
Parallel Multilevel Algorithms for Hypergraph

Partitioning

Aleksandar Trifunović ∗ William J. Knottenbelt

Department of Computing, Imperial College London, South Kensington Campus,
London SW7 2AZ, United Kingdom

Abstract

In this paper, we present parallel multilevel algorithms for the hypergraph parti-
tioning problem. In particular, we describe schemes for parallel coarsening, parallel
greedy k-way refinement and parallel multi-phase refinement. Using an asymptotic
theoretical performance model, we derive the isoefficiency function for our algo-
rithms and hence show that they are technically scalable when the maximum ver-
tex and hyperedge degrees are small. We conduct experiments on hypergraphs from
six different application domains to investigate the empirical scalability of our algo-
rithms both in terms of runtime and partition quality. Our findings confirm that the
quality of partition produced by our algorithms is stable as the number of processors
is increased while being competitive with those produced by a state-of-the-art se-
rial multilevel partitioning tool. We also validate our theoretical performance model
through an isoefficiency study. Finally, we evaluate the impact of introducing par-
allel multi-phase refinement into our parallel multilevel algorithm in terms of the
trade off between improved partition quality and higher runtime cost.

Key words: parallel hypergraph partitioning, parallel graph partitioning, parallel
sparse matrix–vector multiplication, sparse matrix decomposition, load balancing,
data partitioning, VLSI circuit design

1 Introduction

Intelligent a priori data partitioning enables the efficient parallelisation of
many sparse irregular problems by reducing interprocessor communication

∗ Corresponding author
Email addresses: at701@doc.ic.ac.uk (Aleksandar Trifunović),

wjk@doc.ic.ac.uk (William J. Knottenbelt).

Preprint submitted to Elsevier Science 18 November 2007

while maintaining computational load balance. Graph and hypergraph parti-
tioning decomposition models have been widely used in this context, in partic-
ular in the fields of VLSI circuit design [3,36,46] and matrix decomposition for
parallel computation [4,12–15,20,21,50,51]. Hypergraph models are in general
preferred to graph models due to their greater expressiveness that overcomes
the well documented limits of the graph partitioning approach [12,13,20,31,32].

Serial graph and hypergraph partitioning algorithms have been studied exten-
sively [2,3,5,11,17,23,24,27,33,35,36,38,40,42,44,45]. Many of these are based
on the multilevel approach [2,5,33,35,36,38,40], which has three main phases.
Firstly, during the coarsening phase, the original (hyper)graph is coarsened to
successively smaller (hyper)graphs. Next, during the initial partitioning phase,
the smallest (hyper)graph in this sequence is partitioned. Finally, during the
uncoarsening phase, this partition is projected back through the sequence of
successively larger (hyper)graphs onto the original (hyper)graph, with heuris-
tic refinement applied at each step.

Serial hypergraph partitioning algorithms are limited by the computing power
and memory capacity of a single workstation. In this paper, we address this
limitation by describing the first parallel algorithms for the hypergraph parti-
tioning problem. Our parallel algorithms are based on the multilevel paradigm,
specifically a parallel coarsening algorithm as well as two parallel refinement
algorithms – a parallel direct k-way scheme and its parallel multi-phase adap-
tation. We also demonstrate scalability of the parallel multilevel algorithms
under a theoretical performance model and the assumption of low maximum
vertex and hyperedge degrees. The parallel coarsening algorithm, the paral-
lel direct k-way refinement algorithm and their theoretical scalability analysis
were first described in our earlier conference papers [48,49]. These are pre-
sented here in distilled and refined form to make the paper self-contained.
We further evaluate the empirical performance of our parallel algorithms on
a Beowulf cluster, partitioning a number of hypergraphs from application do-
mains ranging from biology to VLSI circuit design. We test the scalability of
our parallel algorithms’ runtime and partition quality, and estimate the ex-
pected improvement in partition quality when applying parallel multi-phase
refinement.

The remainder of this paper is organised as follows. Section 2 outlines the
preliminaries and background material on serial hypergraph partitioning al-
gorithms. Section 3 presents our parallel multilevel hypergraph partitioning
algorithms and theoretical scalability analysis. Section 4 presents the experi-
mental evaluation and Section 5 concludes.

2

2 Related Work

2.1 Problem Definition

Formally, a hypergraph is a set system (V, E) on a set V , here denoted H(V, E),
such that E ⊂ P(V) \ {∅}, where P(V) is the power set of V [7]. We call V
the set of vertices and E the set of hyperedges. Hypergraphs arising from parti-
tioning problems are weighted, in that a scalar weight is associated with each
vertex and hyperedge. When every hyperedge in a hypergraph has cardinality
two, the resulting set system is better known as a graph. When partitioning
problems lead to identical hyperedges in the hypergraph model, we replace
these with a single hyperedge whose weight we set to be the sum of the weights
of the identical hyperedges.

We say that a hyperedge e (vertex v) is incident on a vertex v (hyperedge
e) if and only if v ∈ e. Vertices u, v ∈ V are adjacent if and only if there
exists a hyperedge e ∈ E such that u ∈ e and v ∈ e. The degree of a vertex
(hyperedge) is the number of hyperedges (vertices) incident on that vertex
(hyperedge). The vertex-edge incidence matrix [6] of a hypergraph H(V, E),
V = {v1, . . . , vn} and E = {e1, . . . , em}, is the n × m matrix A = (aij) with
entries

aij =

1 if vi ∈ ej

0 otherwise
(1)

The vertices in a hyperedge are also called its pins and the total number of pins
in the hypergraph is given by the number of non-zeros in the incidence matrix
A. Hypergraph partitioning seeks a partition of the hypergraph that optimises
an objective function subject to balance constraints. A k-way (k > 1) partition
Π ⊂ P(V) of the hypergraph H(V, E) is a finite collection of subsets of V (or
parts), such that Π = {P1, . . . , Pk}, Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ k and
⋃k

i=1 Pi = V .

In the domain of VLSI Computer-Aided Design, a common problem involves
dividing system components into clusters such that cluster interconnect is
minimised. The vertices of the hypergraph can be used to represent the com-
ponents of the circuit and the hyperedges can be used to represent the nets
connecting these components [46,3]. Similarly, the decomposition of a sparse
matrix across processors for parallel sparse matrix–vector multiplication may
be modelled by a number of hypergraph models that correctly quantify the
total communication volume [12–15,50,51].

3

The partitioning objective function fo(Π) is usually defined to be a cut metric
on the hyperedges. We say that a hyperedge e ∈ E is cut by a partition Π if
there exist at least two vertices v, w ∈ e such that they have been allocated to
distinct parts. The number of distinct parts that the vertices of the hyperedge
have been allocated to gives the number of parts spanned by the hyperedge.
The two objective functions most commonly occuring in hypergraph partition-
ing applications are the hyperedge cut (defined in equation 2) and the k − 1
(defined in equation 3) objectives.

fo(Π)=
∑

ei∈E,λi>1

w(ei) (2)

fo(Π)=
∑

ei∈E

(λi − 1)w(ei) (3)

In equations 2 and 3, λi denotes the number of parts spanned by hyperedge ei
under the partition Π, while w(ei) represents the weight of hyperedge ei. Note
that when a two-way partition is sought (often called (hyper)graph bisection
in partitioning literature), the k − 1 objective reduces to the (hyper)edge cut
objective. We note further that, from a partitioning point of view, it is safe to
ignore hyperedges with cardinalities less than two.

The partitioning constraint in defined in terms of part weights. The weight Wi

of a part Pi ∈ Π is given by the sum of the weights of its constituent vertices.
Given a prescribed balance criterion 0 < ǫ < 1, the goal is to find a partition
Π = {P1, . . . , Pk} such that:

Wi< (1 + ǫ)Wavg (4)

holds for all 1 ≤ i ≤ k, where Wavg =
∑k

i=1Wi/k.

2.2 Background on Hypergraph Partitioning Algorithms

Finding an optimal hypergraph bisection is NP-Hard [28]. It follows that the
problem of finding an optimal k-way partition is also at least NP-Hard. Thus,
research effort has been focused on developing polynomial-time heuristic al-
gorithms that give good sub-optimal solutions. Performance of the algorithms
in terms of run time and solution quality is usually evaluated using suites of
benchmark hypergraphs [1,9]. A k-way partition of a hypergraph H(V, E) is
either constructed directly or by the recursive bisection of H(V, E). A compre-
hensive survey of different heuristic approaches to hypergraph partitioning is
presented in [3].

4

2.2.1 Iterative Improvement Algorithms

In hypergraph partitioning literature, iterative improvement algorithms have
been preferred to other well-known optimisation techniques such as simulated
annealing and genetic algorithms because they have the potential to combine
good sub-optimal solutions with fast run times [3]. These begin with a feasible
solution and iteratively move to the best neighbouring feasible solution. The
algorithms terminate when they reach a feasible solution for which all neigh-
bouring feasible solutions do not improve the objective function. The initial
feasible solution can be randomly selected, or greedily constructed around a
randomly chosen vertex.

Successful iterative improvement algorithms for hypergraph bisection have
been based primarily on the Kernighan-Lin (KL) [42] or Fiduccia-Mattheyses
(FM) algorithms [27]. These algorithms rely on a priority queue of vertex
moves to greedily select the best vertex move (in the case of the FM algorithm)
or the best vertex swap (in the case of the KL algorithm) in terms of the
objective function. They proceed in passes, during each of which each vertex is
moved at most once. Vertex moves resulting in negative gain are also possible,
provided that they represent the best feasible move at that point. A pass
terminates when none of the remaining vertex moves are feasible. The gain of
a pass in terms of the objective function is then computed as the best partial
sum of the gains of the individual vertex moves that are made during that
pass. The algorithm terminates when the last completed pass does not yield a
gain in the objective function. The low computational complexity of the FM
algorithm (O(z) per pass, where z is the number of pins in the hypergraph)
follows from the way in which the priority queue storing the remaining vertex
moves is maintained during a pass. In practice, the FM algorithm converges
in a few passes and is thus quoted to run in O(z) time.

The main disadvantage of the above algorithms is that they make vertex
moves based solely on local information (the immediate gain of the vertex
move). Enhancements to the basic algorithms that attempt to capture global
properties or that incorporate look-ahead have been proposed [23–25,44]. The
FM algorithm has also been extended so that it can directly compute a k-way
partition [45] (a k-way extension to the KL algorithm was first proposed in the
original paper by Kernighan and Lin [42]). In [17], it was observed that this
k-way formulation of the FM algorithm is dominated by the FM algorithm
implemented in a recursive bisection framework; hence an enhanced k-way
algorithm based on a pairwise application of the FM algorithm was proposed.

