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In this paper we survey recent work on the use of abduction as a knowledge-based
reasoning technique for analysing software specifications. We present a general overview of
logical abduction and describe two abductive reasoning techniques, developed from the
logic and expert system communities. We then focus on two applications of abduction in
software engineering, namely, analysis and revision of specifications. Specifically, we
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changes to revise incorrect specifications. We then conclude with a discussion of open
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1. Introduction

Specifications are key products of the development process of a software system.
Requirements engineering focuses on the development of requirements specifications that
model real-world goals and environmental constraints of a system1 under construction[55].
Design is concerned with the development of specifications of software architectures and
their constituent components[33].

Independently of the underlying software development process, specifications are
continuosly subject to change and evolution. In the case of requirements specifications, for
instance, inconsistencies may arise during the requirements elicitation process, and changes
may be necessary in order to handle such inconsistencies[14; 40]. System requirements
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might also evolve because of environmental changes or to handle unforseen problems in a
system. This leads to changes in the requirements specifications that describe such
requirements. Changes in requirements specifications cause changes in design
specifications, which themselves lead to changes in the implementation. Analysis and
maintenance of specifications are therefore key activities in software engineering.

Various techniques for analysing specifications have been developed[26] and recently
an increasing research effort has been dedicated to investigate the use of formal methods at
different stages of the software development process, e.g.,[1; 4; 27; 52]. The rigour and
precision of formal techniques, such as model checking, theorem proving and logic-based
reasoning mechanisms like abduction[35; 41; 45], facilitate a better understanding of the
system to be developed by uncovering errors, inconsistencies, incompletenesses, which
might otherwise go undetected. The formal techniques differ from each other in various
ways and have advantages and limitations. Theorem proving techniques have been shown
to be successful in supporting verification of software specificiations[42], model checking
techniques were initially used in hardware verification and have started to become more
widely used to support the analysis and validation of (requirements) specifications[10;
34]. More recently, logic-based reasoning techniques such as goal-regression[53] and
abduction[37; 45; 48]have also been shown to be valuable techniques for analysing and
managing (requirements) specifications[41; 47; 53]. This chapter is a survey of recent
work on the use of one of these formal techniques –abduction– in software engineering.

In Artificial Intelligence (A.I.) abduction is one of three common modes of reasoning
(the other two being deduction and induction). In general terms, abduction is a useful
constructive technique for generating “explanations” or “plans” for given “observations” or
“goals”. In A.I., abduction has been shown to be suitable for automating tasks such as
diagnosis[12], planning [15], and theory and database updates[11; 25; 28]. Recent
research results have shown its applicability and utility in software engineering, as a
technique for supporting knowledge-based software development[35], and for facilitating
analysis and revision of specifications[41; 45; 47].

This chapter will provide an overview of these results, present a critical analysis of why
and when abductive reasoning is effective in software engineering, and illustrate how to
make use of such techniques. For the purposes of this paper, we assume specifications to
comprise of system descriptions (e.g., system requirements or system designs) and system
properties (e.g., required system’s invariants, safety properties, deadlocks). In this context,
analysis of a specification means consistency checking to verify the satisfaction of system
properties over a system description. Revision refers to the process of identifying changes
(i.e. additions or deletions) to a specification that would re-establish the correctness of the
specification.

The chapter is structured as follows. In Section 2, we define the notion of logical
abduction. In Section 3 we describe two examples of abductive reasoning techniques. The
first is an abductive proof procedure that uses logic programming[23] as the underlying
rule-based reasoning engine. The second is an abductive technique that uses a graph-based
approach[38] for reasoning about specifications. Sections 4 and 5 describe two main
applications of abduction in software engineering, namely, analysis and revision of
specifications. Illustrative examples will be given throughout the chapter. We will then
conclude with a discussion of directions for future work.
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2. Overview of Abduction

Abduction is commonly defined as the problem of finding a set of hypotheses (an
“explanation” or a “plan”) of a specified form that, when added to a given (formal)
specification, allows an “observation” or “goal” sentence to be inferred, without causing
contradictions. We consider here an example taken from[30].
Example 1.
Consider a specification D composed of the following rules:

rained-last-night→ grass-is-wet
sprinkler-was-on→ grass-is-wet
grass-is-wet→ shoes-are-wet

Now suppose that we observe that our shoes are wet, and we want to know why this is so. A
possible explanation is {rained-last-night}− if we add it to the above explicit domain-
specific description D it implies the given observation. Another alternative explanation is
{sprinkler-was-on}. Abduction is then the process of computing such explanations for the
given observation.

From the point of view of knowledge-based reasoning, the philosopher Pierce first
introduced the notion of abduction as one of three fundamental forms of reasoning, the
others being induction and deduction[43]. Informally, given a rule-based domain-specific
description D (e.g., a system description), some particular casesα (e.g., instances of system
behaviors), and a resultβ (e.g., a system property), deduction is the analytic process of
applying the general rules to the particular cases in order to infer the result (i.e. D∧α� β).
Within the same context, induction is “learning” some new rules Di after having seen
numerous examples ofβ andα (i.e. α ∧ β � Di), and abduction is using the result and the
general rules to infer the particular cases that explain such results (i.e.β ∧ D� α)2.

Abduction is therefore a reasoning process that computes explanations for given
observations. This reasoning process is in generalnon-monotonic3, because the explanations
generated are strictly dependent on the state of the domain-specific description D. If new
information is added to D, new explanations, possibly different from those generated
previously can be identified. A formal definition of abduction in logical terms is as follows.

