
Metamorphic Testing for (Graphics) Compilers

[Short Paper]

Alastair F. Donaldson
Imperial College London

alastair.donaldson@imperial.ac.uk

Andrei Lascu
Imperial College London

andrei.lascu10@imperial.ac.uk

ABSTRACT
We present strategies for metamorphic testing of compil-
ers using opaque value injection, and experiences using the
method to test compilers for the OpenGL shading language.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Compiler testing; metamorphic testing; OpenGL; graphics

1. INTRODUCTION
Practically all software deployed today has been compiled

or is interpreted at runtime, and methods for testing compil-
ers and interpreters have thus received a lot of research at-
tention (see e.g. [4, 5, 6, 7, 8]). A notable method for testing
compilers is random differential testing, popularised by the
Csmith tool [8], whereby a program is randomly generated
(a process known as fuzzing) and then compiled by different
compilers at multiple optimisation levels. Mismatches in the
behaviour of the resulting binaries indicate compiler bugs.

A recent alternative strategy is equivalence modulo inputs
(EMI) testing [4]. Given a well-defined, deterministic pro-
gram P , EMI testing involves first performing code coverage
analysis of P with respect to an input I to identify I-dead
statements: statements not covered by I. From P , a series of
program variants, P1, P2, . . . , Pn can be created, with each
Pi obtained by mutating or deleting a subset of the I-dead
statements of P . Each Pi should behave identically to P
when executed on input I; deviations in behaviour are in-
dicative of compiler bugs. Thus, EMI testing is an example
of metamorphic testing [1]—the programs are in a metamor-
phic relationship with one another and with P , with respect
to I. A metamorphic approach has also been used to test
compilers by generating input programs that are equivalent
by construction [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MET’16, May 14-22 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4163-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896971.2896978

In recent work on testing compilers for the OpenCL many-
core programming language, we experimented with a varia-
tion of EMI testing where instead of identifying existing I-
dead code, we injected I-dead code into programs [5]. This
works by introducing a new program input variable, v say,
and injecting conditional code of the form:

if(φ(v)) { /* injected statements */ }

where φ is a side effect-free predicate over v. By setting v
to a runtime value that causes φ(v) to evaluate to false, we
make the injected statements “dead-by-construction”. As a
result, the program should behave identically with or with-
out this injection, so long as the injected statements are syn-
tactically correct and well-typed. Because the runtime value
of v is opaque to the compiler, the compiler must compile
and optimise the program to behave correctly and efficiently
for any value of v that does not invoke undefined behaviour.
The code injection will influence the manner in which the
compiler processes the program (at a minimum affecting the
way the program is parsed), and this may identify compila-
tion bugs if the injection exposes behavioural differences.

In Section 2 we argue that our approach to metamorphic
compiler testing via opaque value injection can be applied
more broadly, and hypothesise that the technique has the
potential to uncover “bugs that matter”—high-priority com-
piler bugs that a compiler developer should urgently fix. We
also argue that our metamorphic testing method is suited to
finding bugs in compilers for languages whose semantics are
either unclear or offer an envelope of possible behaviours, in
which case pure fuzzing may be ineffective.

To support our claims, in Section 3 we present preliminary
experience using metamorphic testing to find bugs in compil-
ers for GLSL, the OpenGL shading language [3], evaluated
on GPUs and drivers from Intel and NVIDIA. Our method
is able to identify minimal changes to open source graph-
ics shaders that should not lead to perceptible changes in
the rendered image, yet lead to drastically different results
(see Figure 1). We find that a simple image comparison
metric suffices to ignore cases where metamorphic injections
lead to slight variations in the rendered image (permissi-
ble due the loose specification of floating-point semantics in
GLSL), while flagging up cases where the image is likely to
be deemed incorrect by a human observer.

2. METAMORPHIC COMPILER TESTING
VIA OPAQUE VALUE INJECTION

We discuss strategies for injecting opaque values into in-
put programs, outline some metamorphic transformations

that opaque values enable, and explain that it is straightfor-
ward to compute, from a bug-inducing program, a minimal
set of transformations that expose the bug. We argue why
this approach may be effective in finding high-priority bugs,
as well as coping with imprecise or under-specified language
semantics. Though the approach we propose is general, we
illustrate our ideas by referring to our testing of GLSL com-
pilers, detailed further in Section 3.