5

2.2.2 Multilevel Paradigm

So-called flat partitioning algorithms (i.e. those that operate directly on a
given hypergraph) suffer substantial degradation in run time and solution qual-
ity as the size of the problem increases [3]. Algorithms based on the multilevel

paradigm are therefore preferred to flat approaches [2,5,10,33,35,36,38,40]. In
the multilevel paradigm the original hypergraph H(V, E) is approximated by
successively smaller hypergraphs Hi(Vi, Ei), i ≥ 1 (such that |Vi| < |Vj| if
i > j), where the number of vertices in the coarsest approximation has some
upper bound αH (usually a function of k). The construction of these approxi-
mations is called the coarsening phase. Having computed the set of approxima-
tions {H1, . . . , Hc}, a partition Πc of the coarsest hypergraph Hc is computed
during the initial partitioning phase. This partition is then projected back onto

successive finer hypergraphs (Hc
Πc−→ Hc−1, . . . , Hi+1

Πi+1−−−→ Hi, . . . , H1
Π1−→ H)

and for each intermediate hypergraph (including the original hypergraph H)
the partition is further refined using an iterative improvement algorithm dur-
ing the uncoarsening or refinement phase.

The coarsening phase consists of a number of steps, during each of which
a coarser representation Hi+1(Vi+1, Ei+1) of the hypergraph Hi(Vi, Ei) is con-
structed. This is performed by merging together the vertices of the hypergraph
Hi to form vertices of the coarse hypergraph Hi+1. We represent this by the
map gi : Vi → Vi+1, where

|Vi|
|Vi+1|

= ri, ri > 1 (5)

and ri is the prescribed reduction ratio. It is usual to set ri to be the same
for all i. Given that a set of vertices A ⊂ Vi maps to a single vertex v ∈ Vi+1,
the weight of v is set to the sum of the weights of the vertices in A. The
map gi is used to construct Ei+1 from Ei by applying it to every vertex of each
hyperedge e ∈ Ei. When the set A ⊂ Vi that maps onto a single vertex v ∈ Vi+1

represents all the vertices from a hyperedge in Ei, the corresponding hyperedge
in Ei+1 will consist of a single vertex. These single vertex hyperedges in Ei+1

are discarded, as they will span at most one part. It is possible that a set of
(distinct) hyperedges B ⊂ Ei yields a set of identical hyperedges B′ ∈ Ei+1,
in which case B′ is replaced by a single hyperedge whose weight is set to be
the sum of the weights of the hyperedges in B. The way in which the weights
of the vertices and hyperedges in Hi+1 are calculated ensures that when a
partition Πi+1 of the hypergraph Hi+1 is projected onto a partition Πi of Hi,
we have that fo(Πi+1) = fo(Πi) under both the k − 1 and hyperedge cut
metrics; furthermore, the respective part weights are also preserved.

The coarsening algorithm should ensure that a good partition of a coarser
hypergraph Hi, when projected to the original hypergraph H , is also a good

6

partition relative to the optimal partition of H . Coarsening algorithms are
discussed in detail in [3,35]. These try to merge together strongly connected
vertices, where connectivity between vertices u, v ∈ Vi is quantified in terms
of the set of hyperedges incident on both u and v. There are also coarsening
algorithms that derive the coarse vertex set Vi+1 by first identifying a set
of mutually independent hyperedges (i.e. hyperedges that share no common
vertices) from Ei and then merging together vertices in each hyperedge from
this set to form vertices in Vi+1 [36]. Most of the commonly used coarsening
algorithms are implemented within the PaToH serial multilevel hypergraph
partitioning tool [16].

The aim of the initial partitioning phase is to construct a good partition of the
coarsest hypergraph Hc(Vc, Ec). Since Hc is assumed to be significantly smaller
than H , time spent in the initial partitioning phase should be dominated by
time spent in the other phases of the multilevel framework. Multiple randomly-
seeded runs of an iterative improvement algorithm are often used [13,35,36,38].
In a graph partitioning context, more computationally expensive initial par-
titioning algorithms such as spectral partitioning have also been used [5,33].
Multiple partitions constructed during this phase may be propagated to the
successively finer hypergraphs because it does not follow that the best parti-
tion of the coarsest hypergraph Hc will always result in the best partition of
a finer hypergraph Hi, i < c [35].

After projecting the partition Πi+1 of Hi+1 onto Πi of Hi during the un-
coarsening phase, a heuristic refinement algorithm refines Πi. In the case
where a bisection of Hc is projected, a variant of the FM algorithm is usually
used [13,35,36,38]. When a k-way partition of Hc (for a general k > 2) is
projected, a randomized greedy refinement algorithm has been shown to yield
partitions of good quality with fast run times [38]. This algorithm also pro-
ceeds in passes. During each pass, the set of vertices Vi is traversed in random
order. For each vertex v ∈ Vi, the set of neighbouring parts N(v) (such that
a part P ∈ N(v) if and only if there exists a vertex u ∈ Vi adjacent to v, and
u ∈ P) is constructed and gains for moving the vertex to each part P ∈ N(v)
are computed if moving v to part P does not violate the balance constraint on
the partition. If there is at least one legal move of v that yields a gain in the
objective function, the move resulting in the largest gain is made. Otherwise
the vertex v is not moved. The algorithm terminates when the most recently
completed pass does not improve the value of the objective function for the
partition.

It is possible to utilise the entire multilevel framework to perform further
refinement of a partition [36]. This multi-phase approach (also known as V-

cycling) recursively applies the multilevel algorithm to the current hypergraph
and its refined partition. Formally, suppose we have computed a partition Πi

for the hypergraph Hi(Vi, Ei), in the multilevel sequence. A restricted coars-

7

ening algorithm is applied to Hi, given the partition Πi, such that vertices
u, v ∈ Vi are allowed to merge together if and only if there exists a part
P ∈ Πi such that u ∈ P and v ∈ P . This coarsening procedure will con-
struct a new multilevel sequence {Hi, Hi+1, . . . , Hc′}. The initial partitioning
phase is applied to Hc′ and partitions are projected through the hypergraphs

(Hc′
Π

c′−−→ Hc′−1, . . . , Hi+1
Πi+1−−−→ Hi), such that after each projection, the parti-

tions are further refined, as in the standard uncoarsening algorithm. Successive
calls to multi-phase refinement are terminated when the most recently com-
pleted V-cycle has not yielded an improvement in the objective function of
the partition.

2.2.3 Concurrent Work on Parallel Hypergraph Partitioning Algorithms

Concurrent to our work, [19] presented a parallel multilevel hypergraph parti-
tioning algorithm that uses a two-dimensional decomposition in which rectan-
gular blocks of the incidence matrix are assigned to processors. Furthermore,
the algorithm in [19] partitions the hypergraph by recursive bisection, unlike
our algorithm which uses direct k-way partitioning.

Early indications are that this two-dimensional parallel algorithm may be more
efficient than our one-dimensional algorithm for hypergraphs that do not have
low maximum vertex/hyperedge degrees. This is because most of the global
communication in the two-dimensional algorithm involves O(

√
p) processors,

whereas the one-dimensional algorithm uses all p processors. On the other
hand, the quality of partition produced by our one-dimensional algorithm is
generally observed to be better [19]. This may be partly due to the choice of
refinement paradigm (recursive bisection versus direct k-way); we note that in
principle it should be possible to adapt the k-way parallel refinement algorithm
to a two-dimensional distribution of the hypergraph to processors.

3 Parallel Multilevel Partitioning Algorithm

This section describes our parallel hypergraph partitioning algorithm, based on
the multilevel paradigm. We assume that the k−1 objective is to be minimised,
although our approach should also generalise to minimising the hyperedge
cut objective function. The target architecture for the parallel algorithm is a
distributed-memory, message-passing architecture.

Despite the natural parallelism inherent in the splitting steps of a recursive bi-
section approach, we chose to parallelise the direct k-way algorithm from [38].
This is because variants of FM bisection refinement require that priority queue
data structures are maintained after each vertex move to ensure that the sub-

8

sequent highest-gain vertex move is easily found. Hence, after each vertex
move, all the neighbouring vertices need to be informed of this move and their
gains recomputed, leading to high communication overheads in a distributed-
memory setting. By contrast, the serial k-way algorithm in [38] has been shown
to be competitive when compared to the recursive bisection approach and re-
quires no priority queue data structures.

3.1 Data Distribution

Letting p denote the number of processors, the hypergraph H(V, E) is dis-
tributed across the processors as follows. We store |V |/p vertices and |E|/p
hyperedges on each processor. The vertices are allocated to processors con-
tiguously, so that the first |V |/p vertices (in terms of their index) are allocated
to the first processor, the next |V |/p vertices to the second processor and so
on. For each vertex v ∈ V , its weight and current part index in the partition
are stored on the processor holding v and similarly, for each hyperedge e ∈ E ,
its weight is stored on the processor holding e.

A randomised allocation of vertices to processors can help to improve load
balance. This can be achieved by computing a pseudorandom permutation of
the indices of the elements of the set V and then modifying the hyperedge
set E by assigning to every vertex in each hyperedge a new index, as given
by the permutation. However, randomisation removes structure that may help
to reduce interprocessor communication. Whether or not to use randomised
allocation therefores depend on the specific problem instance at hand.

For the first multilevel step, hyperedges are allocated to processors contigu-
ously. In subsequent steps, we also associate a b–bit hash key, with each hy-
peredge e ∈ E , computed using a variant of the load balancing hash–function
h : Na → N, from [43], where a is the maximum hyperedge cardinality. This
function has the desirable property that for an arbitrary set of hyperedges E,
h(e) mod p, e ∈ E, is near-uniformly distributed. Consequently, in order to
ensure an even spread of hyperedges across the processors while preserving
the ability to eliminate duplicate hyperedges, each hyperedge e resides on the
processor given by h(e) mod p. To calculate the probability of collision, as-
sume that h distributes the keys independently and uniformly across the key
space (i.e., that all M = 2b key values are equally likely) and let C(N) be the
number of hash-key collisions among N distinct hyperedges. We then have

9

P(C(N) ≥ 1)= 1− P(C(N) = 0) (6)

= 1− M !