Definition 1
Given a domain description D and a sentence (goal/observation) G, abduction is the process
of identifying a set∆ of assertions such that

1. D ∧ ∆ � G
2. D ∧ ∆ is consistent ÿ

The set∆ is required to satisfy two main criteria: (1) it is restricted to belong to a
domain-specific set of sentences, calledabducibles, and (2) it is minimal. The set of
abducibles are defined apriori to reflect some notion of causality with respect to the given
observations. For instance, in Example 1, {grass-is-wet} is also an explanation for the
observationshoes-are-wet. However, such assertion would explain one effect in terms of
another effect, sincegrass-is-wetcould itself be explained in terms of the cause {rained-
last-night}. To draw an analog example within the context of requirements specifications,
system behaviors can be seen as caused by system states and events in the environment.
Observations, such as violation of a system property, should therefore be explained in terms
of specific environmental events and states in which the system is when such events occur,
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rather then any other intermediate system state. The notion of abducibles helps, therefore,
tailor the notion of explanation to the particular application domain, as well as formalise the
given domain knowledge. From the knowledge representation viewpoint, in fact, abducible
facts should never appear as consequence of rules. For instance, if Example 1 had also
included the informationshoes-are-wet→rained-last-night, then rained-last-nightwould
not have been considered to be an abducible fact4. The minimality property means that the
abduced explanations should not be subsumed by other explanations. For instance, in
Example 1, the explanation {rained-last-night, sprinkler-was-on} for the observation
{ shoes-are-wet} is not minimal, since there are two other explanations {rained-last-night}
and {sprinkler-was-on} that subsume it.

The abductive reasoning process can be further refined by means ofintegrity
constraints[30]. In general, integrity constraints are used to define the class of legal models
of a given specification. For instance, in the case of requirements specifications, integrity
constraints could be the natural physics laws of the environment in which the system is
supposed to operate. In the presence of integrity constraints, abductive reasoning has to
generate legal explanations, namely, explanations that satisfy the given constraints. To take
this into account, the definition of abduction needs to be modified sligthly. Given a set I of
integrity constraints, condition 2 of Definition 1 needs to be replaced by the following
stronger condition:

2'. D ∧ ∆ is consistent, and D∧ ∆ � I

This alternative condition has the effect of further reducing the collection of alternative
explanations generated by the abductive reasoning process. If, for instance, in Example 1
we had the integrity constraint that the sprinkler can never be on, then the abductive process
would only have generated the explanation {rained-last-night}.

The applications of abduction illustrated in Section 4 and 5 take into account this notion
of integrity constraints.

3. Abductive techniques

The above overview of abduction is independent of any particular computational technique
used to implement abductive reasoning. In this section we illustrate two different
computational techniques for performing abductive reasoning. The first one is based on
logic programming, and the second uses reasoning on dependency-graphs. The choice of
these two techniques aims to provide the reader with two different viewpoints of abduction,
developed by two different knowledge engineering communities, the logic-based and the
expert system communities.

3.1 An abductive proof procedure using logic programming
Abductive logic programming focuses on the development of formal frameworks and
techniques for performing abductive reasoning within the (implemetation) context of logic
programming [23]. Informally, a logic program is a specific logic-based form of
implementation of a given specification, expressed in terms of Horn clauses extended with
negation as failure[7]. Horn clauses are rules of the form

A ← L1,…Ln.
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where eachLi is either an atomic piece of informationBj or its negation~Bj. The connective
~ is called negation as failure, and should be read as “not provable” from a given logic
program. The underlying reasoning engine is based on resolution[22].

An abductive proof procedure for logic programs with negation as failure was first
developed by Eshghi and Kowalski[16] and subsequently extended for different types of
(extended) logic programs (e.g., logic programs with classical negation). We will describe
here the basic structure of such procedure, which still remains at the core of all existing
abductive proof procedure for logic programming[30]. This procedure assumes, without
loss of generality, that it is convenient to define the set of abducibles among those
predicates that are not conclusions of any clause in a given logic program, and that the rules
define only positive literals. The first condition automatically ensures that the explanations
generated by the procedure are “basic” explanations, i.e. they are not definable in terms of
other explanations.

An abductive proof procedure for logic programming consists of two phases, an
abductive phaseand aconsistency phase, which interleave with each other. The abductive
phase is an extension of standard resolution. In standard resolution, selected (sub)goals are
unified and resolved with the conclusions of any rules. If this process fails, then the proof
fails. In the abductive phase, when a selected (sub)goal fails to resolve with the conclusion
of any of the given rules, then it isabduced. Each abduced assertion is temporarily added to
a set of abducibles that have already been generated. The entire new set of abducibles is
then checked for consistency with the specification, using the consistency rules (CC1) and
(CC2)5:

(A ∧ ~A) → ⊥ (CC1)
(A ∨ ~A) (CC2)

The consistency checking consists of verifying that (a) it is not the case that for some
atomic fact A, both A and ~A can be proved from the specification and a given current set
of abducibles, and (b) for each atomic fact A, it is either the case that A is proved or ~A is
proved. Because of the close world assumption of logic programs and the type of logic
programs considered, where negation does not appear in the consequence of any rule, the
two types of consitency checking will only need to be performed on the abduced facts. For
more details, the reader is referred to [30]. If the consistency checking succeeds, the
temporary assertion added to a current set of abducibles is permanently accepted in the set
of abducibles, otherwise it is discharged. The consistency phase may itself invoke the
abductive phase, in order to verify the inference of some intermediate sub-goals.

In the presence of domain-specific integrity constraints, the consistency checking has to
guarantee that the generated abducibles also satisfy those constraints. We illustrate such a
procedure in more detail via an example also taken from[30].

Example 2.
Consider the following (logic program) specification:

s ← ~ p
p ← ~ q
q ← ~ r
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We want to discover the possible explanations for the given observation s. The computation
is shown in Figure 1, using the box notation adopted in[30]. The proof in single line boxes
belong to an abductive phase, whereas the proofs in double line boxes to a consistency
phase. It succeeds, generating the set∆ = { ~p, ~r}. The abductive phase starts as a standard

resolution step; e.g., the goals resolves with the conclusion of the first rule generating the
new subgoal~p. At this point, since there is no rule with conclusion~p, this subgoal is
temporarilly added to the set of generated abducibles, that so far is just given by {~p}. Once
an assertion is abduced, the consistency phase begins. In this case, we check that the
abduced information satisfies (CC1). This means checking that the assertionp is not
provable. This checking succeeds if all possible ways (i.e. rules) of provingp fail. In this
case we have only one rule. To make it fail, we check that~q is not provable. At this point,
no rule with conclusion~q exists, but the integrity constraint (CC2) implies that failure of
~q is only allowed provided thatq is provable. The abductive phase is therefore again called
to compute the provability of this subgoal. By standard resolution, the subgoalq unifies
with the third rule and the new subgoal~r is generated. Since there is no rule with
conclusion~r, this is added to the set of abducibles and a new consistency phase is called.
This point is similar to the abduction step of~p. In this case however, the consistency
checking with (CC1) is immediate. The failure ofr is guaranteed by the fact that~r is
(abductively) assumed.