Injecting opaque values. The crux of our method is
to augment a program with one or more opaque values:
fresh variables that will take fixed values at runtime, but
whose values are unknown to the compiler. The manner for
achieving this varies between languages, but a straightfor-
ward method is usually apparent. For C programs, opaque
values can be injected by passing additional command-line
arguments to the program, by declaring additional program
variables and populating their values by reading from a spe-
cific file, or by marking such variables as volatile and initial-
ising them with desired concrete values (the compiler should
assume nothing about the values of volatile-qualified vari-
ables, thus should not perform constant propagation based
on their initial values).

The transformations described below require using opaque
values to construct expressions that will evaluate to true,
false, 1 and 0 at runtime. We denote these opaque expres-
sions by T , F , 1, and 0, respectively. We refer to T as “an
opaque true expression”, and similarly for F , 0 and 1.

To test GLSL compilers, we add a new uniform decla-
ration [3, p. 46] to a shader—a two-element floating-point
vector, INJ—which we populate with the value (0.0, 1.0) at
runtime. We can then define e.g. T = INJ.x < INJ.y and 0

= INJ.x. We could also use more elaborate expressions, e.g.
defining 0 = (INJ.x * d), where d is an expression produced
by a fuzzer.

Example program transformations. So far we have
experimented with metamorphic transformations based on
dead code injection and identity functions. We describe
these, and offer suggestions for additional transformations
that may be useful for testing compilers.
Dead code injection. We discussed the use of an opaque

false expression to inject“dead-by-construction”code in Sec-
tion 1, by introducing conditional statements of the form
if(F) { ... }. The use of F , instead of false, means
that the compiler cannot automatically optimize away the
injected code. Because it will not be executed, arbitrary
syntactically valid code can be injected, including code that
would invoke undefined behaviour. In [5] we experimented
with injecting code generated by a fuzzer. In our GLSL
testing framework we instead consider transplanting code
fragments from one real-world shader program into another
(see Section 3). Further research is needed to understand
the relative effectiveness of these sources of code fragments.
Identity functions. Replacing an integer-valued expres-

sion e with (e + 0), (e - 0), (e * 1), (e / 1) or (T ? e : d) (for
an arbitrary expression d, e.g. produced by a fuzzer, and
where 0 and 1 are cast to integer type if necessary) should
clearly have no effect on program behaviour. Similarly, a
Boolean-valued expression e can be replaced with (e && T)

or (F || e), and one can imagine many further semantics-
preserving identity functions over program expressions. The
use of opaque expressions prevents the compiler from opti-
mising away identity function applications, though our re-
sults in Section 3 show that non-opaque expressions can still

be effective in triggering compiler bugs. Identity functions
can be recursively applied, so that an expression e can be
replaced with e.g. (id1(e) + id2(0)), where id1(e) and id2(0)
denote applications of further identity functions to e and 0.

Our idea is that by transforming program expressions into
syntactically richer but semantically equivalent forms, iden-
tity functions will help to exercise under-tested compiler op-
timisations. Errors in the implementation of such optimisa-
tions may then be identified through behavioural differences.

Other metamorphic transformations. There is broad
scope for investigating further metamorphic program trans-
formations hinging on opaque values. For example, when
testing a compiler for a language that supports pointers,
we could manufacture complex potential aliasing scenarios
by injecting dead-by-construction code that manipulates the
fields of linked structures in interesting ways. As another ex-
ample, we could obfuscate the control flow graph (CFG) of a
program by injecting dead-by-construction break, continue,
return and goto statements. In each example, the aliasing
conditions and control paths that are actually possible at
runtime are not affected, but the static approximation to
this information that the compiler works with is different.
As compiler optimisations are known to be sensitive to alias-
ing information and CFG structure, we predict that these
transformations may be effective at exposing bugs. Meta-
morphic program transformations proposed in the context of
program generation [7] could also be applied in our setting.

Automatic test case reduction. Each of the metamor-
phic transformations described above can easily be reversed.
It is thus straightforward to repeatedly reverse transforma-
tions to home in on a minimal subset of transformations that
induces a behavioural difference.