(M −N)!MN
(7)

≤ 1− e
−N

2

2M (8)

if N2 ≪M , as shown in [43]. Suppose that, for example, |E| = 108 and b = 64.
Then P(C(N) ≥ 1) ≤ 0.0003 – ensuring that the probability of collisions is
remote. This facilitates rapid hyperedge comparison, since given hyperedges
e and e′, h(e) 6= h(e′) implies that e 6= e′. The converse does not hold, but
collisions do not affect the correctness of the algorithm. When a collision
occurs between hyperedges e, e′ ∈ E , entire sets e and e′ can be compared to
determine that they are indeed different.

At the beginning of every multilevel step, each processor assembles the set
of hyperedges that are incident on each of its locally held vertices using an
all-to-all personalized communication. We refer to hyperedges replicated on
multiple processors as frontier hyperedges. A map from the local vertices to
their adjacent hyperedges is also built (so that both vertex-to-hyperedge and
hyperedge-to-vertex maps are available). At the end of the multilevel step, the
non-local assembled hyperedges are deleted together with the entire vertex-
to-hyperedge map.

Experience suggests that for hypergraphs with small maximum vertex degree,
the memory overhead incurred by duplicating frontier hyperedges during a
single multilevel step is modest; we report the percentage of the total number
of pins of the hypergraph replicated in frontier hyperedges in our experiments
in Section 4. We also note that even though vertex degree increases for the
coarser hypergraphs (when compared to the original hypergraph H(V, E)), the
first few hypergraphs in the multilevel sequence are considerably larger than
the coarser hypergraphs, and thus the replication of frontier hyperedges is
most significant (in terms of the amount of memory used) during the first few
levels of the multilevel sequence. Further, memory overhead may be reduced
by omitting large hyperedges from the coarsening computation; this has also
been proposed in the context of serial partitioning in order to accelerate the
coarsening computation [13,16].

3.2 Parallel Coarsening Phase

In this section, we describe our parallel coarsening algorithm (cf. Algorithm 1).
At the beginning of each coarsening step, the processors first perform a parallel
matching computation in order to construct the map gi ; this is described in
detail later. To construct Ei+1, each processor needs to transform its locally
stored |Ei|/p hyperedges from Ei using the map gi. A processor may store a

10

Algorithm 1 Parallel Coarsening Algorithm

Require: H(V, E)
1: i = 0; H0(V0, E0) = H(V, E);
2: repeat

3: compute gi : Vi → Vi+1 using parallel vertex matching computation
4: perform all-to-all communication of required values of gi
5: apply gi values across locally stored hyperedges
6: compute destination processors for all e ∈ Ei+1 using hash-function h
7: perform all-to-all communication of hyperedges in Ei+1

8: perform load balancing communication of Vi+1

9: i = i+ 1; c = i;
10: until |Vi| ≤ αH(k) or |Vi|/|Vi+1| < rmin

11: return {H1, . . . , Hc}

hyperedge e ∈ Ei with a vertex v ∈ e for which the processor does not store
gi(v). Thus, required values of gi are first communicated by a personalized all-
to-all communication. Each processor then applies gi across each of the |Ei|/p
hyperedges stored on that processor. The removal of duplicate hyperedges in
Ei+1 and load balancing are done as follows. Processors communicate each
hyperedge e ∈ Ei+1 and its weight to the destination processor given by h(e)
mod p. Each processor retains distinct hyperedges, setting their weight to be
the sum of the weights of their respective duplicates (if any), since all identical
hyperedges will possess the same hash key value and hence will have been
communicated to the same processor. The parallel coarsening step concludes
with a load-balancing communication of Vi+1 such that each processor stores
|Vi+1|/p vertices at the start of the subsequent coarsening step.

We now describe our parallel vertex matching algorithm, which is based on the
First-Choice (FC) or the Heavy Connectivity Clustering (HCC) serial coars-
ening algorithm [38,13]. Given a hypergraph Hi(Vi, Ei), the serial algorithm
proceeds as follows. The vertices of the hypergraph are visited in a random
order. For each vertex v ∈ Vi, all vertices (both those already matched and
those unmatched) that are connected via hyperedges incident on v are consid-
ered for matching with v. A connectivity metric is computed between pairs of
vertices and the most strongly connected vertex to v is chosen for matching,
provided that the resulting cluster does not exceed a prescribed maximum
weight. The matching computation ends when |Vi|/|Vi+1| > r, with r the
prescribed reduction ratio.

Our parallel matching algorithm is summarised in Algorithm 2. Each proces-
sor γ first traverses its local vertex set in random order, computing vertex
matches as in the serial algorithm. We have implemented the algorithm with
the absorption connectivity metric [2,36]:

11

C(u, v)=
1

w(u) + w(v)

∑

{e∈Ei|u∈e,v∈e}

w(e)

|e| − 1
(9)

Here w(e) denotes the weight of hyperedge e ∈ Ei and w(u) and w(v) the
weights of the two vertices u and v respectively. Processor γ also maintains
a request set for each of the p − 1 other processors. If the best match for
a local vertex u is computed to be a vertex v stored on processor ρ 6= γ,
then the vertex u is placed into the request set Sγ,ρ. If another local vertex
subsequently chooses u or v as its best match, then it is also added to the
request set Sγ,ρ. The local matching computation terminates when the ratio
of the initial number of local vertices to the number of local coarse vertices
exceeds a prescribed threshold (cf. equation 5), or when all the local vertices
have been visited. Our definition of local vertices includes clusters formed from
tentative matches of local vertices with vertices stored on remote processors,
as well as singleton clusters from local vertices being simply copied over to
the coarse hypergraph. Note that the processors complete the local matching
computation asynchronously (lines 1 and 2 in Algorithm 2) but synchronize
prior to the communication step in line 3.

Communication steps resolve the vertex matching requests that span multiple
processors (lines 3 to 21 in Algorithm 2). In order to enable a match between
two vertices on different processors that make mutual requests to each other,
the communication proceeds in two stages. In the first stage, processor γ
communicates request sets Sγ,ρ to processor ρ and then receives replies to
its requests from ρ if and only if γ < ρ, while in the second stage processor
γ communicates request sets Sγ,ρ to processor ρ and receives replies to its
requests from ρ if and only if γ > ρ.

The processors concurrently decide to accept or reject matching requests from
other processors. Denote by Mv

γ,ρ the set of vertices (possibly consisting of a
single vertex) from the remote processor γ that seeks to match with a local
vertex v stored on processor ρ (thus, Sγ,ρ =

⋃

xM
x
γ,ρ). Processor ρ considers the

sets for each of its requested local vertices in turn, handling them as follows:

(1) If v is unmatched, matched locally or already matched remotely (during
the previous request communication stage), then a match with Mv

γ,ρ is
granted to processor γ if the weight of the combined cluster (including
vertices already matched with v) does not exceed the maximum allowed
vertex weight (lines 6 and 16 in Algorithm 2).

(2) If v has been sent to a processor µ, µ 6= γ, as part of a request for
another remote match, then processor ρ informs processor γ that the
match with Mv

γ,ρ has been rejected (lines 8 and 18 in Algorithm 2). This
is necessary since granting this match may result in a vertex that exceeds
the maximum allowed vertex weight if the remote match of v with a
vertex on processor µ is granted.

12

Algorithm 2 Parallel Matching Computation

Require: Hi(Vi, Ei)
1: each processor γ computes matches for its locally stored vertices from Vi
2: each processor γ stores tentative matches with remote vertices in request

sets {Sγ,j}, 1 ≤ j ≤ p and j 6= γ
3: γ communicates Sγ,ρ to processor ρ whenever γ < ρ
4: for all Mv

γ,ρ received on ρ do

5: if v is unmatched, or matched locally by ρ then

6: v and Mv
γ,ρ matched, if cluster weight threshold not exceeded

7: else

8: match between v and Mv
γ,ρ is rejected

9: end if

10: end for

11: processor ρ communicates matching decisions to γ whenever ρ > γ
12: γ locally matches all Mv

γ,ρ whenever remote request rejected
13: γ communicates Sγ,ρ to ρ whenever γ > ρ
14: for all Mv

γ,ρ received on ρ do

15: if v is unmatched, matched locally by ρ, or matched remotely then

16: v and Mv
γ,ρ matched, if cluster weight threshold not exceeded

17: else

18: match between v and Mv
γ,ρ is rejected

19: end if

20: end for

21: ρ communicates matching decisions to γ whenever ρ < γ
22: γ locally matches all Mv

γ,ρ whenever remote request rejected
23: vertices {v1, . . . , vs} from Vi that are matched together are assigned

gi(v1) = · · · = gi(vs)
24: return gi : Vi → Vi+1

When informed of a match rejection by processor ρ, processor γ will cluster all
the vertices in the setMv

γ,ρ into a single coarse vertex (lines 11, 12, 21 and 22 in
Algorithm 2). Our algorithm admits the possibility that unconnected vertices
sharing a common neighbour are matched together during a single coarsening
step. To see how this could happen, consider vertices u, v on processor ρ and w
on processor γ, with u and w connected to v but not connected to each other.
Processor ρ may match u and v together and then put a match request from
γ to match v with w, yielding a coarse vertex that encompasses u, v and w if
v and w are sufficiently highly connected for the remote match to be granted.
This behaviour is allowed because even though u and w are unconnected, in
most cases the three vertices u, v and w nonetheless form a natural cluster.

13

3.3 Serial Initial Partitioning Phase

The parallel coarsening phase terminates when the number of vertices in the
coarsest hypergraph is below a pre-specified threshold αH(k) (in our imple-
mentation k times a user-specified constant) or the most recent reduction in
the number of vertices |Vi|/|Vi+1| does not equal or exceed a minimum required
rate rmin. We assume that the coarsest hypergraph Hc(Vc, Ec) is small enough
for a partition to be rapidly computed on a single processor (when compared
to the runtimes of the other phases of the algorithm). This is motivated by the
observation that the parallel coarsening algorithm usually reduces the origi-
nal sparse hypergraph by a few orders of magnitude (e.g. from 106 vertices
and 107 pins to 103 vertices and 104 pins). Currently, our algorithm is not
configured to partition the hypergraph in the scenario where the coarsest hy-
pergraph cannot fit into the memory of a single machine. However, we foresee
two possible approaches to solving this problem. The first is a parallel initial
partition generator, while the second would enforce further clustering of the
vertices with the sole purpose of reducing the hypergraph so that it can be
partitioned serially on a single machine. In our implementation, Hc(Vc, Ec) is
gathered on all processors and p runs of the serial algorithm are computed
concurrently across the processors in parallel. The partition with the lowest
cutsize is then projected through the parallel uncoarsening phase.

