Argumentation-Based Recommendations: Fantastic Explanations and How to Find Them

Antonio Rago, Oana Cocarascu and Francesca Toni

Imperial College London

explAIn Workshop

25th April 2018

Imperial College London

Presentation Overview

1. Background

Recommender Systems

2. Research Summary

- Aspect-Item Recommender Systems
- Predicted Rating Calculations
- Argumentation Explanations
- 3. Conclusions

Argumentation-Based Recommendations: Fantastic Explanations and How to Find Them Antonio Rago, Oana Cocarascu and Francesca Toni **Imperial College**

London

Background – Recommender Systems

- Two main types of methods:
 - Content-based filtering (operating on information about users and their tastes).
 - Collaborative filtering (looking at similar users and their preferences).
- Common methods:
 - Latent factor models (based on matrix factorization).
 - Nearest neighbour models between items or users.
- The Netflix Prize has shown that matrix factorization models are superior to NN models.
- 4 of the desirable features:
 - Transparency explaining how systems work and showing how they predict ratings.
 - Scrutability allowing feedback based on these explanations.
 - Trust correcting the systems based on user feedback.
 - Effectiveness increasing the systems' accuracy with regards to users' preferences.
- Our method incorporates these features using Argumentation-Based Explanations.

Research Summary – Aspect-Item Recommender Systems

• We define a hybrid recommender system using an *Aspect-Item framework* (A-I):

Definition 1 An Aspect-Item framework (A-I) is a 6-tuple $\langle \mathcal{I}, \mathcal{A}, \mathcal{T}, \mathcal{L}, \mathcal{U}, \mathcal{R} \rangle$ such that:

- \mathcal{I} is a finite, non-empty set of *items*;
- A is a finite, non-empty set of *aspects* and T is a finite, non-empty set of *types*, where each aspect in A has a unique type in T; for any t ∈ T, we use A_t to denote {a ∈ A| the type of a is t};
- the sets *I* and *A* are pairwise disjoint; we use *X* to denote *I* ∪ *A*, and refer to it as the set of *item-aspects*;
- $\mathcal{L} \subseteq (\mathcal{I} \times \mathcal{A})$ is a symmetrical binary relation;
- \mathcal{U} is a finite, non-empty set of *users*;
- \mathcal{R} is a partial function of *ratings* such that $\mathcal{R} : \mathcal{U} \times \mathcal{X} \rightarrow [-1, 1]$.

Imperial College

London

• This allows us to calculate predicted ratings each item-aspect for the user based on their ratings and similar users' ratings on item-aspects.

Research Summary – Predicted Rating Calculations

- Predicted ratings, based on user's and similar users' ratings, propagate through the graph.
 - Averaging techniques for each item-aspect's and type's effect on a predicted rating.
 - Unique weighting parameters for user similarities and preferences for each user.
- Unrated items with the highest predicted ratings are then recommended.
- Our method performs competitively when its **accuracy** is compared with ML techniques:

	Min #movies training set/			
Model	#movies 'cold-start'			t'
	10/5	20/5	20/7	20/10
Co-clustering	0.834	0.841	0.851	0.867
KNN	0.855	0.857	0.859	0.866
KNN with z score	0.855	0.853	0.864	0.875
NMF	0.837	0.842	0.853	0.861
Slope one	0.862	0.860	0.872	0.882
SVD	0.859	0.863	0.873	0.878
A-I model	0.949	0.940	0.933	0.934

Key: id, user rating, average similar user rating, predicted rating

Imperial College London

• A-I recommender systems allow argumentation readings of recommendations:

- Item-aspects are treated as arguments (that the user (dis)likes that item-aspect).
- The relations between arguments depends on user ratings for direction and (predicted) ratings for polarity.

Imperial College

London

- Argumentation explanations can then be extracted.
- The argumentation explanation for f_1 is the subgraph in which all nodes have a path to f_1 :

• Contains item-aspects which affected f_1 's predicted rating and therefore its recommendation.

Imperial College

London

• Explanations allow users to interact with recommendations and provide feedback, e.g.:

User: "I did not enjoy Catch Me If You Can, why did you recommend it to me?"

• The user's positive rating on a_3 has therefore had the biggest effect. The response may be:

User: "I don't care about the actors in a film, consider the actors in a film less."

• This reduces the user's unique constant for actors in a film, reduces f₁'s predicted rating and (we posit) improves the recommender system's accuracy.

Imperial College

London

• Similarly, since the user hasn't given a rating to g₃, they could ask for reasoning on it:

User: "Why do you think I don't like the genre Drama?"

• Similar users' (positive, overall) ratings on f₁ have increased g₃'s predicted rating:

User: "The users who rate Catch Me If You Can positively are not similar to me."

- The system also allows ratings to be changed, e.g. f₂ could be rated lower in this case.
- Reducing either the users' similarity or f_2 's rating is guaranteed to reduce f_1 's predicted rating.

Imperial College

London

Conclusions

- We have presented a method for incorporating quantitative argumentation to recommender systems:
 - Aspect-Item frameworks provide a method for a hybrid recommender system.
 - Using a simple algorithm for calculating predicted ratings, the A-I Recommender Systems perform competitively with traditional ML methods.
 - A-I frameworks admit argumentation readings of recommendations in the form of argumentation frameworks.
 - These argumentation frameworks can be used as the underlying structure to provide visual and linguistic explanations of recommendations to users.
 - The explanations allow feedback to be provided by users, adjusting parameters in the system which further improve the accuracy of the system for each unique user.

Imperial College

London

Thank You

Any Questions?

Imperial College London

Argumentation-Based Recommendations: Fantastic Explanations and How to Find Them Antonio Rago, Oana Cocarascu and Francesca Toni

11 / 11