Let P be a program and let P ′ denote the program ob-
tained by applying transformations t1, . . . , tn to P . Suppose
P and P ′ behave differently when compiled and executed,
indicating a possible compiler bug. Test case reduction pro-
ceeds by repeatedly reversing a randomly chosen transfor-
mation ti, re-applying ti if its removal causes P and P ′ to
behave identically, until no remaining transformation can
be reversed while preserving the behavioural difference. The
process can be accelerated by attempting to reverse multiple
transformations in a single reduction step.

It may also be possible to simplify a transformation whose
reversal removes the behavioural difference. For instance, if
an identity function has transformed expression e to (T ? e

: d), where d is complex, d could be replaced by a simpler
expression. Similarly, a dead code injection could be simpli-
fied by removing a subset of the injected statements.

Test case reduction for randomly generated programs re-
quires careful use of analysis tools to avoid introducing un-
defined behaviour during the reduction process [6], other-
wise a reduction attempt for a large bug-inducing test case
tends to lead to a small, useless program that invokes an
undefined behaviour. In contrast, reversal of metamorphic
transformations cannot introduce undefined behaviour.

Finding bugs that matter. It is well known that com-
piler bug reports are treated by compiler developers with
varying priorities. A compiler bug-finding tool should ide-
ally find “bugs that matter”: bugs that compiler developers
will regard as having a high priority to fix.

Our experience using fuzzing to test OpenCL compilers [5]
is that although we could find small test cases that indis-
putably exposed bugs, many of the bugs appeared unlikely

to affect practical OpenCL kernels. For example, OpenCL
programmers make infrequent use of structs and unions, and
use pointers in a limited fashion, yet many of the bugs we
found involved nested structures with pointer fields.

A benefit of our proposed metamorphic approach, also
associated with the EMI testing method that inspired our
work [4] (but not with an approach that generates equivalent
random programs [7]), is that it starts with an existing pro-
gram and produces a minimal change to the program that
exposes an erroneous behavioural difference with respect to
a given compiler. If the original program carries high value,
e.g. if it is an important test case for core functionality, and
if the bug-inducing difference is small, it seems reasonable
that the compiler bug could affect real-world programs, thus
it is plausible that there would be some urgency associated
with fixing the bug. Our results in Section 3 show that in
some cases very small changes to open source shader pro-
grams can lead to drastic differences in the rendered image.

Coping with imprecise semantics. Many programming
languages allow an envelope of acceptable behaviours for
floating-point operations, and “fast math” compiler optimi-
sations that change floating-point semantics are desirable in
domains where a degree of variation in results is acceptable.
Testing compilers is challenging in this setting: two differ-
ent compilers applied to a single program may legitimately
produce binaries that give different results when executed,
and a metamorphic transformation that would be semantics-
preserving over the real numbers (e.g. e→ (e + 0)) may lead
to a behavioural difference by influencing compiler optimi-
sation (e.g. by inhibiting constant folding).

This issue affects random differential testing, EMI test-
ing and our metamorphic approach. We hypothesise that
our metamorphic approach (and, for the same reason, EMI
testing) is better-suited to coping with floating-point be-
havioural differences compared with random differential test-
ing. Without special measures during generation, a ran-
domly generated program over floating-point data may be
subject to more severe accumulation of rounding errors than
would typically occur in a real-world program. This may
lead to dramatically different outputs when the program is
processed by compilers that apply different optimisations
and/or executed on architectures for which corner-case as-
pects of floating-point arithmetic (e.g. whether denormals
are flushed to zero) are implementation-defined. In contrast,
metamorphic testing compares program variants using one
compiler and architecture, so consistent hardware rounding
modes can be expected, and differences in compiler optimisa-
tions arise only due to metamorphic transformations. Our
early results for testing GLSL compilers (Section 3) show
that metamorphic transformations do lead to small differ-
ences in rendered images, but that these small differences
are easy to distinguish from the dramatic changes in image
content associated with compiler bugs.

3. TESTING GLSL COMPILERS
We report on preliminary experience applying our meta-

morphic approach to test compilers for GLSL, the OpenGL
shading language [3]. Reliable GLSL compilers are required
for portable rendering across GPUs from multiple vendors,
and compiler reliability is particularly relevant in the con-
text of safety-critical graphics processing [2].