3.4 Parallel Uncoarsening Phase

At the beginning of each step of the parallel uncoarsening phase, we have
Hi(Vi, Ei), Hi+1(Vi+1, Ei+1) and a k-way partition Πi+1 of Hi+1. The projection

Hi+1
Πi+1−−−→ Hi that yields Πi is computed as follows. Let V γ

i be the subset
of Vi stored on processor γ. For each v ∈ V γ

i if Πi+1(gi(v)) is not available,
it is requested from the processor that stores gi(v) ∈ Vi+1. We set Πi(v) =
Πi+1(gi(v)). The frontier hyperedges are then assembled on each processor, as
at the beginning of each parallel coarsening step. We then apply our parallel
formulation of the greedy k-way serial refinement algorithm [38].

The parallel refinement algorithm proceeds in passes, during each of which
a vertex can be moved at most once; however, instead of moving individual
vertices across a partition boundary, as in the serial algorithm, the parallel
algorithm moves sets of vertices (since vertices will be moved concurrently
across the processors). Each processor γ traverses its local vertex set in a
random order and for each v ∈ V γ

i , the legal move (if any) leading to the
largest positive gain in the objective function is computed. When such moves
exist, they are maintained in sets Uγ

i,j, i 6= j, i, j = 1, . . . , k, where i and j
denote current and destination parts respectively. In order to reduce possible

14

conflicts (e.g. movement of vertices in opposing directions such that their
individual moves might result in a positive gain in objective function but
when both are made, they in fact yield a non-positive gain), the refinement
pass proceeds in two stages. During the first stage, only moves from parts of
higher index to parts of lower index are permitted and vice versa during the
second stage. Vertices moved during the first stage are locked with respect to
their new part in order to prevent them moving back to their original part in
the second stage of the current pass. We note that this does not guarantee
that a sequence of (concurrently made) vertex moves will result in a positive
gain. However, in our experiments, this parallel refinement algorithm produced
partitions competitive with those produced by state-of-the-art serial tools.

The partition balance constraint (cf. equation 4) is maintained via global com-
muncation. The alternative method, which precludes global communication,
is to enforce a balance constraint locally on each processor such that the parti-
tioning constaint in equation 4 is maintained overall. However, as the number
of processors increases, the local constraints on each processor are likely to
become too tight to allow the algorithm to sufficiently explore the feasible
solution space; we instead choose to pay the price of possibly higher commu-
nication overhead for better refinement algorithm performance.

At the beginning of each of the two stages, the processors know the exact part
weights and each processor γ maintains the balance constraint during its local
computation of the set Uγ

i,j . The associated weights and gains of all the non-
empty sets Uγ

i,j are communicated to the root processor (chosen arbitrarily)
which then determines the actual partition balance that results from the moves
of the vertices in the sets Uγ

i,j . If the balance constraint is violated, the root
processor determines which of the moves should be taken back and informs the
processors containing the vertices to be moved back. This is implemented as a
greedy scheme favouring taking back moves of sets with large weight and small
gain. Finally, the root processor broadcasts the updated part weights before
the processors proceed with the subsequent stage. As in the serial algorithm,
the refinement procedure terminates when the overall gain of a pass is not
positive. Note that vertices need not be explicitly moved between processors;
rather, their part index value can be changed by the processor that stores the
vertex.

3.5 Parallel Multi-phase Refinement

This section describes our parallel multi-phase refinement algorithm, which
consists of three multilevel phases, namely the parallel restricted coarsening
phase, the serial initial partitioning phase and the parallel uncoarsening phase.
The serial initial partitioning and the parallel uncoarsening phases are identi-

15

cal to those described in Sections 3.3 and 3.4.

The parallel restricted coarsening phase takes a partition Πi of the hypergraph
Hi as input; vertices are only allowed to match with a neighbouring vertex
that belongs to the same part within the partition, i.e., v ∈ Vi can match with
u ∈ Vi if and only if Πi(u) = Πi(v). This can be incorporated within the ex-
isting parallel coarsening algorithm, since transitivity of the above condition
(i.e. Πi(u) = Πi(v) and Πi(v) = Πi(w) imply Πi(u) = Πi(w)) ensures that the
resolution of remote matching requests will result in the matching together
of vertices allocated to the same part. Rather than follow this approach, we
exploit additional concurrency afforded by the restriction. Vertices belonging
to the same part are collected onto a single processor; this precludes further
communication during the restricted coarsening phase since only vertices allo-
cated the same part may match together. Processors then concurrently execute
a serial coarsening algorithm (FC/HCC). The partition balance criterion in
equation 4 should ensure that computational load balance across the proces-
sors is maintained during this phase. The drawback of this scheme is that
load balance is only maintained if the number of parts in the partition k is
a multiple of the number of processors p and k ≥ p. We note that this is a
not a restriction on parallel multi-phase refinement per se. The construction
of the coarse hypergraph Hi+1(Vi+1, Ei+1) is done as in the parallel coarsening
algorithm from Section 3.2.

3.6 Analytical Performance Model

In this section we present an analytical performance model of our parallel al-
gorithms and derive the average-case asymptotic runtime Tp, assuming that
the underlying parallel architecture is a p-processor hypercube. We show that
the algorithm is asymptotically scalable when the maximum vertex and hy-
peredge degrees in the hypergraph are small, and also derive its isoefficiency
function [30].

Let |V | = n and suppose that the numbers of vertices and hyperedges in the
original hypergraph are of the same order of magnitude, so that we may write
|E| = Θ(n). Further, let l and d denote the maximum hyperedge degree and the
maximum vertex degree of the original hypergraph, and li and di denote the
respective maximum degrees within hypergraph Hi in the multilevel process.
We assume that l and d are small constants, so that l ≪ n and d ≪ n,
and also assume that the numbers of vertices and hyperedges are respectively
reduced by constant factors 1 + α and 1 + ω (α, ω > 0) at each coarsening
step. We discuss the appropriateness of these assumptions in Section 4. We let
ni = max{|Vi|, |Ei|} and assume in our analysis that with increasing i these
values become small when compared to the numbers of vertices/hyperedges in

16

the original hypergraph. We have that li ≤ l for all 0 ≤ i ≤ c. We know that in
practice di is increasing because the number of vertices usually decreases more
quickly than the number of hyperedges. However, under our assumptions it
remains very small compared to n. This is because di ≤ ni for all i ≤ c and
ni is decreasing so that ni ≪ n for i close to c.

3.6.1 Performance Model of the Parallel Multilevel Algorithm

We consider the computation and the communication requirements of each
phase in turn, given O(logn) coarsening steps.

The procedure of assembling the hyperedges incident on the locally stored ver-
tices precedes each multilevel step. Each processor performs O(nili/p) compu-
tation steps in determining destination processors for the locally held hyper-
edges and then O(nidi/p) computation steps in building a map from its local
vertices to the hyperedges incident on these vertices.

Now consider the parallel coarsening procedure. Here, O(dili) computation
steps are performed in computing a matching for each of the O(ni/p) vertices
stored on a processor. Each processor will also potentially perform O(ni/p)
computation steps in resolving matching requests from other processors (as-
suming that each processor pair exchanges O(ni/p

2) match requests, which is
reasonable if we assume that a match with any given vertex is equally likely).
Having computed the matching vector, the algorithm constructs Ei+1 from Ei.
To do this, each processor γ computes the matching vector values required
from other processors and, having obtained them, computes the set Eγ

i+1. The
former requires O(nili/p) and the latter O((nili log li)/p) computation steps.
Once a coarse hyperedge is constructed, checking for local duplicate hyper-
edges in Eγ

i+1 is done using a hash table. It takes O(li) steps to check for and
resolve a possible collision if a duplicate key is found in the table. Since li and
di are small relative to ni, the computation requirement during each uncoars-
ening step (including assembling incident hyperedges) is O(ni/p). During the
latter steps in the coarsening phase, when b ≤ i ≤ c (for some b > 1), we may
not have di ≪ ni. However, here di ≤ ni ≪ n (as noted earlier), so that the
computational requirement of the latter coarsening steps is dominated by the
requirement of the first few coarsening steps.

During the serial initial partitioning phase, the hypergraph has size O(k) and
can be heuristically partitioned to yield a “good” sub-optimal partition in
O(k2) computation steps [27].

A single uncoarsening step consists of projecting a partition Πi+1 of Hi+1

onto Hi and refining the resulting partition of Hi to obtain Πi. Projecting a
partition involves at most O(ni/p) computation steps on each processor. We
consider a single pass of the parallel greedy refinement algorithm, and assume

17

that the refinement algorithm terminates in a small number of passes. Vertex
gains are computed concurrently and then rebalancing moves are computed
on the root processor, if required. In order to compute the gains for a vertex
move, the algorithm needs to visit all the hyperedges incident on that vertex
and determine their connectedness to the source and destination parts of the
move. This requires O(dinili/p) computation steps per pass. The rebalancing
computation has complexity O(pk2). Arguing as for the coarsening phase,
the overall computation requirement during each uncoarsening step (including
assembling incident hyperedges) is O(ni/p) +O(pk2).

The overall asymptotic computational complexity of our parallel partitioning
algorithm is thus given by

Tcomp =
O(logn)
∑

i=b

O(ni−b)

p
+O(pk2 log n) (10)

=
O(logn)
∑

i=b

O(n)

p(1 + min{α, ω})i−b
+ O(pk2 logn) (11)

≤O(n/p)
∞
∑

i=0

1

(1 + min{α, ω})i +O(pk2 log n) (12)

≤O(n/p) +O(pk2 log n) (13)

We now shift our attention to an average-case communication cost analysis,
assuming that the underlying parallel architecture is a p-processor hypercube
with bidirectional links and store-and-forward routing.

