the AutoMed approach it
is possible to extend the existing pathways from the data
source schemas DSS1, . . . , DSSn to the current detailed
data warehouse schema, DS, with extra transformation steps
that evolve DS into a new schema DSnew, expressed in the
data model of the new data warehouse implementation. The
pathway DS → DSnew can be used to populate the detailed
schema of the new data warehouse from the current ware-
house. The downstream schemas from DSnew (i.e. the sum-
mary views and the data mart schemas) do still have to be
defined again by means of new pathways from DSnew, but
all the upstream data transformation/integration metadata
can be reused. In particular, the pathways from DSS1, . . . ,
DSSn to DS

new (via DS) can be used to maintain the new
data warehouse.
3. In the CDM approach, if a data source schema changes

it is not straightforward to evolve the view definitions of the
data warehouse constructs. With the AutoMed approach,
a change of a data source schema DSSi into a new schema
DSSnew

i can be expressed as a pathway DSSi → DSSnew
i .

The (automatically derivable) reverse pathway DSSnew
i →

DSSi can then be prefixed to the original pathway DSSi →

TSi to give a pathway DSS
new
i → TSi, thus extending the

transformation network of Figure 2 to encompass the new
schema. Let us examine the impact of this extension. Sup-
pose that the pathway DSSi → DSSnew

i consists of a single
primitive transformation t (longer pathways can be treated
as a sequence of single-step pathways). There are three cases
to consider for t, the first two of which can be handled totally
automatically and the third semi-automatically:

(i) If t is an add, delete or rename transformation, then
DSSnew

i is semantically equivalent to DSSi and no fur-
ther change to the transformation network is needed.
When new data is extracted from DSSnew

i , the new
pathway DSSnew

i → TSi can be used to transmit the
new data to TSi.

(ii) If t is of the form contract(c) then construct c will
no longer be available from DSSnew

i . The transforma-
tion network needs to be modified to remove all down-
stream constructs directly or indirectly dependent on
c (and their underlying extents, if they have been ma-
terialised). This is done by first removing the initial
extend(c) step from DSSnew

i to DSSi (and as a result
removing also DSSi) and then examining the query
accompanying each subsequent add step and the con-
structs referenced in each subsequent rename step.

(iii) If t is of the form extend(c) then there will be new data
available from DSSnew

i that was not available before. If
the transformation network remains as it is, then the
first step from DSSnew

i to DDSi is contract(c) which
removes c. Thus, the transformation network is still
consistent, but it does not utilise the new data.

It may be the case that we want to evolve the ware-
house detailed schema, DS, to include this new data.
In this case, we can simply remove the contract(c)
step (and hence also DSSi) from the transformation
network. This has the effect of automatically propa-
gating the construct c to all the downstream schemas
in the transformation network. Some further man-
ual modification of the network may also be neces-
sary e.g. removing c from the data mart schemas by
inserting a contract(c) step in the pathway from the
DWS to a data mart schema; ‘cleaning’ c by inserting
extra transformation steps before SSi and/or before
the appropriate multi-source cleaned schemas; seman-
tically integrating c with existing data by inserting ex-
tra transformation steps before the detailed schema,
DS; utilising c in new view definitions etc.

6. CONCLUDING REMARKS
In this paper we have discussed the use of AutoMed meta-

data in data warehousing environments. We have shown
how AutoMed metadata can be used to express the data
schemas, and the data cleansing, transformation, and inte-
gration processes. We have shown how this metadata can
then be used for populating the data warehouse, incremen-
tally maintaining the warehouse data after data source up-
dates, and tracing the lineage of warehouse data.
In contrast to the traditional data warehousing approach

which adopts a single conceptual data model to transform
and integrate data from multiple heterogeneous data sources,
we use a low-level common data model, the HDM. Data

source wrappers first translate the source schemas into their
equivalent HDM specification. AutoMed’s transformation
pathways are then used to incrementally transform and in-
tegrate the source schemas into an integrated schema. The
integrated schema can be defined in any modelling language
which has been specified in terms of AutoMed’s HDM. We
discussed in Section 5 how several benefits result: no se-
mantic mismatch between the data source schemas and their
representation in the HDM; support of evolution of the data
source schemas; and reuse of much of the transformation/
integration effort if the data warehouse is redeployed on a
platform supporting a different data model.
In contrast to commercial ETL tools, AutoMed meta-

data provides sufficient information to support activities
such as data lineage tracing and incremental view mainte-
nance. Furthermore, AutoMed’s HDM provides a unifying
semantics for higher-level modelling constructs and hence a
basis for automatically or semi-automatically generating the
semantic links between them — this is ongoing work being
undertaken by other members of the AutoMed project.
So far, our incremental view maintenance and data lin-