Tooling framework. Our injector tool takes two GLSL

Vendor Intel NVIDIA
GPU Iris Graphics 6100 GeForce GTX 980M
Driver 20.19.15.4352 352.63
OS Windows 10.0.10240 Ubuntu 15.10
Host CPU Intel Core i3-5157U Intel Core i7-4720HQ

Table 1: The platforms used for our experiments

shaders, a recipient and a donor. The INJ opaque value is
added to the recipient. Each point in the recipient has a per-
centage chance (controlled by the user) of being selected for
injection. At each selected point, a block of code, randomly
selected from the donor, is added using dead code injection.
Free variables in the donated code are either substituted
with appropriately-typed variables available in the recipi-
ent, or declared at the injection point (the choice is made
randomly). After donation, a random percentage of expres-
sions in the enlarged recipient are selected, to which iden-
tity functions are applied. We have implemented the iden-
tity functions described in Section 2 (including expression
fuzzing) and several variations thereof, and apply identity
functions to expressions with floating-point and signed/un-
signed scalar and vector types.

Our launcher tool uses a given vertex and fragment shader
to render an image that is then saved to disk. We currently
use a trivial vertex shader, applying metamorphic transfor-
mations to fragment shaders only.

To search for compiler bugs, we use a script that takes
a recipient shader and a directory of donor shaders. The
script generates the reference image associated with the un-
modified recipient, then repeatedly invokes the injector and
launcher tools, choosing a random donor for each injection
into the recipient. We validate each injected shader us-
ing the OpenGL reference compiler (https://www.khronos.
org/opengles/sdk/tools/Reference-Compiler/), discard-
ing invalid shaders (our prototype injector tool sometimes
yields invalid programs). Valid injected shaders that pro-
duce an image different from the reference image are flagged.

On finding a difference, our reducer tool uses the iterative
reduction strategy outlined in Section 2 to find a minimal set
of simplified injections that trigger the difference. In some
cases we are able to manually simplify the shader further.

Impact of floating-point semantics. The GLSL speci-
fication allows for some flexibility in the way floating-point
operations are implemented on different GPUs. For exam-
ple [3, p. 83]: “Any denormalized value . . . can be flushed to
0. The rounding mode cannot be set and is undefined. NaNs
are not required to be generated.” A degree of flexibility in
the optimisations that a compiler may perform is also pro-
vided: [3, p. 88] “Without any [precision] qualifiers, imple-
mentations are permitted to perform such optimizations that
effectively modify the order or number of operations used to
evaluate an expression, even if those optimizations may pro-
duce slightly different results relative to unoptimized code.”
As such, we hypothesised that in the absence of a compiler
bug, metamorphic transformations might still trigger small
differences in rendered images.

To account for this, we use the OpenCV library (http:
//opencv.org/) to compare images based on the chi-square
distance between their associated colour histograms, regard-
ing images as distinguishable if and only if this distance is
larger than a given threshold value. Our hypothesis was

Figure 1: Reference image (left) and images due to
Intel (middle) and NVIDIA (right) compiler issues

that we would be able to find a reasonable threshold to dif-
ferentiate between image differences due to compiler bugs
(exceeding the threshold), vs. small differences arising due
to floating-point issues (lying below the threshold).

Experimental results. We have experimented in an ex-
ploratory fashion with 16 fragment shaders from http://

glslsandbox.com, used both as recipients and donors. We
searched for bugs in GLSL compilers from Intel and NVIDIA
using the platforms detailed in Table 1, which we refer to as
Intel and NVIDIA.

We illustrate our findings with an example recipient shader
which, unmodified, produces the left-hand image of Fig-
ure 1.1 The shader is 74 lines of GLSL after preprocessing,
which is fairly large compared with typical fragment shaders.