Again, we first consider the procedure of assembling the hyperedges incident
to locally held vertices on each processor. This is done using an all-to-all
personalized communication. Given O(ni/p) vertices on each processor, the
algorithm will, on average, assemble O(nidi/p) hyperedges on each processor.
Since di is a small constant (relative to ni) for the majority of the multilevel
steps and the hyperedges are approximately uniformly distributed across the
processors by the hash function, the average message size between any two
processors is O(ni/p

2). An all-to-all personalised communication with this
message size can be performed in O(ni/p) time on a hypercube [30]. In the
multilevel steps involving the coarser hypergraphs (i.e. where b ≤ i ≤ c, for
some b > 1), we do not necessarily have di ≪ ni; however, here di ≤ ni ≪ n
and the communication requirements of these steps are dominated by the
communication requirements of the multilevel steps that involve the larger
hypergraphs.

We now consider the cost of communicating the required matching vector
entries in computing the local subset of Ei+1 from the local subset of Ei on each
processor and the subsequent load balancing communication of hyperedges of

18

Hi+1. Given O(ni/p) hyperedges from Ei on each processor, to construct the
corresponding subset of Ei+1, each processor requires O(nili/p) values from
the map gi (this requirement was discussed in Section 3.2). Assuming that
each of the required entries in gi are on average equally likely to be stored
on any of the p processors, the message size between any two processors in
the all-to-all communication is on average O(nili/p

2). In the load balancing
communication, the hyperedges in Ei+1 are scattered across the p processors
with equal probability, thus also giving an average message size in the all-to-all
personalized communication of O(ni+1li+1/p

2) ≤ O(nili/p
2). Hence, given that

li ≪ ni, these all-to-all personalized communications can be done in O(ni/p)
time.

By a similar argument, assuming that a vertex is on average equally likely to
match with any other vertex in the hypergraph, during each coarsening step
the cost of communicating matching requests and their outcomes is done in
O(ni/p) time. During each coarsening step, we also require the computation
of prefix sums to determine the numbering of the vertices in the coarser hy-
pergraph, which has complexity O(log p). During refinement, we require an
additional broadcast of rebalancing moves and a reduction operation to com-
pute the cutsize, which have complexities O(k2 log p) and O(log p) respectively
(since each processor may be required to take moves back in O(k2) directions).

Arguing as for the computational complexity, we deduce that the overall
average-case asymptotic communication cost of our parallel partitioning al-
gorithm is

Tcomm =O(n/p) +O(k2 log p logn) (14)

Eliminating dominated terms from equations 13 and 14, the asymptotic total
average-case parallel run time is

Tp =O(n/p) +O(pk2 logn) (15)

As the complexity of the serial algorithm is O(n), it follows that the algorithm
is cost-optimal (scalable) for large n as the O(n/p) term dominates the parallel
runtime.

To derive the isoefficiency function (for a discussion of isoefficiency see e.g. [30]),
we note that the complexity of the serial multilevel algorithm (and thus prob-
lem size W) is O(n) when l ≪ n. From equation 15, the total overhead To of
the parallel algorithm becomes:

To =O(p2k2 logW) (16)

19

The isoefficiency function is then given by

W =KTo(W, p)

=O(p2k2 logW)

=O(p2k2 log(p2k2 logW))

=O(p2k2 log p) +O(p2k2 log k) +O(p2k2 log logW)

and thus, omitting the lower order terms,

W =O(p2k2(log p+ log k)) (17)

We note that this isoefficiency function is of the same order as that given in [39]
for the parallel graph partitioning algorithm implemented in the ParMeTiS
tool [41].

3.6.2 Model of Algorithm with Parallel Multi-phase Refinement

Since we assume that parallel multi-phase refinement converges in a small
number of iterations, the performance model of this algorithm differs from
that of the multilevel algorithm analysed in Section 3.6.1 only in the parallel
restricted coarsening phase described in Section 3.5.

A single parallel restricted coarsening step consists of two stages. In the first
stage, the vertices belonging to the same part in Πi are assigned to the same
processor; in the second stage the coarsening algorithm computes the map gi
concurrently on all processors in parallel, without communication. The vertices
are then allocated to processors using an all-to-all personalised communica-
tion. We assume that the vertices have an equal probability of being assigned
to each of the k parts of the partition and thus, assuming a random distribu-
tion of vertices to processors prior to partitioning, the average message size in
the all-to-all communication will be O(ni/p

2) so that the all-to-all communi-
cation can be done in O(ni/p) time on a hypercube. Since the k-way partition
is subject to the balancing constraint of equation 4, each processor will on
average hold O(ni/p) vertices during a parallel restricted coarsening step (as-
suming a low variance in vertex weights). The computational requirement of
a single step of the parallel restricted coarsening algorithm is O(nidili/p), fol-
lowed by the construction of the coarse hyperedge set Ei+1, as in the standard
multilevel algorithm. Thus, since di ≪ ni and li ≪ ni for the dominating
multilevel steps (i.e. those involving the largest hypergraphs), the asymptotic
runtime and the isoefficiency function of the parallel multilevel algorithm with
parallel multi-phase refinement are the same as those of the parallel multilevel
algorithm analysed in Section 3.6.1.

20

4 Experimental Evaluation

4.1 Implementation and Test Environment

The three phases of our parallel multilevel k-way partitioning algorithm have
been implemented in C++ using the Message Passing Interface (MPI) stan-
dard [47], thus forming the Parkway 2.1 parallel hypergraph partitioning tool.
For the initial partitioning phase, our implementation provides an interface to
the HMETIS PartKway() routine from the hMeTiS [37] library; this is used for
serial partitioning when the coarsest hypergraph from the parallel coarsening
phase has less than 200× k vertices.

The architecture used in all experiments reported below consists of a Beowulf
Linux Cluster with 64 dual-processor nodes, although we were restricted to a
32-processor (16-node) partition due to configuration limitations and high ma-
chine utilisation. Each node in the cluster has two Intel Pentium 4 processors
running at 2GHz with 2GB of RAM. The nodes are connected by a Myrinet
network with a peak throughput of 250 MB/s. The serial base cases reported
below (generated by the PaToH [16] tool) were run as single processor jobs on
this cluster.

4.2 Test Hypergraphs

The hypergraphs used in our experimental evaluation have been derived either
from large sparse matrices that arise in scientific numerical computations, or
models of a physical system (such as a VLSI circuit). For the sparse matri-
ces, the corresponding hypergraphs represent the 1D row-wise decomposition
of the sparse matrix for parallel matrix–vector multiplication, as described
in [13]. Thus, a given sparse matrix defines the incidence matrix of its corre-
sponding hypergraph, except that non-zeros are added to the entries of the
main diagonal of the incidence matrix wherever the sparse matrix has a zero
on the main diagonal. The weights of the vertices in the hypergraph are set
to be the number of non-zeros in the corresponding row of the sparse matrix,
while weights of the hyperedges are set to unity. Finally, single-vertex hyper-
edges are removed, since they will not contribute to the value of the k-1 metric
of the computed partition.

Table 1 shows the main characteristics of the test hypergraphs. The first three
matrices were obtained from the University of Florida Sparse Matrix Col-
lection [18]. The entries in the Stanford matrix represent the link structure
between URLs within the Stanford University domain. This matrix has been
used in PageRank calculations in [29]. ATTpre2 represents a set of linear equa-

21

Table 1
Main characteristics of test hypergraphs

Name #vertices #hyperedges #non-zeros Domain
Stanford 281 903 281 903 2 594 400 PageRank analysis
ATTpre2 659 033 659 033 6 384 539 analog circuits
cage13 445 315 445 315 7 479 343 DNA electrophoresis
bcsstk32 44 609 44 609 2 014 701 Structural engineering
ibm18 210 613 201 920 819 617 VLSI circuit

voting100 249 760 249 760 1 391 617 performance analysis
voting125 541 280 541 280 3 044 557 performance analysis
voting150 778 850 778 850 4 532 947 performance analysis
voting175 1 140 050 1 140 050 6 657 722 performance analysis
voting200 1 597 373 1 597 373 9 320 912 performance analysis
voting250 5 218 300 5 218 300 32 986 597 performance analysis
voting300 10 991 400 10 991 400 69 823 797 performance analysis
voting350 16 156 700 16 156 700 102 822 650 performance analysis

Table 2
Average, 90th, 95th and 100th percentiles of hyperedge degrees and vertex weights
of test hypergraphs. A value for the xth percentile means that x percent of vertex
weights/hyperedge degreees in the hypergraph are less than or equal to that value.

Hyperedge degrees Vertex weights
Name avg 90% 95% max avg 90% 95% max
Stanford 9.20 20 32 256 8.20 1 883 19 377 38 602
bcsstk32 45.2 54 60 216 45.2 54 60 216
ATTpre2 9.04 14 21 745 9.69 18 628 628
cage13 16.8 24 26 39 16.8 22 27 39
ibm18 4.06 8 14 66 1 1 1 1

voting100 5.57 7 7 7 5.57 7 7 7
voting125 5.62 7 7 7 5.62 7 7 7
voting150 5.82 7 7 7 5.82 7 7 7
voting175 5.84 7 7 7 5.84 7 7 7
voting200 5.84 7 7 7 5.84 7 7 7
voting250 6.32 7 7 7 6.32 7 7 7
voting300 6.35 7 7 7 6.35 7 7 7
voting350 6.36 7 7 7 6.36 7 7 7

tions that are solved during a harmonic balance analysis of a large non-linear
analog circuit [26]. The cage13 matrix is a transition matrix from a model of
DNA electrophoresis, where the entries represent the probability of changes
between polymer configurations, for polymers of length 13 [34]. The bcsstk32

matrix was obtained from the Rutherford-Boeing collection [22] and origi-
nates from a problem in structural engineering. The ibm18 matrix represents
a VLSI circuit and was obtained as part of the ISPD98 Circuit Benchmark
suite [1]. Finally, the voting matrices are transition matrices derived from a
semi-Markov performance model of an electronic voting system with failures
and repairs, for various numbers of voters (100 to 350). Entries in the matrix
reflect the rates at which the system moves from one system configuration to
another [8].

22

4.3 Empirical Scalability Evaluation

In this set of experiments, we set out to empirically validate the asymptotic
scalability analysis from Section 3.6. Two experiments are performed. In the
first, we compute speedups relative to the PaToH serial partitioning tool and
also investigate partition quality as the number of processors is increased. In
the second, we investigate the empirical validity of our scalability analysis
by observing whether processor efficiency is maintained with an increasing
number of processors, given that the problem size is increased according to
our derived isoefficiency function.