If the (logic program) description includes also some integrity constraints, then the
consistency phase has to check their satisfiabilty each time a new assertion is abduced. For
instance, if in the Example 2, there was also an integrity constraint of the form~(~p∧a),
having assumed~p, the consistency should also check thata fails. This would imply, by
(CC2) ~a succeeds, which means also abducing the~a. The final set of abducibles would
have also included some additional abduced assertions needed in order to verify the
integrity constraints.

To summarise, the abductive proof procedure based on logic programming described
above has the following characteristics:

Figure 1. Abductive computation for Example 2.

1. Prove s
1.1 Prove ~p

Assume∆1= {~p}
(CC1)
2.1 Fail to prove p
2.2 Fail to prove ~q

(CC2)
3.1 Prove q
3.2 Prove ~r

Assume∆2= {~p, ~r}
4.1 Fail to prove r
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1. It can be applied to logic program representations of given (system) descriptions.
Therefore, a mapping of such descriptions into a logic program is first needed.
Similarly, for any domain-specific constraint.

2. A notion of abducibles needs to be defined. This can be done by simply adding to
the logic program clauses of the form abducible-predicate(X), for each
propositional letter or predicate X that can be abduced.

3. Any existing implementation of abductive logic programming proof procedure can
be applied. Examples are given in[29].

3.2 Graph-based abduction and the HT4 approach
We now describe a second abductive technique, based on dependency-graph representations
of specifications. The technique was proposed by Menzies[35], within the context of a
knowledge level modelling approach to expert system design[39; 54]. Here, the
knowledge base of an underlying system is assumed to be composed of domain-specific
knowledge and a model of the underlying problem-solving inference process. For instance,
Clancey’s knowledge level modelling approach[6] assumes a “qualitative model”
(essentially a first-order theory) of the underlying domain knowledge, and a full network of
possible proof trees that could be generated from this qualitative model. This network is the
model of the inference process. A similar approach is adopted by Menzies in his abductive
framework HT4[35; 36]. This framework uses a graph-theoretic approach, rather then a
logic-based approach described in the previous section. A theory, about certain domain
knowledge, is given. This is essentially a dependency graph, whose vertices are
propositions that can take one of the three values {UP, DOWN, STEADY}, and the edges
are labelled with “++” or “ --”. An example taken from[35] is given in Figure 2. An edge
from a vertex X to vertex Y, labelled with “++”, means that the proposition Y being
UP/DOWN can be explained by the proposition X being UP/DOWN. An edge from a
vertex X to a vertex Y, labelled with “--”, means that the proposition Y being UP/DOWN
can be explained by the proposition X being DOWN/UP. To draw an analogy between this

representation of domain knowledge and the logic-based approaches, we can think of the
value UP being equal to the Boolean value TRUE, the value DOWN being equal to the
Boolean value FALSE, and the value STEADY being equal to TRUE∧FALSE6.

f
++

a x
++ --

g

--
b ++

Figure 2. An example of aqualitative theory
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The HT4 algorithm generates from a given qualitative theory a complete dependency-
graph, called a “super-theory”, which expresses the above meaning of the “++” and “--”
edges in terms of binary dependency relations between the three values that each vertex
could have. Figure 3, describes the super-theory generated from the qualitative theory given
in Figure 2. The HT4 framework uses this super-theory to generate abductive proofs. The
abductive reasoning is performed within a user-supplied task. A task is defined in terms of a
collection IN of input vertices (a subset of the vertices in the quality theory), a collection
OUT of outputs (data to be proved), and a notion of BEST. The latter is an operator that
selects from alternative abductive proofs a preferred one. Of course the notion of preferred
one is application-dependent. Different BEST operators are discussed in[35]
corresponding to applications such as prediction, qualitative reasoning, planning and
monitoring.

Given a task, HT4-style abduction is the search for all possible proofs (i.e. paths in the
dependency-graph) from a subset of vertices included in IN to a subset of vertices included
in OUT, such that no vertices in these proofs have contradictory values7. For instance, given
the super-theory described in Figure 3 and the sets IN={aUP, bUP}, and OUT={gDOWN,
fDOWN}, an abductive answer would be the separate collections of proofs shown in Figure
4. Note that, for instance, the path bUP→xDOWN→fDOWN is not included in the first
collection because it contains the vertex xDOWN which contradicts the vertex xUP in other
identified paths, and so vice-versa. The two collections of abductive proofs are called
worlds[35].

Figure 4. Twopossible abductive answers.

aUP

xUP

gDOWN

xDOWN

fDOWNbUP

aUP xUP gDOWN

fUP

bDOWN

&001

aDOWN

xSTEADY

xDOWN gUP

fDOWN

bUP

&002

gSTEADY &003

&004

Figure 3. The dependency graph generated from Figure 2.
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To summarise, the HT4 abductive procedure proposed by Menzies and described above
has the following characteristics:

1. It can be applied to specifications represented as qualitative theories, since these
can be transformed into full, extended dependency-graphs. Therefore, a mapping
of any given specification into the dependency-graph syntax is first needed. Note
that the vertices in the graph are propositions. The approach is therefore applicable
to propositional representation of system specifications. First-order theories could
be represented only to the extent that they can be partially evaluated into
equivalent ground theories.

2. There is no notion of abducible. The explanation generated in this approach
includes both basic information as well as intermediate information inferred during
the reasoning process.

3. Different definitions of the BEST operator facilitate the use of the same abductive
reasoning engine for supporting different types of reasoning: prediction, qualitative
reasoning, planning and validation.

4. The HT4 tool has gone through various phases of improvements and a description
of the underlying algorithm can be found in[35].

