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Interpretation

Regression:

Y = Xβ + ε

f (x) = E [y |x ]

I Which predictor variables are important? (variable
importance)

I Does the model fit the data? Better or worse than another
model? (model criticism / selection)

I Can we exclude some of the variables? (variable selection)

I What is the relationship between a given predictor variable
and the output? (effect size)

I What statistical guarantees (confidence intervals) or
probabilities (posterior uncertainty intervals) can we attach to
the above answers? 2
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Articles
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… for the first time in more than two decades, the
European Parliament adopted a set of comprehensive
regulations for the collection, storage, and use of 
personal information

regulations for foreign companies collecting data
from European citizens (Article 44).

However, while the bulk of language deals with
how data is collected and stored, the regulation con-
tains Article 22: Automated individual decision mak-
ing, including profiling (see figure 1) potentially pro-
hibiting a wide swath of algorithms currently in use
in recommendation systems, credit and insurance
risk assessments, computational advertising, and
social networks, for example. This prohibition raises
important issues that are of particular concern to the
machine-learning community. In its current form,
the GDPR’s requirements could require a complete
overhaul of standard and widely used algorithmic
techniques. The GDPR’s policy on the right of citizens
to receive an explanation for algorithmic decisions
highlights the pressing importance of human inter-
pretability in algorithm design. If, as expected, the
GDPR takes effect in its current form in mid-2018,
there will be a pressing need for effective algorithms
that can operate within this new legal framework.

Background
The General Data Protection Regulation is slated to
go into effect in April 2018 and will replace the EU’s
1995 Data Protection Directive (DPD). On the surface,
the GDPR merely reaffirms the DPD’s right to expla-
nation and restrictions on automated decision mak-
ing. However, this reading ignores a number of criti-
cal differences between the two pieces of legislation
(Goodman 2016a, 2016b).

First, it is important to note the difference between
a directive and a regulation. While a directive “set[s] out
general rules to be transferred into national law by
each country as they deem appropriate,” a regulation
is “similar to a national law with the difference that
it is applicable in all EU countries” (European Docu-
mentation Centre 2016). In other words, the 1995
directive was subject to national interpretation and
was only ever indirectly implemented through subse-
quent laws passed within individual member states
(Fromholz 2000). The GDPR, however, requires no
enabling legislation to take effect. It does not direct

Source: Goodman and Flaxman, “European Union Regulations on Algorithmic Decision Making and a ‘Right to

Explanation’ ”, AI Magazine, 2017
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Explanation

I What data about me does the algorithm use?

I Why was I shown this ad?

I Why was my insurance application declined?

I Why was I given this offer (features, down payment, overall
price, financing) for a car?

4



Putting it together: inference

inference: drawing conclusions from data

I This is already hard with classical statistics (cf. scientific
replicability crisis)!

I What about with machine learning?

Rahimi and Recht, NIPS 20171:

Machine learning has become alchemy.
Alchemy worked.
If you’re building photo sharing systems, alchemy is ok.
We’re building systems that govern healthcare, and
mediate our civic dialogue.
BWe influence elections.B

1https://www.youtube.com/watch?v=Qi1Yry33TQE and
http://www.argmin.net/2017/12/05/kitchen-sinks/

5
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Disclaimer: causality and representativeness

I Without extra assumptions about data collection or
underlying mechanisms we are explaining / interpreting
statistical associations (i.e. joint or conditional distributions,
posterior predictive distributions, predictions, etc.) rather than
cause and effect.

But scientifically relevant inferences can be
evaluated with other evidence!

I Results may not generalize to different settings or different
populations.

But inferences can be compared across settings
more meaningfully than predictive models.

9
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From linear methods to nonlinear methods

Y ∼ X1 + X2 + X3

Y ∼ X1 + X2 + X3 + X1X2 + X1X3 + X2X3

Y ∼ f1(X1) + f2(X2) + f3(X3)

...

Y ∼ f (X1,X2,X3)

Choices for f : neural network, Gaussian process, decision tree,
boosting, etc: methods that succeed by considering many and
higher order interactions!

Our central question: rank the importance of the predictor
variables, not just marginally but taking into account these
interactions.

13
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Effect sizes in linear methods
Fit a linear model:

Y = β̂1X1 + β̂2X2

The regression coefficients β̂1 and β̂2 are effect sizes.