For these experiments, our parallel algorithm was configured as follows. The
reduction ratio (cf. equation 5) was set to 1.75. We set the partitioning ob-
jective to SOED (sum of external degrees) in HMETIS PartKway() (although
we report the resulting k-1 objective values) and ran it with the First-Choice
coarsening option and the V-Cycle best intermediate refinement option. The
SOED metric is computed using equation 3, but using λi instead of λi − 1 to
scale the hyperedge weight so that every hyperedge contributes to the cut-
size. We used it because HMETIS PartKway() cannot directly minimize the
k − 1 objective and the two metrics are very closely related. During the par-
allel uncoarsening phase, only the best partition from the serial partitioning
phase was projected. Partitions with a balance constraint of 5% were sought
(ǫ = 0.05 in equation 4). The tool PaToH [16] provided the serial base-case
comparison and was run with default parameters and the PATOH CONPART (k-1
metric) partitioning objective. To ensure that the final partition satisfies the
balance constraint of equation 4 with ǫ = 0.05 when computed by recursive
bisection using PaToH 1 , the balance constraint on each individual bisection
was set to ((1 + ǫ)/k)1/ log2 k − 0.5.

Table 3 shows the overhead (measured as the proportion of the total number
of pins replicated across the processors and shown in bold, as well as our sim-
ulated overhead figures for contiguous and random allocation of hyperedges to
processors for the initial hypergraph only) associated with assembling frontier
hyperedges and the average imbalances in the hypergraph distribution across
the processors prior to the load balancing communications. We note that the
number of frontier pins is significantly reduced when the contiguous rather
than random hyperedge allocation is used for the initial hypergraph; this may
be because the incidence matrices have a substantial amount of non-zeros
around the main diagonal. The average frontier hyperedge overhead is low for
the ATTpre2, voting175 and bcsstk32 hypergraphs, but is more significant for
the cage13, ibm18 and Stanford hypergraphs, the difference being accounted

1 We note that the most recent release of PaToH accepts a single global balance
constraint rather than a constraint on each individual bisection.

23

for by factors such as maximum vertex/hyperedge degrees and the degree of
locality in the hypergraph structure. The observed hyperedge and vertex ratios
justify the load balancing communication at each multilevel step; for example,
an average ratio of 1.05 at each of 8 multilevel steps potentially leads to a final
ratio of 1.058 = 1.48 without explicit load balancing.

Tables 6 and 7 in the Appendix summarise the observed performance of
Parkway2.1 when executed on the benchmark hypergraphs with a varying
number of processors (p ≥ 2). The PaToH tool provides the serial base case
and the runtimes and cutsizes shown are the averages of ten runs.

Figure 1 shows the speedups over the PaToH serial base case for each hy-
pergraph. For voting175 and ATTpre2, speedup increases with the number of
processors; in the case of ATTpre2, it then drops off when more than 24 proces-
sors are used. A possible explanation may be the presence of a small number
of hyperedges that are significantly larger than the average hyperedge length
(cf. Table 2). These may cause imbalanced all-to-all communications, with
a small number of messages that are signficantly larger than the rest. The
speedups for Stanford, bcsstk32 and ibm18 are shallow, while there is no ab-
solute speedup for cage13. These observations are consistent with the frontier
hyperedge overheads shown in Table 3. It is not surprising that we observe
best speedups for the voting175 hypergraph; in terms of sparsity and low max-
imum vertex and hyperedge degree, it most closely fits the assumptions of our
performance model in Section 3.6.

Figure 2 plots the partition quality delivered by Parkway2.1 in terms of the
ratio of its cutsize (k− 1 metric) to the cutsize of the PaToH serial base case.
We observe that the partitioning performance of our parallel algorithm closely
matches and often exceeds that of PaToH. We conjecture two reasons for this.
Firstly, within our parallel multilevel framework, many partitioning runs are
performed on the coarsest hypergraph (concurrently on each processor). Thus,
it is likely that our uncoarsening phase begins with a superior initial partition.
Secondly, our parallel algorithm uses direct k-way partitioning whereas PaToH
uses recursive bisection. For larger values of k, the direct k-way partitioning
approach may be better than recursive bisection because it maintains a global
view when making vertex moves, rather than a divide-and-conquer approach.
In addition, the recursive bisection approach may be further constrained by
the need to enforce tight balance constraints on each individual bisection run.
These results also suggest that the partition quality provided by our parallel
algorithm is maintained as the number of processors increases.

The existence of the isoefficiency function should enable our parallel algorithm
to maintain a constant level of efficiency as the number of processors is in-
creased, by appropriately increasing the problem size [30]. That it to say, with
our isoefficiency function O(p2 log p) (for fixed partition size), if the number

24

Table 3
Vertex and hyperedge distribution statistics for varying numbers of processors. The
frontier pins column shows the total number of pins duplicated in frontier hyper-
edges across all processors for all multilevel steps in bold, expressed as a multiple of
total number of pins in all the hypergraphs in the multilevel sequence. Also shown
in parentheses are simulated overhead figures for a contiguous (c) and random (r)
allocation of hyperedges to processors for the initial hypergraph only; note that
vertices are always allocated contiguously to processors. The hyperedge ratio and
vertex ratio columns are the average ratios of the maximum and minimum num-
bers of hyperedges/vertices of a hypergraph on individual processors before load
balancing. These latter two averages are computed over all multilevel steps.

ATTpre2 frontier pins hyperedge ratio vertex ratio

2 0.07 (0.05c,0.53r) 1.01 1.01
4 0.18 (0.16c,0.87r) 1.01 1.02
8 0.34 (0.30c,1.13r) 1.03 1.04
16 0.45 (0.33c,1.25r) 1.07 1.06
32 0.59 (0.39c,1.35r) 1.17 1.11

voting175 frontier pins hyperedge ratio vertex ratio

2 0.05 (0.01c,0.50r) 1.01 1.04
4 0.12 (0.03c,0.77r) 1.02 1.04
8 0.21 (0.06c,0.93r) 1.03 1.04
16 0.36 (0.12c,1.05r) 1.04 1.05
32 0.57 (0.25c,1.21r) 1.05 1.05

cage13 frontier pins hyperedge ratio vertex ratio

2 0.59 (0.27c,0.69r) 1.00 1.03
4 1.21 (0.72c,1.29r) 1.00 1.04
8 2.19 (1.60c,2.27r) 1.01 1.07
16 3.38 (2.69c,3.46r) 1.03 1.10
32 4.52 (3.56c,4.42r) 1.04 1.11

ibm18 frontier pins hyperedge ratio vertex ratio

2 0.83 (0.90c,0.90r) 1.01 1.05
4 1.93 (2.09c,2.90r) 1.02 1.07
8 3.23 (3.43c,3.43r) 1.05 1.12
16 4.56 (4.80c,4.80r) 1.11 1.17
32 4.59 (5.94c,5.93r) 1.21 1.21

Stanford frontier pins hyperedge ratio vertex ratio

2 0.90 (0.92c,0.96r) 1.02 1.04
4 2.37 (2.49c,2.62r) 1.04 1.05
8 4.57 (4.94c,5.20r) 1.06 1.05
16 7.77 (8.34c,8.76r) 1.08 1.07
32 10.9 (12.2c,12.8r) 1.11 1.09

bcsstk32 frontier pins hyperedge ratio vertex ratio

2 0.17 (0.15c,0.58r) 1.01 1.01
4 0.29 (0.26c,0.95r) 1.04 1.02
8 0.43 (0.36c,1.19r) 1.07 1.03
16 0.67 (0.54c,1.44r) 1.13 1.07
32 0.97 (0.75c,1.70r) 1.22 1.16

of processors is increased from p to p′, then the problem size must increase by
a factor ψp = (p′2 log p′)/(p2 log p) in order to maintain the efficiency achieved
using p processors. To validate this empirically, we make use of the voting

25

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

sp
ee

du
p

processors

ATTpre2

k=8
k=16
k=32

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

sp
ee

du
p

processors

voting175

k=8
k=16
k=32

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

sp
ee

du
p

processors

cage13

k=8
k=16
k=32

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30

sp
ee

du
p

processors

ibm18

k=8
k=16
k=32

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30

sp
ee

du
p

processors

Stanford

k=8
k=16
k=32

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

sp
ee

du
p

processors

bcsstk32

k=8
k=16
k=32

Fig. 1. Parkway2.1: speedup results using PaToH as base-case.

family of hypergraphs that cover a wide range of problem sizes and share a
similar structure that satisfies our assumptions of low maximum hyperedge
and vertex degrees. We take as our base case the voting100 hypergraph par-
titioned using 2 processors, and represent the problem size as the number of
pins in the hypergraph. For higher values of p, we compute the required ideal
problem size and choose the voting hypergraph with the number of pins that
most closely matches this number. We stop at p = 10, since above this value

26

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

ATTpre2

k=8
k=16
k=32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

voting175

k=8
k=16
k=32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

cage13

k=8
k=16
k=32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

ibm18

k=8
k=16
k=32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

Stanford

k=8
k=16
k=32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25 30

pa
rk

w
ay

/p
at

oh
 c

ut
si

ze
 r

at
io

processors

bcsstk32

k=8
k=16
k=32

Fig. 2. Parkway2.1: plots of Parkway/PaToH partition quality ratio (in terms of
k − 1 metric) against p.

the per-processor memory requirement becomes a limiting factor.

In order to compute parallel efficiencies on hypergraphs that could not be
partitioned on a single processor, we approximate serial runtimes by fitting a
linear regression model to a log-log plot of the observed serial PaToH runtimes,
as shown in equation 18. Here η is the residual term representing the variation

27

Table 4
Processor efficiencies in experiments when the problem size is increased according
to the isoefficiency function, given a prescribed increase in the number of processors.

p = 2 p = 4 p = 6 p = 8 p = 10
hypergraph voting100 voting200 voting250 voting300 voting350
ideal ψp 1 8 23 48 83
actual ψp 1 6.7 24 50 74
E(k = 8) 0.43 0.39 0.33 0.33 0.34
E(k = 16) 0.43 0.47 0.42 0.45 0.46
E(k = 32) 0.32 0.50 0.46 0.48 0.41

between logn and log Ts not explained by the linear model.

log Ts = α + β log n+ η (18)

The R2 value of this regression is well over 0.99, meaning that this model
explains more than 99% of the variation between (the log of) PaToH runtimes
and the (log of the) number of vertices in the hypergraph n. The full table of
observed and extrapolated serial runtimes for k = 8, k = 16 and k = 32 are
presented in Table 8 in the Appendix.