4. Application of Abduction in Software Engineering

As mentioned in the introduction, two crucial problems in software engineering are the
analysis and maintenance of specifications. Recent results have shown how abduction can
successfully be applied to software engineering in order to address these problems [35; 45;
47; 48]. The next two sections illustrate two different applications of abduction: abduction
for analysing specifications and abduction for revising specifications. Specifically, we will
illustrate how abductive reasoning allows: (a) detection of inconsistencies and/or property
violations, and identification of related diagnostic information, and (b) reasoning about
possible change(s) to perform on a given specification in order to resolve detected errors, or
to support consistency management in evolving specifications.

4.1 Analysing specifications
Specifications can be seen as (formal) descriptions that model an underlying system, within
a specific context. For instance, requirements specifications model a system in terms of its
interaction with the environment and user-goals. Specification analysis is therefore a means
of performing analysis of a model of the system rather than of the system itself. Assuming
that such a model is a faithful representation of the system, analysing specifications helps
identify problems in the system. For the purpose of this chapter, we focus on two particular
types of specification analysis, namely, analysis for (a) detecting inconsistencies and
violation of system properties, and for (b) identifying diagnostic information about detected
errors as a debugging aid for engineers.

4.1.1 Detecting inconsistencies.
Inconsistency detection can be seen as detection of a property violation, where the property
is a domain-independent rule of the form “for any sentence A (denoting either any system
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variable or any environmental entity), it cannot be the case that both A and¬A are inferable
from a given specification”. The validation of this property is computationally equivalent to
evaluating the satisfability of the overall specification, taken as a conjunction of formulae.
For first-order representations, this is an NP-hard problem. We will therefore restrict our
attention to propositional specifications or to first-order representations over finite domains
that can be instatiated and grounded down to propositional level.

Abductive reasoning can, in general, be used to detect inconsistencies by considering,
as an observation (goal), atomic instantiations of the formP(X)∧¬P(X), for each predicate
symbol and ground term used in the specification. If the abductive reasoning process
succeeds, i.e. it is able to identify a set of abductibles∆ that satisfies conditions (1) and (2)
of Definition 1, then the specification is inconsistent sinceP(X)∧¬P(X) can be derived from
it. Moreover, the set∆ would provide (consistent) diagnostic information for the
inconsistencyP(X)∧¬P(X) in terms of parts of the specification that lead to this
inconsistency. However, if the abductive reasoning technique fails to find such a∆, it is
either the case thatP(X)∧¬P(X) is not inferable from the specification or there is no
consistent way of constructing such an explanation∆. In that case we would not be able to
conclude that the given specification is consistent with respect to the predicateP(X).

The abductive approach developed by Menzies[35; 36] provides an alternative way of
identifying inconsistent information in a given specification. Instead of considering ground
individual inconsistencies as properties to validate, the HT4 abductive algorithm[35; 36]
identifies inconsistent facts in a given specification as side effects of an abductive reasoning
process for a given task. For instance, given a set of INputs and a set of OUTputs of a
specification (qualitative theory), the HT4 abductive reasoning process identifies all
consistent paths within the network of all possible proof trees that link the INput to the
OUTput. Paths that include contradictory propositions are separated in different worlds.
Therefore, in order to identify these different worlds, the HT4 abductive process identifies
the set of contradictory information. For instance, in the example illustrated in Figure 4 the
only contradictory information is the propositionx, since it can assume both values UP and
DOWN. Of course the set of contradictions identified by the HT4 abductive algorithm
depends on the task under consideration. However, considering a task whose set of INputs
is the entire set of inputs of a given specification, and whose set of OUTputs covers all
possible outputs of a specification, the HT4 abductive reasoning process is able to identify
all possible contradictory information that is included in a given specification. This is
possible because the HT4 algorithm records as abductive answers all possible proof trees,
separating the ones which are inconsistent with each other in different worlds. In the
abductive proof procedure for logic programming, on the other hand, abductive information
which is inconsistent with the given specification is simply rejected. The final abductive
answers are only those∆ (parts of the specification) that are consistent with the
specification itself.

An additional advantage of using the HT4 algorithm for analysing specifications is the
possibility of reasoning in the presence of inconsistencies. As illustrated in[37], given
some (possibly inconsistent) specification and some reasoning task, HT4 is still able to
generate abductive answers for the task despite the presence of inconsistencies. These
answers are simply collected in different worlds, and the algorithm will generate as many
worlds as there are inconsistencies in the specification. This is in particularly useful for
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analysing multi-viewpoint specifications, which may be in conflict with each other. For
examples and further details on this topic the reader is referred to[37].

4.1.2 Using abduction to validate system properties.

Another type of specification analysis is validation of system properties. The work in[45]
provides an example of the application of abduction for this purpose. Specifically, it shows
how abductive reasoning mechanisms can be used to detect violation of properties like
system invariants in event-based specifications. The basic idea and methodology described
in [45] is, in principle, applicable to any type of specifications and system properties. Given
a specification composed of a system description and some system invariants, the abductive
reasoning mechanism can be used to check if the system invariants are satisfied by the
specification. For each system invariant the abductive reasoning mechanism is able to
identify a complete set of counterexamples, if any exist, to the invariant. The information
included in the counterexample depends on the type of specification under consideration.
For instance, in the case of event-driven specifications, such counterexamples are expressed
in terms of a symbolic current state of the system and associated event-based transition. If
the abductive reasoning mechanism fails to find an answer, this establishes the validity of
the invariant with respect to the system description. More specifically, this application of
abduction to specification analysis employs the standard notion of abduction, specified in
Definition 1, in refutation mode. As illustrated in Figure 5, the goal for the abductive

reasoning mechanism is the negation of a given system invariant. If the abductive proof
procedure succeeds in identifying a set of abducibles∆, then the invariant is violated, since
its negation can be inferred from the specification. The∆ provides the “faulty” behaviours
of the system that contradict the given invariant. Therefore, the set∆ can be considered to
be a set of counterexamples for the given system invariant.

Whereas the theoretical framework of abduction can in principle be applied to any type
of system invariant, existing abductive proof procedures only accept instantiated sentences8

as observations. This provides some constraint on the practicality of the abductive-based
analysis process – only invariants that can be reduceda priori to some equivalent ground
representation can be analysed using the existing abductive techniques illustrated in Section
3. An example of application of abduction for anlaysing system invariants is given below.

