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Problem

• Examples/instances/cases DB = {e1, . . . ,en}
Example e = (F ,o) ∈ DB consists of:

− (set of) features/attribute-value pairs/factors

F = {f1, . . . , fm} ⊆ F

− label/class/outcome

o ∈ L = {ϕ,ϕ}
• New example (N,?)

− features N ⊆ F

− unknown label ?

• Prediction: determine whether ? = ϕ or ? = ϕ

• Explain why
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(Some) Existing Approaches

• To predict labels, could use

− Case-Based Reasoning (CBR) [Richter and Weber, 2013]

− Artificial Neural Networks (ANNs) [LeCun et al., 2015]

− etc.

• But may be hard to explain predictions

[Andrews et al., 1995, Sørmo et al., 2005]

− hard to define formally

− showing similar examples need not suffice

− transparent/interpretable 6= explanatory

• May also be data-hungry

− e.g. large DB needed
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Our Approach

• Abstract Argumentation (AA) [Dung, 1995]

− deals with conflicting information

• AA-CBR [Čyras et al., 2016a]: AA-driven CBR

− models and deals with conflicting examples

• AA-CBR Explanations [Čyras et al., 2016b]

− debates explaining predictions

• ANNs with AA-CBR

− ANNs for feature selection

− AA-CBR predictions and explanations

− rule-based predictions and explanations
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Feature Selection (ANN)

• Start with a training set E of examples (Y ,o)

− features (of e.g. mushrooms2)

Y ⊆ FE = {. . . ,white,pink, red ,crimson,maroon, . . .}
− label o ∈ L = {edible (ϕ), poisonous (ϕ)}

• Use autoencoder to get a trimmed dataset DB of examples

− {. . . ,white, red , . . .}= F⊆ FE

− DB = {(Y ,o) : (X ,o) ∈ E , Y = X ∩F}
• Ensure F leads to coherent DB

− ∀ (X ,oX ),(Y ,oY ) ∈ DB, if X = Y , then oX = oY

− DB is ‘rational’

2archive.ics.uci.edu/ml/datasets/Mushroom[Dheeru and Karra Taniskidou, 2017]
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Abstract Argumentation (AA)

AA is used to create a model of DB.

• An AA framework is a graph (Args, )

− Nodes: arguments Args represent information

− Edges: attacks  represent conflicts

• Semantics determine ‘good’ arguments

− E.g. grounded extension (set of arguments)

a

b c

d e f

g
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AA-CBR Model

From DB and ϕ construct (Args, ) with:

• Args = DB ∪{({},ϕ)};
− examples are arguments

− ({},ϕ) (being edible) is focus argument

• for (X ,oX ),(Y ,oY ) ∈ DB ∪{({},ϕ)},
it holds that (X ,oX ) (Y ,oY ) iff

1. oX 6= oY , and (different outcomes)

2. Y ( X , and (specificity)

3. @(Z ,oX ) ∈ CB with Y ( Z ( X . (concision)
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AA-CBR Model Graph (Mushrooms)

ϕ is focus ({},ϕ)

({red},ϕ)

({red ,scaly},ϕ)

({red ,scaly ,convex},ϕ)
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AA-CBR Prediction

From DB, focus ϕ and (N,?) construct (ArgsN , N) with:

• ArgsN = Args ∪{(N,?)};
•  N= ∪{((N,?),(Y ,oY )) : (Y ,oY ) ∈ Args and Y * N}.
− (ArgsN , N) extends (Args, ) with (N,?) attacking

‘irrelevant’ examples

Let G be the grounded extension of (ArgsN , N).

The AA-CBR prediction of (N,?) is:

• ϕ, if ({},ϕ) ∈G;

− edible if focus argument is good

• ϕ, otherwise, if ({},ϕ) 6∈G.

− poisonous otherwise
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AA-CBR Prediction Graph (Mushrooms)

ϕ is focus

(N,?) = ({red ,convex},?)
({},ϕ)

({red},ϕ)

({red ,scaly},ϕ)

({red ,scaly ,convex},ϕ)

({red ,convex},?)

G = {({red ,convex},?),({red},ϕ)}.

({},ϕ) 6∈G. So prediction is poisonous (ϕ).
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AA-CBR Explanations

Explanations of predictions are disputes between a proponent P

(arguing for focus) and an opponent O (arguing against).

Disputes as sub-graphs of (ArgsN , N):

• Prediction is ϕ – an explanation is any admissible dispute tree T
for the focus argument ({},ϕ)

− every O node has a child

− no argument labels both P and O

• Prediction is ϕ – an explanation is any maximal dispute tree T
for the focus argument ({},ϕ)

− every O leaf is unattacked in (ArgsN , N)
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Explanation for Poisonous

(ArgsN , N)

ϕ is focus

({},ϕ)

({red},ϕ)

({red ,scaly},ϕ)

({red ,scaly ,convex},ϕ)

({red ,convex},?)

T

[P : ({},ϕ)]

[O : ({red},ϕ)]

[P : ({red ,scaly ,convex},ϕ)]

[O : ({red ,convex},?)]
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Explanation for Edible

({},ϕ)
ϕ is focus

({red},ϕ)

({red ,scaly},ϕ)

({red ,scaly ,convex},ϕ)

({red ,scaly ,convex ,smooth},?)

[P : ({},ϕ)]

[O : ({red},ϕ)]

[P : ({red ,scaly ,convex},ϕ)]
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Rules

Logic programming rules from (Args, )

• Alternative description of the model of DB

• Rule predictions coincide with AA-CBR predictions

• Alternative explanations of predictions

Logic program P:

• For E : ({f1, . . . , fm},o) ∈ Args, create a rule

acc(E )← f1, . . . , fm,not acc(E1), . . . ,not acc(Ek).

stating that E is accepted

− if all features f1, . . . , fm apply,

− unless any of the attackers E1, . . . ,Ek of E are accepted;

• Repeat for each attacker and its attackers in turn;

For rule prediction, add features from N as facts to get PN .
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Rules (Mushrooms)

(Args, )

ϕ is focus ({},ϕ)

E1 : ({red},ϕ)

E2 : ({red ,scaly},ϕ)

E3 : ({red ,scaly ,convex},ϕ)

N = {red ,convex}

P:

acc(focus)← not acc(E1).

acc(E1)← red ,not acc(E3).

acc(E2)← red ,scaly ,not acc(E3).

acc(E3)← red ,scaly ,convex .

PN is P with

red ←>.
convex ←>.
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Ongoing Work

• Datasets

• ANNs

• Categorical rather than binary features

• Multiple labels

• Rule simplification

• Related (argumentation-based) explanation concepts, e.g.

[Garćıa et al., 2013, Fan and Toni, 2015, Schulz and Toni, 2016]

• Related (rule-based) explanation concepts, e.g. (neural)

decision trees, inductive logic programming
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Summary

• ML for feature selection within data

• Argumentation for

− model creation

− predictions

− rules

− dialectical and logical explanations
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Čyras, K., Satoh, K., and Toni, F. (2016a).

Abstract Argumentation for Case-Based Reasoning.

In Baral, C., Delgrande, J. P., and Wolter, F., editors, Principles of Knowledge Representation and

Reasoning, 15th International Conference, pages 549–552, Cape Town. AAAI Press.
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