Table 4 presents the efficiencies observed for k = 8, k = 16 and k = 32 as the
number of processors increases, given that the problem size is also increased
according to our isoefficiency function. Here, the “actual ψp” row refers to the
actual increase in the problem size, given that we chose the voting hypergraph
which best approximates the required increase. We note that efficiency remains
relatively stable, as predicted by our scalability analysis.

4.4 Empirical Partition Quality Improvement Through Parallel Multi-phase

Refinement

We conducted a further set of experiments to compare empirically the quality
of partitions produced by the parallel multilevel algorithm implemented as in
Section 4.3 with those produced by the parallel multilevel algorithm utilising
parallel multi-phase refinement, as described in Section 3.5.

During the parallel uncoarsening phase, our implementation employed parallel
multi-phase refinement at each multilevel step. Before each call to the parallel
k-way refinement algorithm, a random permutation of vertices to processors
was performed, as it was found to improve the performance of the parallel
multi-phase refinement algorithm. Each processor generates a pseudorandom
vector (whose length equals the number of locally stored vertices) of inte-
gers, each from 1 to p (inclusive). Each processor then sends the vertices to
the processor given by the corresponding value in the random vector. The
remainder of the coarsening and refinement parameters were implemented as
in Section 4.3, and again partitions with balance criterion of 5% were sought.

28

Table 5
Parkway2.1 with parallel multi-phase refinement: runtime (in seconds) and partition
quality (k-1 metric) on smaller hypergraphs. The figures in brackets are percentage
cutsize improvements over Parkway2.1 without parallel multi-phase refinement. The
‘-’ denote configurations of p and k that cannot be handled by our implementation
of the parallel multi-phase refinement algorithm.

Partition Size(k)
p 8 16 32

voting175 time cutsize time cutsize time cutsize
2 753.0 24 252(7.2%) 968.4 48 222(5.7%) 1 030 93 125(3.1%)
4 479.4 24 422(6.0%) 881.6 48 166(8.3%) 1 020 93 121(2.7%)
8 318.8 24 553(8.2%) 560.9 48 714(7.7%) 418.0 93 104(3.1%)
16 - - 301.0 48 435(9.9%) 436.4 91 842(5.5%)
32 - - - - 147.5 93 243(4.3%)

ATTpre2 time cutsize time cutsize time cutsize
2 155.0 8 684(-1.1%) 172.9 16 748(3.0%) 216.8 30 917(12%)
4 82.13 8 504(0.0%) 105.5 16 534(3.4%) 140.9 30 771(16%)
8 47.08 8 503(-1.0%) 62.26 16 440(2.4%) 108.4 30 634(18%)
16 - - 49.45 16 095(4.7%) 81.73 30 162(19%)
32 - - - - 64.89 28 675(20%)

cage13 time cutsize time cutsize time cutsize
2 1 392 177 736(3.6%) 1 798 256 145(3.6%) 2 875 352 296(3.4%)
4 1 129 181 881(1.9%) 1 688 257 594(1.9%) 2 511 349 765(3.5%)
8 1 065 176 894(3.2%) 1 425 254 349(3.9%) 2 379 350 416(3.3%)
16 - - 1 381 253 155(4.0%) 2 102 350 881(2.8%)
32 - - - - 1 672 351 058(2.7%)

Since vertices from the same part are allocated to the same processor when
using the parallel multi-phase refinement algorithm, our implementation was
restricted to configurations of p and k where k is an integer multiple of p to
ensure a good load balance.

Table 5 shows the runtimes and partition cutsizes obtained using parallel
multi-phase refinement for the voting175, ATTpre2 and cage13 hypergraphs.
Across the hypergraphs, the average percentage improvements in cutsize are
3.1%, 4.9% and 8.0% for k = 8, k = 16 and k = 32 respectively. We expect
that the increase in the number of feasible partitions as partition size increases
explains the greater observed average improvements. However, we observe that
in a few cases, cutsize actually degrades (due to the randomized nature of the
algorithm); in addition the runtimes of the parallel algorithm with parallel
multi-phase refinement are an order of magnitude slower than when multi-
phase refinement is not used. Thus, except for situations where the quality of
partition is the main objective and runtime is not a consideration, it is unlikely
that parallel multi-phase refinement would be preferred to the “vanilla” k-way
parallel refinement algorithm.

29

5 Conclusion and Future Work

In this paper, we have presented the first parallel algorithms for the hyper-
graph partitioning problem and have shown the scalability for certain classes
of hypergraph under a theoretical performance model. Specifically, we have en-
abled large hypergraphs with small maximum vertex and hyperedge degrees
to be partitioned in a scalable manner, something that had hitherto not been
achieved. In the context of the multilevel paradigm, we presented a parallel
coarsening algorithm based on the serial FC/HCC algorithms [38,13] and two
parallel refinement algorithms, based on serial greedy k-way [38] and serial
multi-phase [36] refinement respectively.

The algorithms were empirically evaluated on hypergraphs representing sparse
matrix problems from the domains of DNA electrophoresis, analog circuits,
structural engineering, VLSI circuit design, PageRank computations and per-
formance analysis. We observed reasonable speedups on hypergraphs with
small maximum hyperedge degrees and/or a high degree of structural locality,
and partitions that were competitive with those produced by the state-of-the-
art serial multilevel partitioner PaToH [16]. The isoefficiency study conducted
on the voting family of hypergraphs validated our theoretical performance
model.

Using the parallel multi-phase refinement algorithm instead of the parallel
greedy k-way algorithm, we were able to achieve even better partition quality
over the basic parallel k-way refinement algorithm (with average improvements
of 3.1%, 4.9% and 8.0% for k = 8, k = 16 and k = 32 respectively), albeit at
a significantly larger runtime cost.

There are a number of directions that we can see for future work. In particular,
the algorithms in this paper are designed to be applied to general hypergraphs
representing sparse irregular problems and as such have not been optimised for
particular application domains. We anticipate that an improvement in runtime
and also partition quality would be possible if the algorithms were tailored to
take advantage of any inherent domain-specific structure in the hypergraphs
to achieve a better data distribution among the processors and guide the
coarsening and refinement algorithms. Secondly, it is clear that frontier hy-
peredge overhead is the main limiting factor in terms of the scalability of our
algorithms. A different approach to data distribution could be helpful in this
respect. While here we have considered a data distribution scheme analogous
to one-dimensional row-wise decomposition for parallel sparse matrix–vector
multiplication, concurrent work presented in [19] uses a two-dimensional dis-
tribution. Experimental results suggest that this distribution results in lower
overheads when partitioning hypergraphs with larger maximum vertex and
hyperedge degrees.

30

References

[1] C.J. Alpert. The ISPD98 Circuit Benchmark Suite. In Proc. International
Symposium of Physical Design, pages 80–85, April 1998.

[2] C.J. Alpert, J-H. Huang, and A.B. Kahng. Multilevel Circuit Partitioning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
17(8):655–666, 1998.

[3] C.J. Alpert and A.B. Kahng. Recent Directions in Netlist Partitioning.
Integration, the VLSI Journal, 19(1–2):1–81, 1995.

[4] C. Aykanat, A. Pinar, and U.V. Catalyurek. Permuting Sparse Rectangular
Matrices into Block-Diagonal Form. SIAM Journal on Scientific Computing,
25(6):1860–1879, 2004.

[5] S.T. Barnard and H.D. Simon. A Fast Multilevel Implementation of Recursive
Spectral Bisection for Partitioning Unstructured Problems. Concurrency:
Practice and Experience, 6(2):101–117, April 1994.

[6] C. Berge. Hypergraphs. North Holland, 1986.

[7] B. Bollobás. Combinatorics. Cambridge University Press, 1986.

[8] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson. Hypergraph-
based Parallel Computation of Passage Time Densities in Large Semi-Markov
Models. In Proc. 4th International Conference on the Numerical Solution
of Markov Chains (NSMC’03), pages 99–120, Urbana-Champaign IL, USA,
September 2003.

[9] F. Brglez. A D&T Special Report on ACM/SIGDA Design Automation
Benchmarks: Catalyst or Anathema. IEEE Design and Test, 10(3):87–91, 1993.

[10] T.N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions
is NP-Hard. Information Processing Letters, 42(3):153–159, May 1992.

[11] A.E. Caldwell, A.B. Kahng, and I.L. Markov. Improved Algorithms for
Hypergraph Bipartitioning. In Proc. 2000 ACM/IEEE Conference on Asia
South Pacific Design Automation, pages 661–666, January 2000.

[12] U.V. Catalyurek and C. Aykanat. Decomposing Irregularly Sparse Matrices for
Parallel Matrix–Vector Multiplication. In Lecture Notes in Computer Science,
volume 1117, pages 75–86, 1996.

[13] U.V. Catalyurek and C. Aykanat. Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multiplication. IEEE
Transactions on Parallel and Distributed Systems, 10(7):673–693, 1999.

[14] U.V. Catalyurek and C. Aykanat. A Fine-grain Hypergraph Model for 2D
Decomposition. In Proc. 15th IEEE International Parallel and Distributed
Processing Symposium, San Francisco, CA, 2001.

31

[15] U.V. Catalyurek and C. Aykanat. A Hypergraph-partitioning Approach for
Coarse-Grain Decomposition. In Proc. ACM/IEEE Supercomputing, Denver,
2001.

[16] U.V. Catalyurek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs,
Version 3.0, 2001.

[17] J. Cong and S.K. Lim. Multiway Partitioning with Pairwise Movement. In
Proc. ACM/IEEE International Conference on Computer Aided Design, pages
512–516, San Jose, CA, November 1998.

[18] T. Davis. University of Florida Sparse Matrix Collection, March 2005. http:

//www.cise.ufl.edu/research/sparse/matrices.

[19] K.D. Devine, E. Boman, R. Heaphy, R. Bisseling, and U.V. Catalyurek.
Parallel Hypergraph Partitioning for Scientific Computing. In Proc. 20th IEEE
International Parallel and Distributed Processing Symposium, 2006.

[20] K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D. Teresco,
J. Faik, J.E. Flaherty, and L.G. Gervasio. New Challenges in Dynamic Load
Balancing. Applied Numerical Mathematics, 52(2–3):133–152, 2005.