Regression coefficients in an ordinary least squares setup, where X
is the design matrix:

β̂ = (X>X )−1X>y

Define the projection operator:

β̂ = Proj(X , y) := (X>X )−1X>y

What information does this vector contain? For standardised
variables X1 and Y :

β̂1 = Corr(X1,Y )

β̂2 = Corr(X2,Y )

19
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Effect size “analogue”

Generic non-linear model:

Y ∼ f (X )

Once we learn a function f̂ we can calculate our predictions

Ŷ = f̂ (X )

Basic idea: β̃ := Proj(X , Ŷ ) is still a sensible quantity of interest.

β̃1 = Corr(X1, Ŷ )

β̃2 = Corr(X2, Ŷ )

Cf. model compression [Bucilă, Caruana, Niculescu-Mizil KDD
2006]

23



Gaussian processes

I Bayesian framework for specifying a prior over functions:

f ∼ GP(µ(x), k(x , x ′))

I Regression:
yi = f (xi ) + ε, ε ∼ N (0, σ2)

I Conjugate model:

[f (x1) . . . f (xn)]> ∼ N (µ,K )

yi |f (xi ) ∼ N (f (xi ), σ2), i = 1, . . . , n

I Closed form posterior!

f (x)|Y ∼ N
(
K (K + σ2I )−1Y ,K − K (K + σ2I )−1K>

)

24
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GP illustration

f ∼ GP(µ(x), k(x , x ′))

yi |f (xi ) ∼ N (f (xi ), σ2), i = 1, . . . , n
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GP illustration
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Gaussian processes: the “weight space” view

Given K we can consider a decomposition such that L>L = K .
Then

f ∼ N (0,K ) ⇐⇒ γ ∼ N (0, I ), f := L>γ

This resembles the original linear regression problem, but with a
new set of covariates. L is n × n, so there are as many parameters
as observations (thus “non-parametric”). We need to find a set of
coefficients γ.

Now we return to the effect size analogue2:

β̃ = Proj(X , ŷ) = Proj(X , f ) = Prof(X , L>γ) = (X>X )−1X>L>γ

Notice:
f ≈ X β̃

Just the starting point—while it can capture interaction effects,
it’s only assessing marginal importance.

2also see Crawford et al., 2017
35



Methodological contribution

Assume we have a posterior distribution over the function f . This
induces a posterior distribution over β̃. (Assume it’s multivariate
normal.)

Recall our goal: rank variables in terms of their importance in
interaction with other variables.

A linear model assumes no interaction, while a GP with
appropriate kernel or a fully connected neural network assumes all
orders of interaction.

36



Measuring importance through centrality

Consider the posterior distribution p(β̃) and a particular variable of
interest j with effect size analogue β̃j . Denote the remaining effect

size analogues β̃−j . We are interested in the relationship betwen
variable j and the rest of the variables, so we consider two
distributions:

p(β̃−j) and p(β̃−j |β̃j)

One extreme: if the effect of the other variables are totally
independent of the effect of β̃j , then:

p(β̃−j) = p(β̃−j |β̃j)

Another extreme: β̃j interacts with all other variables. Then

p(β̃−j) and p(β̃−j |β̃j) are very far apart.
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Illustration: Ranking Influential Players

β

p(
β)

Full Team

β

p(
β)

Full Team
IR: Worst Player

β

p(
β)

Full Team IR: Best Player

[Source: Lorin Crawford]
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Kullback-Leibler Divergence

We use the KLD to quantify the distance between the distributions.

KLD(p(β−j)‖p(β−j |βj)) =

∫
β̃−j

log

(
p(β̃−j)

p(β̃−j | β̃j)

)
p(β̃−j) dβ̃−j .

This is a convenient choice because we will be able to derive it in
closed form as the posterior distributions we consider will be
multivariate normal.

µ =

(
µj
µ−j

)
, Σ =

(
σj σᵀ

−j
σ−j Σ−j

)
, Λ =

(
λj λᵀ

−j
λ−j Λ−j

)

KLD(β̃j) =
1

2

[
−log(|Σ−jΛ−j |) + tr(Σ−jΛ−j) + 1− p + αj(β̃j − µj)2

]
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RATE

“RelATive cEntrality” (RATE):

RATE(β̃j) =
KLD(β̃j)∑p
`=1 KLD(β̃`)

p∑
j=1

RATE(β̃j) = 1
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Biology application

I Goal: genetic association mapping

I Example: Genome Wide Association Study (GWAS)

I The Wellcome Trust Case Control Consortium (WTCCC)

I n = 14,000, 7 diseases, and 3,000 controls

I p = 450, 000 SNPs are measured

blue: previously identified loci; red: potentially novel loci. [Source: Lorin Crawford]
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Synthetic experimental setup

Data generating models are as follows:

(i) Standard model: y = Xβ + Wγ + ε,

(ii) Population stratification model: y = Xβ + Wγ + Zϕ+ ε.