Specification� Invariant

There is no∆ such that

Specification∪ ∆ � ¬ Invariant

Using abduction in “refutation mode”

Figure 5. Using abduction to analyse system invariants
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Example 3. Using abduction to analyse invariants in SCR Specifications.
The results shown in[45], illustrate how abductive logic programming techniques can be
used to analyse single-state system invariants in Software Cost Reduction (SCR)
specifications[21]. These are properties of the form∀t. I(t), which states that a required
system invariant I must always hold. This is typical for safety-critical system properties,
where an invariant I states some logical expression of system/environment properties as a
function of specific system states (e.g.,∀t.[system_state(t)→ expression(t)]). Examples of
such properties in SCR specifications are mode invariants[19]. For instance, in the case of
a cruise control system specification[2; 20], a system invariant I would be:

system_cruise→ system_ignited∧ system_running∧ ¬brake

Within the logical representation of SCR specifications adopted in[45], the above invariant
can be formalised as:

∀t. Holds(cruise,t)→ (I)
Holds(ignited,t)∧ Holds(running,t)∧¬Holds(brake,t).

wheret denotes the real-life time of the system. The results shown in[45], illustrate that the
analysis task for verifying if a given invariant is satisfied in a given SCR specification can
be reduced to a ground propositional level in the following way. Given a (first-order) logic
representation of an SCR description of a required system behavior (i.e. a mode transition
table), denoted with EC(N), where N is an underlying time structure, and given, for
instance, the above invariant I, the analysis problem:

EC(N)� I
can be reduced to the following two simpler tasks:

(1) EC(N)� I(0)
(2) EC(S)∧ I(Sc)� I(Sn)

where EC(S) is a ground instantiation of the SCR description with respect to two symbolic
time points “Sc”and “Sn”, representing a “current time” and a “next time” respectively. The
first task is a simple theorem proving problem. The second task is supported by the
application of abductive reasoning in refutation mode. So, to show that EC(S)∧ I(Sc) �
I(Sn) it is equivalent to show that the abductive proof procedure for logic programming fails
to find a ∆ such that EC(S)∧ I(Sc) ∧ ∆ � ¬ I(Sn). Note that in this case the observation
(goal) given to the abductive technique is¬I(Sn), which is the ground formula:

[Holds(cruise,Sn)∧
[Holds(ignited,Sn)∨ Holds(running,Sn)∨¬Holds(brake,Sn)]

If, on the other hand, the abductive proof procedure produces a set∆ such that EC(S)∧
I(Sc) ∧ ∆ � ¬ I(Sn), then this∆ is an explicit indicator of where in the SCR description
there is a problem. Detailed results of a case study using abduction to SCR specifications is
given in[45].

The advantage of applying such an abductive approach to analyse system invariants is
that it provides a formal technique for verifying properties and detecting errors that (a) does
not rely on complete descriptions of the system specification and domain knowledge, and
(b) provides diagnostic information about the detected errors (e.g., violation of safety
properties) as a debugging aid for the engineer. It is the integration of these two features
that distinguishes this (logic-based) abductive approach from other existing formal
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techniques such as those based on model checking or theorem proving[10]. The current
limitation is that results so far have only shown the applicability of abduction to specific
types of invariants. The authors have, however, argued in[45] that the same approach can
be extended to cover other types of system properties such as liveness, deadlock, etc.

4.2 Revising specifications

One application of abduction is “theory change” [28]. This is particulary useful because it
can support automated generation of simple changes of system specifications, in order to
either resolve some detected inconsistencies or re-establish some violated system
properties. A theory update problem is the problem of identifying changes (e.g.,
transactions) to be performed on a given theory so that some change request is satisfied (i.e.
can consistently be performed). Examples of update requests are, for instance, addition
(resp. deletion) of information, which in logic terms means requesting that the information
should or should not be inferable from a given specification. Using abduction for
performing such tasks means essentially interpreting the update request as an observation to
be explained, and the explanation of the observation as changes (transactions) to be
performed.

More specifically, using Inoue and Sakama’s definition[25], given a specification S
and a pre-defined collection of abducibles Ab, if the change request is of the form “add R”
(resp. “delete R”), the abductive reasoning generates a pair (∆+, ∆−), where∆+ and ∆− are
ground instances of elements from Ab. The abduced facts in∆+ are information to be added
to the specification , whereas the abduced facts in∆- are information to be deleted from the
specification. The pair (∆+, ∆−) has therefore to satisfy the following two conditions9:

1. (S ∪ ∆+) \ ∆−
� R (resp. (S∪ ∆+) \ ∆−

� R)
2. (S∪ ∆+) \ ∆− is consistent

The change transaction is then given by the addition of each abduced fact in∆+ and the
deletion of each abduced fact in∆-. The new specification is given by (S∪ ∆+) \ ∆−. A
diagrammatic representation illustrating the use of abduction for revising specifications is
shown in Figure 6. As an example, consider the specification S given by {p(x)←∼q(x),

q(x)←b(x), b(a)} and the change requestinsert p(a). The abductive proof procedure is
applied, treatingp(a) as the observation to explain, and generating a∆= (∆+,∆-), with ∆+= ∅

Abductive
procedure

S

Change
request

∆

Revision

S’

Figure 6. How to use abduction for changing specifications
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and ∆-={ ∼b(a)}. The resulting revision change is then simply to deleteb(a), leading to the
new specification S’={p(x)←∼q(x), q(x)←b(x)} . For more examples the reader is referred
to [28].

The use of a logic programming abductive proof procedure for reasoning about change
has the following characteristics. As shown in the example, the theory (specification) is
composed of some fixed knowledge; e.g., a set of rules that is not subject to change, and
explicit knowledge in terms of atomic facts that can be changed. The abductive procedure
takes the update request as its observation to explain, and generates an abduced explanation
∆. The negated facts in∆ give the∆− used in the above definition and the positive facts in∆
give the∆+ . This set∆ is then mapped onto a transition operation: negated facts are deleted
from the given specification and positive facts are added.