[21] N.J. Dingle, W.J. Knottenbelt, and P.G. Harrison. Uniformization and
Hypergraph Partitioning for the Distributed Computation of Response Time
Densities in Very Large Markov Models. Journal of Parallel and Distributed
Computing, 64(8):908–920, August 2004.

[22] I.S. Duff, R.G. Grimes, and J.G. Lewis. The Rutherford-Boeing sparse matrix
collection. Technical Report TR/PA/97/36, CERFACS, Toulouse, France, 1997.

[23] S. Dutt and W. Deng. A Probability-based Approach to VLSI Circuit
Partitioning. In Proc. 33rd Annual Design Automation Conference, pages 100–
105, June 1996.

[24] S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-Removal Using
Iterative Improvement Techniques. In Proc. 1996 IEEE/ACM International
Conference on Computer-Aided Design, pages 194–200, Nov 1996.

[25] S. Dutt and H. Theny. Partitioning Around Roadblocks: Tackling Constraints
with Intermediate Relaxations. In Proc. 1997 IEEE/ACM International
Conference on Computer-Aided Design, pages 350–355, Nov 1997.

[26] P. Feldmann, R. Melville, and D. Long. Efficient frequency domain analysis
of large nonlinear analog circuits. In Proc. IEEE Custom Integrated Circuits
Conference, Santa Clara, CA, 1996.

[27] C.M. Fiduccia and R.M. Mattheyses. A Linear Time Heuristic For Improving
Network Partitions. In Proc. 19th IEEE Design Automation Conference, pages
175–181, 1982.

[28] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

32

[29] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: A linear system
approach. Technical Report YRL–2004–038, Institute for Computation and
Mathematical Engineering, Stanford University, 2004.

[30] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing. Addison-Wesley, 2nd edition, 2003.

[31] B.A. Hendrickson. Graph Partitioning and Parallel Solvers: Has the Emperor
No Clothes? In Proc. Irregular’98, volume 1457 of LNCS, pages 218–225.
Springer, 1998.

[32] B.A. Hendrickson and T.G. Kolda. Graph Partitioning Models for Parallel
Computing. Parallel Computing, 26:1519–1534, 2000.

[33] B.A. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning
Graphs. In Proc. ACM/IEEE Conference on Supercomputing, 1995.

[34] A. Van Heukelum, G.T. Barkema, and R.H. Bisseling. DNA Electrophoresis
Studied with the Cage Model. Journal of Computational Physics, 180(1):313–
326, July 2002.

[35] G. Karypis. Multilevel Hypergraph Partitioning. Technical Report #02-25,
University of Minnesota, 2002.

[36] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph
Partitioning: Applications in VLSI Domain. IEEE Transactions on VLSI
Systems, 7(1):69–79, 1999.

[37] G. Karypis and V. Kumar. hMeTiS: A Hypergraph Partitioning Package,
Version 1.5.3. University of Minnesota, 1998.

[38] G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning.
Technical Report #98-036, University of Minnesota, 1998.

[39] G. Karypis and V. Kumar. A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed
Computing, 48:71–95, 1998.

[40] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1999.

[41] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel Graph
Partitioning and Sparse Matrix Ordering Library, Version 3.0. University of
Minnesota, 2002.

[42] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49:291–307, February 1970.

[43] W.J. Knottenbelt. Parallel Performance Analysis of Large Markov Models.
PhD thesis, Imperial College, London, United Kingdom, 2000.

[44] B. Krishnamurthy. An Improved min-cut Algorithm for Partitioning VLSI
Networks. IEEE Transactions on Computers, 33(C):438–446, 1984.

33

[45] L.A. Sanchis. Mulitple-way Network Partitioning with Different Cost Functions.
IEEE Transactions on Computers, 42(22):1500–1504, 1993.

[46] D.G. Schweikert and B.W. Kernighan. A Proper Model for the Partitioning of
Electrical Circuits. In Proc. ACM/IEEE Design Automation Conference, pages
57–62, 1972.

[47] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference. MIT Press, Cambridge, Massachussets, 2nd edition, 1998.

[48] A. Trifunovic and W. Knottenbelt. Parkway2.0: A Parallel Multilevel
Hypergraph Partitioning Tool. In Proc. 19th International Symposium on
Computer and Information Sciences, volume 3280 of Lecture Notes in Computer
Science, pages 789–800. Springer, 2004.

[49] A. Trifunovic and W.J. Knottenbelt. A Parallel Algorithm for Multilevel k-way
Hypergraph Partitioning. In Proc. 3rd International Symposium on Parallel
and Distributed Computing, pages 114–121, University College Cork, Ireland,
July 2004.

[50] B. Ucar and C. Aykanat. Encapsulating Multiple Communication-Cost
Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix–Vector
Multiples. SIAM Journal on Scientific Computing, 25(6):1837–1859, 2004.

[51] B. Vastenhouw and R.H. Bisseling. A Two-Dimensional Data Distribution
Method for Parallel Sparse Matrix–Vector Multiplication. SIAM Review,
47(1):67–95, 2005.

6 Appendix

34

Table 6
Parkway2.1 (for p > 1) and PaToH (for p = 1) runtimes (in seconds) and partition
quality (k-1 metric) for ATTpre2, voting175 and cage13 hypergraphs. All results are
averages over ten runs.

Partition size(k)
p 8 16 32

ATTpre2 time cutsize time cutsize time cutsize
1 28.7 9 564 37.3 19 331 46.3 37 217
2 63.9 8 598 66.4 17 270 76.3 35 008
4 29.7 8 545 31.3 17 111 38.7 36 416
8 14.1 8 460 15.0 16 839 20.4 37 410
12 8.85 8 496 9.74 16 836 14.6 36 480
16 6.71 8 452 7.54 16 981 12.2 37 304
20 5.69 8 470 6.40 16 498 11.3 38 098
24 9.07 8 385 9.76 16 248 14.6 37 395
28 9.59 8 456 10.2 16 121 14.8 36 611
32 8.95 8 469 9.82 16 264 13.7 35 858

voting175 time cutsize time cutsize time cutsize
1 44.4 22 864 59.0 47 000 72.3 92 555
2 55.3 26 135 61.6 51 139 75.1 96 078
4 28.9 25 991 32.1 52 531 39.0 95 679
8 14.9 26 735 17.3 52 787 22.7 96 072
12 11.4 26 357 13.7 53 662 19.3 97 654
16 9.1 25 942 11.0 53 766 15.7 97 204
20 7.8 26 120 10.2 52 053 14.8 97 307
24 6.8 25 970 9.5 52 154 13.7 96 898
28 6.9 26 127 8.5 52 869 13.6 96 160
32 6.7 25 990 8.8 52 363 13.9 97 428

cage13 time cutsize time cutsize time cutsize
1 94.1 192 506 118 275 262 139 385 922
2 300 184 435 355 265 638 470 364 558
4 207 185 317 264 262 630 323 362 390
8 147 182 751 185 264 586 250 362 355
12 118 182 878 164 261 919 240 365 280
16 112 182 544 159 263 569 230 361 083
20 111 183 431 155 260 250 219 359 392
24 106 182 042 148 263 237 212 361 352
28 106 181 889 146 265 108 217 360 998
32 102 181 974 141 262 001 225 360 909

35

Table 7
Parkway2.1 (for p > 1) and PaToH (for p = 1) runtimes (in seconds) and partition
quality (k-1 metric) for ibm18, Stanford and bcsstk32 hypergraphs. All results are
averages over ten runs.

Partition size(k)
p 8 16 32

ibm18 time cutsize time cutsize time cutsize
1 11.4 7 625 13.6 13 176 15.2 19 329
2 11.0 7 466 14.7 11 988 22.4 17 487
4 8.24 7 799 11.1 11 810 16.1 17 321
8 6.51 7 681 8.64 11 425 11.8 17 218
12 6.34 7 455 8.09 11 737 11.1 17 200
16 6.31 7 596 8.08 11 627 11.2 17 121
20 5.92 7 279 7.50 11 607 10.8 17 208
24 5.60 7 208 7.55 11 419 10.8 17 078
28 5.08 7 407 7.52 11 503 10.5 16 977
32 5.23 7 520 7.54 11 633 10.7 17 300

Stanford time cutsize time cutsize time cutsize
1 29.2 37 147 32.3 71 545 40.5 140 492
2 20.3 32 724 29.3 82 642 55.3 160 882
4 14.9 33 450 22.3 84 749 43.4 158 175
8 10.8 34 482 17.5 84 525 27.4 163 690
12 10.7 32 872 17.0 82 855 28.1 162 741
16 11.3 32 928 18.1 84 106 31.2 162 232
20 14.6 32 947 21.4 85 727 34.7 161 170
24 15.5 33 496 22.2 80 448 36.5 163 276
28 15.7 33 404 24.7 81 962 37.4 158 733
32 17.0 32 807 24.3 79 629 37.7 159 784

bcsstk32 time cutsize time cutsize time cutsize
1 5.20 4 569 7.10 8 215 8.80 13 154
2 2.75 4 435 4.25 7 692 6.26 12 288
4 1.48 4 350 2.35 7 693 3.47 12 392
8 1.11 4 373 1.91 7 657 2.98 12 262
12 1.08 4 415 1.85 7 581 2.86 12 140
16 1.08 4 435 1.62 7 644 2.75 12 231
20 1.17 4 417 1.91 7 635 2.91 12 231
24 1.16 4 448 1.85 7 608 2.90 12 184
28 1.11 4 327 1.75 7 621 2.94 12 181
32 1.19 4 388 1.94 7 545 2.87 12 248

36

Table 8
PaToH runtimes on the voting hypergraphs. For voting100 to voting200 the runtimes
are averages over ten runs. Remaining runtimes are approximated by a log-log least
squares regression over the observed runtimes. The regression α is the zero intercept
and the regression β is the slope of the line. The quantities in brackets denote the
standard errors of the parameters.

Hypergraph k = 8 k = 16 k = 32

regression R2 0.999 0.999 0.997
regression α -12.22(0.26) -12.24(0.31) -12.08(0.50)
regression β 1.146(0.02) 1.168(0.02) 1.171(0.04)
voting100 7.90 10.1 12.2
voting125 18.0 23.2 27.6
voting150 28.4 37.5 46.0
voting175 44.4 59.0 72.3
voting200 65.1 86.5 107
voting250 246 339 417
voting300 578 810 997
voting350 899 1 270 1 570

37