eage tracing algorithms have used only the add and rename
transformation steps from the data sources to the integrated
schema. We are now looking at how to also make use of the
information imparted by the queries wthin delete and con-
tract transformation steps. We are also looking at the im-
pact of calls to external functions on our incremental view
maintenance and data lineage tracing algorithms.
Clearly, not all data warehouse metadata can be captured

by AutoMed e.g. information about physical organisation of
the data, ownership of the data, access control, temporal in-
formation, and data refresh and purging policies. Thus, we
envisage AutoMed being used alongside an existing DBMS
supporting such facilities. We are currently investigating
this interaction of AutoMed with existing data warehousing
functionality in the context of a data warehousing project in
the bioinformatics domain. This project is creating an inte-
grated data warehouse in Oracle from the CATH database4,
the MSD database5 and other specialist data sources. It is
also extracting specialist data marts from this warehouse,
tailored for individual researchers’ needs and deployed in
lighter-weight DBMSs such as Postgres or MySQL. The data
sources are evolving over time, as are the researchers’ re-
quirements for their data marts. Thus, this application is
well-suited to the functionality that AutoMed offers.

7. REFERENCES
[1] Lars Baekgaard. Event-entity-relationship modeling in
data warehouse environments. In Proc. DOLAP’99,
pages 9–14, 1999.

[2] P. Buneman, S. Khanna, and W.C. Tan. Why and
Where: A characterization of data provenance. In
Proc. ICDT’01, LNCS 1973, pages 316–330, 2001.

[3] P. Buneman et al. Comprehension syntax. SIGMOD
Record, 23(1):87–96, 1994.

[4] D. Calvanese, G. Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. A principled approach to data
integration and reconciliation in data warehousing. In
Proc. DMDW’99, 1999.

4http://www.biochem.ucl.ac.uk/bsm/cath new/
5http://www.ebi.ac.uk/msd/

[5] Surajit Chaudhuri and Umeshwar Dayal. An overview
of data warehousing and OLAP technology. SIGMOD
Record, 26(1):65–74, 1997.

[6] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. In Proc. VLDB’01,
pages 471–480, 2001.

[7] Y. Cui, J. Widom, and J.L. Wiener. Tracing the
lineage of view data in a warehousing environment.
ACM Transactions on Database Systems,
25(2):179–227, 2000.

[8] H. Fan. Incremental view maintenance and data
lineage tracing in heterogeneous database
environments. In Proc. BNCOD’02 PhD Summer
School, Sheffied, pages 14–21, 2002.

[9] H. Fan and A. Poulovassilis. Tracing data lineage
using schema transformation pathways. In Knowledge
Transformation for the Semantic Web, pages 64–79.
IOS Press, 2003.

[10] M. Golfarelli and S. Rizzi. A methodological
framework for data warehouse design. In Proc.
DOLAP ’98, 1998.

[11] Holger Hinrichs and Thomas Aden. An ISO 9001:
2000 compliant quality management system for data
integration in data warehouse systems. In Proc.
DMDW’01, 2001.

[12] B. Hsemann, J. Lechtenbrger, and G. Vossen.
Conceptual data warehouse modeling. In Proc.
DMDW’00, 2000.

[13] E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis.
View generation and optimisation in the AutoMed
data integration framework. Technical report,
AutoMed Project, 2003.

[14] P. McBrien and A. Poulovassilis. A uniform approach
to inter-model transformations. In Proc. CAiSE’99,
LNCS 1626, pages 333–348, 1999.

[15] P. McBrien and A. Poulovassilis. Data integration by
Bi-directional schema transformation rules. In Proc.
ICDE’03, 2003.

[16] D. Moody and M. Kortink. From enterprise models to
dimensional models: a methodology for data
warehouse and data mart design. In Proc. DMDW’00,
2000.

[17] Erhard Rahm and Hong Hai Do. Data cleaning:
Problems and current approaches. IEEE Data
Engineering Bulletin, 23(4):3–13, 2000.

[18] D. Theodoratos. Semantic integration and querying of
heterogeneous data sources using a hypergraph data
model. In Proc. BNCOD’02, LNCS 2405, pages
166–182, 2002.

[19] N. Tryfona, F. Busborg, and J. Christiansen. starER:
A conceptual model for data warehouse design. In
Proc. DOLAP ’99, pages 3–8, 1999.

[20] A. Tsois, N. Karayannidis, and T. Sellis. MAC:
Conceptual data modeling for OLAP. In Proc.
DMDW’01, 2001.

[21] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos.
Conceptual modeling for ETL processes. In Proc.
DOLAP’02, 2002.

[22] A. Woodruff and M. Stonebraker. Supporting
fine-grained data lineage in a database visualization
environment. In ACDE’97, UK, pages 91–102.