In order to apply such a technique for reasoning about change in software
specifications, we need to define what are the fixed and modifiable parts of our given
description. The fixed part can either be domain-specific knowlede about change for a given
type of specification, so considering the whole specification modifiable, or a part of the
specification that we can safely assume not to be subject to change, for instance the set of
system’s properties or some domain knowledge. Changes can be detected using only the
fixed part of the specification. However, the only changes that abduction can help identify
are single assertions and not more complex information such as new rules. This is
somewhat restrictive, since, in a real-setting, changes to specifications can have different
levels of complexity. However, as shown in[41; 47], this kind of abduction does begin to
address the difficult problem of specification management. Two example applications of
abduction for revising specifications are described in more detail in[41; 47].

4.2.1 Using abduction to evolve inconsistent (requirements) specifications.

The work in [41] shows how abduction can be used for handling inconsistencies in
(requirements) specifications. The approach provides an inconsistency handling mechanism
that supports incremental evolution of specifications, by identifying changes that address
some specification inconsistencies, while leaving others[17]. Specifications are assumed to
be composed of many partial specifications (typically developed by different stakeholders),
related to each other by means of pre-defined “consistency rules”. Each partial specification
may or may not contain logical inconsistencies. However, the overall specification is
defined to be inconsistent10 whenever at least one of the pre-defined rules is violated. If a
particular consistency rule is violated, the abductive reasoning mechanism identifies
(evolutionary) changes to perform on the specification, such that the particular consistency
rule is no longer violated. In order to facilitate incremental evolution of specifications, the
partial specifications and consistency rules are assumed to be represented in quasi-classical
(QC) logic [24] – an adaptation of classical logic that allows reasoning in the presence of
inconsistencies without trivilisation11. The novelty of this work is in applying existing
abductive techniques for logic programming but within the more realistic setting of
inconsistent specifications. An example of a library system case study is described in[41].
A simplified version is given here.

Example 4.
The requirements of a library system include the following partial specification:
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“… individuals should be allowed to borrow books from a library if they need these
books and if the books are available. A book is available if there is one copy in the
library. Once a book is borrowed, it is no longer available for others to borrow.
Moreover, a book copy is needed and it is in the library ”.

It includes the consistency rule that “if a book is borrowed then it is no longer available”.
The full specification given in[41] violates such rule. This means that a QC logical
representation of the negation of this rule, i.e.BorrowingBook∧ BookAvailableis derivable
from the QC representation of the specifications. Resolving this inconsistency means
eliminating one of the above two literals,BorrowingBookor BookAvailablefrom the set of
consequences of the specification.

The abductive approach developed in[41], uses an algorithm for mapping QC
specifications into logic programs, and then uses existing abductive techniques for logic
programming to identify changes that would resolve the detected inconsistency. Part of the
logic program generated for this example is given below, where the predicateHoldsS
provides a reified representation of the QC formulae12. The set of abducibles is given by the
atomic predicateHoldsSwhose content are names for single atomic QC formulae, and they
are not in the left-and-side of any logic program rule. The set of rules given below
correspond to the fixed part of the specification, whereas the single atomicHoldsSpredicate
is that part of the specification that can be modified.

HoldsS(BookAvailable)←
HoldsS(BookInLibrary),
HoldsS(BookInLibrary→ BookAvailable).

HoldsS(BookAvailable)←
HoldsS(BookCopy),

HoldsS(BookCopy→ BookAvailable).
HoldsS(BookInLibrary→ BookAvailable)←

HoldsS(BookCopy),
HoldsS((BookCopy∧ BookInLibrary)→ BookAvailable).

HoldsS(BookCopy→ BookAvailable)←
HoldsS(BookInLibrary),
HoldsS((BookCopy∧ BookInLibrary)→ BookAvailable).

HoldsS((BookCopy∧ BookInLibrary)→ BookAvailable).
HoldsS(BookCopy).
HoldsS(BookInLibrary).
HoldsS(BookNeeded).

To apply the abductive technique for logic programming to the above logic program to
resolve the detected inconsistency, the deletion ofBookAvailableshould be treated as the
change request, since this will resolve the violation of the given consistency rule. Part of the
abductive reasoning performed in this case is described in Figure 7. The abductive proof
identifies two alternative changes∆- = { ~HoldsS(BookCopy)} and ∆- =
{ ~HoldsS(BookInLibrary)} , which lead to two change transitions,delete BookCopyor
delete BookInLibraryfrom the given specification.

For futher details on this application of abduction for inconsistency handling the reader
is referred to[41].
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4.2.2 Using abduction to manage consistency in specifications.

The work described in[46; 47; 48] takes a different perspective on the problem of
specifications revision. In particular, it follows the more traditional line of research on
formal techniques for analysing and managing the impact of changes, where the starting
point is a consistent specification, and the revision process is a process of re-stablishing
consistency in order to accommodate a given change request. Abduction in this case is used
to identify additional changes on the given specification so as to re-establish consistency.

In [46] Satoh describes a logic approach based on abductive reasoning for adding and
deleting “pollution markers” from a given specification in order to manage consistency after
a change has been performed. The idea of pollution markers for inconsistency handling was
first introduced by Balzer[3] as a technique for treating inconsitencies as exceptions and
adding or deleting such markers in order to isolate these exceptions (and therefore the
inconsistencies) from the rest of the data. Satoh, on the other hand, proposes an abductive
technique (a) to help identify these exceptions and the associated pollution markers to
add/delete, and (b) to define a revision operator that defines the new specification after an
update has been performed. We illustrate the approach via an example taken from[46].

Example 5.
Consider a specification which includes the following constraint:

“Required working hours, R, for a day, for an employee P, must be equal to actual
total working hours, T, of all the projects for a day, D”.

Now suppose that the specification states that the total working hours is calculated as the
sum of the hours for two projects A and B, and that for a particular employee “Bob”, his

1. Prove ~HoldsS(BookAvailable)

Assume∆1={~HoldsS(BookAvailable)}
(CC1)
2.1 Fail HoldsS(BookAvailable)

2.2(a) Fail HoldsS(BookCopy) 2.2(b) Fail HoldsS(BookCopy→ BookAvailable).