I p predictors total.

I Random subset j∗ are truly associated (“causal”) variables
with βj∗ ∼ N (0, 1).

I The rest have βj ∼ N (0, 0.001).

I Main effects are in X. Interaction effects (subset of the j∗) are
in W. (Vary percent explained by each.)

I Zϕ is structured noise, to mimic population structure.
Explains 10% of variance.

I We fit models using a variety of linear methods, and also GP
regression + RATE.
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Illustration
n = 500, p = 25 predictors. Predictors {23, 24, 25} have additive
and interaction effects.
Xβ + Wγ explain 60% of variation, half from additive and half
from interaction.

Covariates
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E
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from interaction.
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Illustration
n = 500, p = 25 predictors. Predictors {23, 24, 25} have additive
and interaction effects.
Xβ + Wγ explain 60% of variation, half from additive and half
from interaction.

Covariates

R
AT

E
(β~

j |
 β~

1
=

 β~
2

=
0)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

52



Illustration
n = 500, p = 25 predictors. Predictors {23, 24, 25} have additive
and interaction effects.
Xβ + Wγ explain 60% of variation, half from additive and half
from interaction.
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Power analysis

n = 500, p = 2500 predictors. 10 predictors have additive effects,
20 predictors have additive and interaction effects.
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Power analysis
Compare power for RATE > 1/p,
posterior inclusion probability > 0.5,
multiple testing corrected SCANONE method P < 2× 10−5.
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Real data

I Phenotypes of Arabidopsis thaliana

I Versailles Arabidopsis Stock Center
publiclines.versailles.inra.fr/page/33

I Used in previous studies for similar methods [Demetrashvili et
al 2013]

I n = 403, p = 1028.

I Many genotypes of perfect correlation r2 > 0.99 so final
dataset p = 524 covariates.

I Phenotypes are six biochemical content measurements: allyl,
Indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl
(MO4I3M), 4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl
(MT8), and 3-hydroxypropyl (OHP3)
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Real data

●●●●●
●●●

0.
00

0.
02

0.
04

MO4I3M

Chromosome

R
AT

E

●

●●

●
●●

●●
●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●●

●●●
●
●

●

●
●
●●
●

●

●●●
●●

●
●●
●●●
●

●●●●●●
● ●● ●●

●●●●●●
●

●

●
●
●●●●●

●
●●
●●●●●●●

●
●●
●
●●●
●
●
●

●●●●●●●
●●●●

●●●●
●●●●●●●●●

●●●●●●
●●●
●●
●

●●●●●●●
●●●●
●●
●●
●
●

●
●

●
●●●●

1 2 3 4 5

● Significant Markers

MSAT305754
JV7576At3g23300 At4g04860At1g78370

At2g05070

MSAT4.18
At3g62630

Figure: RATE

57



Real data
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Real data
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Figure: Lasso
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Real data
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Real data
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Takeaways from real study

I RATE consistently identifies genomic locations corresponding
to known members of biosynthetic pathways in Arabidopsis
thaliana and validated findings from previous experimentally
based studies

I Same general regions also identified by other methods, but
real differences amongst them

I Sparsity inducing methods not always appropriate approaches
for mapping studies because we know that the true causal
variants are likely not any of the observed marker—even with
10 million SNPs, many un-tagged variants, and groups of
nearby variants that are almost perfectly correlated. Real goal
is not to find the best single marker but to identify a region
(or subnetwork) of the genome that contains the true variant.
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Conclusion

I Draft of Crawford, Flaxman, Runcie, and West [2018] on
arXiv:1801.07318.

I Replication code is on GitHub
https://github.com/lorinanthony/RATE

I Next steps: scalability, deep neural networks, application to
frequentist settings, connections with likelihood ratio test and
Bayes Factor

I Explainability in Machine Learning Challenge has launched
(partners: Imperial, FICO, Google, Berkeley, MIT)
http://explainable.ml/
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