Experimenting with 100 metamorphic variants based on
this shader, we found that the resulting images always dif-
fered from the reference image, on both Intel and NVIDIA.
The differences were typically very small, and visually im-
perceptible to us. For example, replacing an expression
normalize(vec3(0.1, 0.4, 0.0)) with normalize(vec3(0.1 *

INJ.y, 0.4, 0.0)) (recall that INJ.y is set to 1.0) led to a
difference in one out of 640 × 480 pixels on Intel , with the
R component of an RGB pixel being decreased by 1 (with
colour values lying in the integer range [0, 255]). We spec-
ulate that multiplication by INJ.y, which is not a compile-
time constant, may affect the floating-point optimisations
performed by the compiler. This is legitimate according to
the GLSL specification, as discussed above.

We also found small pixel differences between the refer-
ences images computed on Intel and NVIDIA, and between
the images produced on these platforms for any single meta-
morphic variant.

The remaining images in Figure 1 illustrate that in some
cases we observed radical differences due to metamorphic
transformations. The middle image was rendered on Intel
and arises from replacing expression diffuse with (false

? mix(targetDepth, time, false) : diffuse), where diffuse,
targetDepth and time are float variables and mix is a GLSL
built-in function [3]. (Issue reported to Intel, awaiting con-
firmation.) The right-hand image was rendered on NVIDIA.
Provoking this bug required several identity functions to be
applied simultaneously, with the most complex example re-
placing the expression p + vec3(-EPS, 0.0, 0.0) with:

vec3(((p + vec3(-EPS, 0.0, 0.0))[0]), ((p + vec3(-EPS,
0.0, 0.0))[1]), (false ? -EPS : p[2])) + vec3(0.0),

where p is a 3D floating-point vector. These expressions are
indeed equivalent, modulo floating-point effects. (Issue re-
ported to NVIDIA, who have confirmed reproduction but
not yet whether the issue is indicative of a bug). We also

1See http://glslsandbox.com/e#29059 for an animation
based on the shader.

found and reported two Intel front-end bugs, where the com-
piler rejects valid expressions produced by our expression
fuzzer. (Both issues confirmed and fixed by Intel.)

These metamorphic transformations do not actually make
use of the opaque values provided by INJ. Given that the
injections are based on compile-time constants, we are sur-
prised that the compiler does not optimise them away. We
have also found bug-triggering variants that depend on dead
code injection based on opaque values.

We have found that images indicative of compiler bugs
are usually radically different form the reference, as Figure 1
shows, and in many cases a black image is produced. In our
experiments so far, a chi-squared threshold of 5 has sufficed
to identify all bug images, but lets through a small number
of images that exhibit significant pixel-level variation, yet to
us look visually identical to the reference image.

4. CONCLUSIONS AND FUTURE WORK
We have argued that metamorphic testing using opaque

value injection can be employed generally to test program-
ming language implementations, and demonstrated that this
method is effective at exposing bugs in compilers for GLSL,
an interesting domain because of its imprecise rules on floating-
point semantics. The next steps for our GLSL project in-
clude extending our tool chain to implement a wider range of
metamorphic transformations, testing GLSL compilers from
a wider range of vendors, and eliciting feedback from vendors
on the bugs our technique finds. It would also be interesting
to investigate applying this metamorphic testing approach
to implementations of other programming languages.

5. ACKNOWLEDGEMENTS
Our thanks to Ajit Dingankar (Intel) and Vinod Grover

(NVIDIA) for liaising regarding compiler issues, to Paul
Thomson for feedback, and to Thibaud Lutellier for sug-
gesting use of the chi-square histogram distance. This work
is supported in part by the EPSRC-funded HiPEDS CDT
and a gift from Intel Corporation.

6. REFERENCES
[1] T. Chen, S. Cheung, and S. Yiu. Metamorphic testing:

a new approach for generating next test cases.
Technical Report HKUST-CS98-01, Hong Kong
University of Science and Technology.

[2] Khronos Group. Khronos invites industry participation
to create safety critical graphics and compute
standards, https://www.khronos.org/news/press/,
August 2015. Retrieved 26 January 2016.

[3] Khronos Group. The OpenGL shading language,
languge version 4.50, revision 5, January 2015.

[4] V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In PLDI, 2014.

[5] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core compiler fuzzing. In PLDI, 2015.

[6] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
PLDI, 2012.

[7] Q. Tao, W. Wu, C. Zhao, and W. Shen. An automatic
testing approach for compiler based on metamorphic
testing technique. In ASPEC, 2010.

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In PLDI, 2011.