(CC2) 2.3 Fail HoldsS(BookInLibrary)

3.1Prove ~HoldsS(BookCopy) (CC2)

Assume∆2={~HoldsS(BookAvailable), 3.1Prove ~ HoldsS(BookInLibrary)

~HoldsS(BookCopy)} Assume∆2={~HoldsS(BookAvailable),
(CC1) ~ HoldsS(BookInLibrary)}
4.1 Fail HoldsS(BookCopy) (CC1)
4.2√ 4.1 Fail HoldsS(BookInLibrary)

4.2√

Figure 7. Apartial abductiveproof for managing the change request “delete((BookAvailable)”



On the Use of Logical Abduction in Software Engineering 17

required hours are 60 and his hours for project B are 30. This specification can be
implemented by the following logic program:

th(P,D,T )← pA(P,D,X),pB(P,D,Y), T = A+B.
rh(bob,10,60).
pB(bob,10,30).
⊥ ← rh(P,D,R), th(P,D,T), R≠T.

whereth(P,D,T)expresses that the total hours for an emplyeeP for a dayD is T, pA(P,D,X)
that the hours for an emplyeeP for a day D on the projectA is X, and similarly for
pB(P,D,Y)and rh(P,D,R) that the required hours for an emplyeeP for a dayD is R. Note
that the last rule is an integrity constraint that defines the constraint given in the
specification. Each constraint is then rewritten into a new constraint, following a procedure
defined in[46], to include information about possible pollution markers. For instance, the
above constraint is rewritten as follows:

⊥ ←rh(P,D,R), th(P,D,T), R≠T, (I1)
∼pm(rh(P,D,R),th(P,D,T)),∼add*(pm(rh(P,D,R),th(P,D,T))).

wherepmexpresses a predicate for the pollution marker andadd* is abducible information.
Suppose now that the leader of project A updates the date withpA(bob,10,40). This

update violates the constraints in the specification since it makes the total hours forBob
equal to 70 for day 10, while his required hours for day 10 are 60. The abductive proof
procedure for logic programming then considers the above integrity constraint as the goal to
be satisfied. Therefore, sincerh(bob,10,60), th(bob,10,70), 60≠70 are provable it must be
the case that either the predicate ∼pm(rh(P,D,R),th(P,D,T)), or
∼add*(pm(rh(P,D,R),th(P,D,T)))should fail, for the particular instance valuesP=Bob,
D=10, R=60 and T=70. Sinceadd* is a pre-defined abducible predicate, the abductive
procedure tries to fail the antecedent∼add*(pm(rh(bob,10,60),th(bob,10,70))). This means
trying to proveadd*(pm(rh(bob,10,60),th(bob,10,70))). This predicate can then consistently
be added to the set of abducibles ∆, giving the answer
add*(pm(rh(bob,10,60),th(bob,10,70))). The transaction operation on the given
specification will then add to the specification the pollution marker:

pm(rh(bob,10,60),th(bob,10,70))

and the following two constraints:

⊥ ← ∼rh(bob,10,60),∼del*(pm(rh(bob,10,60),th(bob,10,70))). (I2)
⊥ ← ∼th(bob,10,70),∼del*(pm(rh(bob,10,60),th(bob,10,70))). (I3)

This is because the pollution marker states that there is an exception given by the
atomic predicatesrh(bob,10,60)andth(bob,10,70), and that if subsequentely there are other
changes to the specification for which the constraint in the specification is no longer
violated, we will need to delete the pollution marker corresponding to the previous
violation. So, for instance, suppose that the leader of the project B deletespB(bob,10,30)
and replaces it withpB(bob,10,20). Then the violation of the constraint no longer exists
because the total number of hours is now equal to 60. In this case, the abductive proof
procedure tries to satisfy each of the above integrity constraints. Constraint (I1) is satisfied
because it is not the case that60≠60, and constraint (I2) is also satisfied because
∼rh(bob,10,60)fails sincerh(bob,10,60)is in the specification. The important step is now in
the analysis of constraint (I3). The new total number of hours for bob is now 60, so the
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predicate ∼th(bob,10,70) succeeds, therefore it must be the case that the predicate
∼del*(pm(rh(bob,10,60),th(bob,10,70)))fails to make the constraint satisfied. Sincedel* is
also another pre-defined abducible predicate, to fail
∼del*(pm(rh(bob,10,60),th(bob,10,70)))the abductive proof procedure can consistently
assume the predicatedel*(pm(rh(bob,10,60),th(bob,10,70))). This abducible states that the
pollution marker regardingrh(bob,10,60)and th(bob,10,70))can be deleted. Hence the
transaction operation will then deletepm(rh(bob,10,60),th(bob,10,70))and the above two
integrity constraints (I2) and (I3).

A similar approach has been presented in[48], where the abductive proof procedure for
logic programming is also used for consistency management in order to accommodate
changes in a specification that can violate required constraints. Specifications are translated
into logic programs, as shown above, and constraints rewritten as special integrity
constraints, where some auxiliary predicate likeadd* and del* are appropriately added in
order to keep trace of the particular instances that violate these integrity constraints. Such
instances are then mapped onto assertions to be added or deleted from the specification in
order to re-establish consistency, in a similar way to to the addition and deletion of
pollution markers to/from specifications. The difference between the last two lines of
research work is that the addition and deletion in the latter case is for information already
included in the specification, rather then some external artifact like pollution markers. For
further details the reader is referred to[48].

5. Conclusion and Future Work

In this paper we have surveyed a number of research results and formal approaches for
using abduction in software engineering. We have seen how two different abductive
reasoning techniques, based on logic programming and dependency graphs, can facilitate
both analysis and revision of specifications. In particular, abductive logic programming has
been shown to be suitable for detecting violation of system properties and for identifying
diagnostic information as a debugging aid for engineers. This diagnostic capability, typical
of abduction, is indeed common to both techniques described in this paper, making them
also suitable for supporting automated generation of explanations for a given domain
related property. For instance, in the case of graph-based abduction, proof trees can be
constructed from some given qualitative theory description of a specifications that provides
models or descriptions of how certain OUTput information can be achieved given certain
INput data. These descriptions can be seen as explanations for the given OUTput within a
pre-defined context (drawn by the given INput). As an additional benefit, because of the
ability to construct such explanations consistently the graph-based abductive approach can
at the same time identify all or part of the inconsistencies included in the given
specification, thereby providing automated support for inconsistency detection.

As a second application of abductive reasoning, we have illustrated the use of
abduction for revising specifications, both in the case of evolving inconsistent
specifications, and for managing consistency after performing an update. The first type of
application is motivated by the fact that, in practice, inconsistency is inevitable in real large-
scale specifications[3; 13; 49]. Therefore, living with inconsistency during evolutionary
development is a fact of life, andinconsistency handlingmechanisms need to support
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incremental evolution of specifications (i.e. identifying changes that address some
specification inconsistencies, while leaving others). The second application on the other
hand proposes abduction as a technique for reasoning about how to re-establish consistency
in a given specification, once this has been broken by performing some (possibly
evolutionary) changes.

A variety of other techniques have been developed for analysing and managing
requirement specifications. These range from informal but structured inspections [18], to
more formal techniques such as data mining, machine learning, and case-based reasoning.
An example of inspection techniques is perspective-based reasoning [50]. This is a
scenario-based technique that provides procedural guidance on how to inspect requirements
documents written in English. The identification of faulty requirements in this technique is
based on answering specifically tailored questions during the development of the
specifications. These questions are themselves based on a predefined taxonomy of errors
such as ambiguous information. Abductive reasoning is a much more general analysis
technique, which can be appropriately tailored to analyse any type of specific domain-
dependent system property. Moreover, the rigor of the underlying reasoning process
guarantees a complete description of existing errors. Data mining [31] and machine learning
[51] are known as techniques forknowledge discovery. This means, given a sample of data
(in the case of data mining) or positive/negative examples (in the case of machine learning),
these techniques are able to abstract such data into new rules. These can subsequently, and
if necessary, be added to the given knowledge base. Abduction does not generate new rules.
It only defines how to instantiate the truth value of a special set of propositions, so that the
resulting model of the specification would satisfy a given observation/goal. Hence, machine
learning and data mining are in their nature unsound reasoning processes, whereas
abduction is a fully sound and consistent reasoning technique. Case-based reasoning [32] is
another example of a (semi-)formal technique used for understanding problems and
proposing solutions. This technique differs, however, from abduction in the fact that it
assumes the existence of a large library of past-cases; these cases are then used either to
generate solutions or as examples to illustrate an existing problem. Abduction, on the other
hand, requires only the specification and the invariants of a system to perform its analysis.

Finally, abductive reasoning also differs from other formal techniques like those based
on model checking or theorem proving [10] or logic-based approaches (e.g. [35; 47; 52]).
The results illustrated in this paper therefore provide some valuable foundations for the use
of abduction in software engineering, as well as raising some interesting and challenging
research issues for future work. The ability to perform automated analysis and generation of
counterexamples when errors are detected makes abduction comparable to other existing
formal techniques such as those based on model checking[1; 8; 9; 10], and also highlights
some interesting differences. Model checking techniques often require complete description
of the initial state(s) of the system in order to compute successor states, and the application
of abstraction techniques to reduce the size of the state space. In contrast, abduction doesn’t
necessarily rely on a complete description of some initial system state, as shown in the case
study given in[45]. Moreover, because of the goal- or property-driven characteristic of the
abductive techniques it does not require abstraction and it can support reasoning about
specifications of systems whose state-spaces may be infinite. However, the practical
application of abduction to specification analysis in software engineering is still at an early
stage of development. Further research is needed to extend existing results in order to cover
a wider spectrum of specification analyses that take into account various forms of system
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properties as well as different types of specifications. This will consolidate the existing
theoretical foundations for the development of efficient, logic-based methods for automated
analysis of specifications using abduction. Their practicality will then need to be measured
using a wide range of case studies.

As far as specification handling is concerned, the use of abduction is still at its initial
stages of development. A variety of future directions can be taken from the existing results
shown in this chapter. In particular, the development of a framework that combines
abduction with induction might be useful. The identification of possible changes on a
specification by abduction can only be related to single assertion. However, the
counterexamples provided by abductive reasoning could be used by some inductive
reasoning process in order to identify, by means of a learning process, more elaborate
changes to perform on a given specification. Appropriate interleavings between abductive
and inductive reasoning could provide a sound, logic-based approach to the specification
management process.
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1 Throughout the chapter we will not make any distinction between a system and a software system;
these terms are used interchangebly.
2 The symbol� denotes the particular reasoning process: deduction, induction or abduction.
3 Recall that a reasoning mechanism isnon-monotonicif the addition (or deletion) of new information
to (from) a specification does not necessarily preserve the set of derivable information (e.g., [5; 41].).
4 In this specific case, the domain description would also cause the resoning process to loop.
Techniques for addressing loop problems in abduction can be found in [30].
5 These consistency rules reflect, respectively, the standard notion of classical inconsistency and the
property of “completion”, which is typical of the logic programming semantics. Note that abductive
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proof procedures for other types of logic with different underlying semantics may not necessarily need
to include such consistency constraints.
6 Note that in the super-theory given in Figure 3 the STEADY vetices are essentially end points,
points of inconsistencies, and therefore cannot be used to explain other information (i.e. they don’t
have any children in the dependency-graph representation).
7 This feature corresponds to the notion of a consistent abductive explanation, which is stated in
condition 2 of Definition 1.
8 This is the main reason why existing abductive reasoning mechanisms are proof procedures that
always terminate.
9 The symbol \ denotes the standard operation of subtraction between sets. Note that either∆+ or ∆−

can be empty sets, and that∆+∩ ∆− =ÿ.
10 The word inconsistency means in this case violation of consistency rules. Of course if the
consistency rule is of the form A∧ ¬A →⊥, then inconsistency means also logical inconsistencies.
11 Trivialisation in classical logic is the inference of arbitrary information from an inconsis-
tent specification.
12 The content of the predicateHoldsSshould be read as a constant name.


