

Interpretation

$$
\begin{gathered}
\text { Regression: } \\
Y=\boldsymbol{X} \beta+\epsilon \\
f(\boldsymbol{x})=E[y \mid \boldsymbol{x}]
\end{gathered}
$$

- Which predictor variables are important? (variable importance)
- Does the model fit the data? Better or worse than another model? (model criticism / selection)
- Can we exclude some of the variables? (variable selection)
- What is the relationship between a given predictor variable and the output? (effect size)
- What statistical guarantees (confidence intervals) or probabilities (posterior uncertainty intervals) can we attach to the above answers?

Explanation

Source: Goodman and Flaxman, "European Union Regulations on Algorithmic Decision Making and a 'Right to Explanation' ", AI Magazine, 2017

Explanation

- What data about me does the algorithm use?
- Why was I shown this ad?
- Why was my insurance application declined?
- Why was I given this offer (features, down payment, overall price, financing) for a car?

Putting it together: inference

inference: drawing conclusions from data
${ }^{1}$ https://www.youtube.com/watch?v=Qi1Yry33TQE and

Putting it together: inference

inference: drawing conclusions from data

- This is already hard with classical statistics (cf. scientific replicability crisis)!

Putting it together: inference

inference: drawing conclusions from data

- This is already hard with classical statistics (cf. scientific replicability crisis)!
- What about with machine learning?

Putting it together: inference

inference: drawing conclusions from data

- This is already hard with classical statistics (cf. scientific replicability crisis)!
- What about with machine learning?

Rahimi and Recht, NIPS $2017{ }^{1}$:
Machine learning has become alchemy.
Alchemy worked.
If you're building photo sharing systems, alchemy is ok.
We're building systems that govern healthcare, and
mediate our civic dialogue.
© We influence elections. \uparrow

[^0]
Disclaimer: causality and representativeness

- Without extra assumptions about data collection or underlying mechanisms we are explaining / interpreting statistical associations (i.e. joint or conditional distributions, posterior predictive distributions, predictions, etc.) rather than cause and effect.

Disclaimer: causality and representativeness

- Without extra assumptions about data collection or underlying mechanisms we are explaining / interpreting statistical associations (i.e. joint or conditional distributions, posterior predictive distributions, predictions, etc.) rather than cause and effect. But scientifically relevant inferences can be evaluated with other evidence!

Disclaimer: causality and representativeness

- Without extra assumptions about data collection or underlying mechanisms we are explaining / interpreting statistical associations (i.e. joint or conditional distributions, posterior predictive distributions, predictions, etc.) rather than cause and effect. But scientifically relevant inferences can be evaluated with other evidence!
- Results may not generalize to different settings or different populations.

Disclaimer: causality and representativeness

- Without extra assumptions about data collection or underlying mechanisms we are explaining / interpreting statistical associations (i.e. joint or conditional distributions, posterior predictive distributions, predictions, etc.) rather than cause and effect. But scientifically relevant inferences can be evaluated with other evidence!
- Results may not generalize to different settings or different populations. But inferences can be compared across settings more meaningfully than predictive models.

From linear methods to nonlinear methods

$$
Y \sim X_{1}+X_{2}+X_{3}
$$

From linear methods to nonlinear methods

$$
\begin{aligned}
& Y \sim X_{1}+X_{2}+X_{3} \\
& Y \sim X_{1}+X_{2}+X_{3}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}
\end{aligned}
$$

From linear methods to nonlinear methods

$$
\begin{aligned}
& Y \sim X_{1}+X_{2}+X_{3} \\
& Y \sim X_{1}+X_{2}+X_{3}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3} \\
& Y \sim f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+f_{3}\left(X_{3}\right)
\end{aligned}
$$

From linear methods to nonlinear methods

$$
\begin{aligned}
& Y \sim X_{1}+X_{2}+X_{3} \\
& Y \sim X_{1}+X_{2}+X_{3}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3} \\
& Y \sim f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+f_{3}\left(X_{3}\right) \\
& \vdots \\
& Y \sim f\left(X_{1}, X_{2}, X_{3}\right)
\end{aligned}
$$

From linear methods to nonlinear methods

$$
\begin{aligned}
& Y \sim X_{1}+X_{2}+X_{3} \\
& Y \sim X_{1}+X_{2}+X_{3}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3} \\
& Y \sim f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+f_{3}\left(X_{3}\right) \\
& \vdots \\
& Y \sim f\left(X_{1}, X_{2}, X_{3}\right)
\end{aligned}
$$

Choices for f : neural network, Gaussian process, decision tree, boosting, etc: methods that succeed by considering many and higher order interactions!

From linear methods to nonlinear methods

$$
\begin{aligned}
& Y \sim X_{1}+X_{2}+X_{3} \\
& Y \sim X_{1}+X_{2}+X_{3}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3} \\
& Y \sim f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+f_{3}\left(X_{3}\right) \\
& \vdots \\
& Y \sim f\left(X_{1}, X_{2}, X_{3}\right)
\end{aligned}
$$

Choices for f : neural network, Gaussian process, decision tree, boosting, etc: methods that succeed by considering many and higher order interactions!

Our central question: rank the importance of the predictor variables, not just marginally but taking into account these interactions.

Effect sizes in linear methods

Fit a linear model:

$$
Y=\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}
$$

The regression coefficients $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are effect sizes.

Effect sizes in linear methods

Fit a linear model:

$$
Y=\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}
$$

The regression coefficients $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are effect sizes.
Regression coefficients in an ordinary least squares setup, where \boldsymbol{X} is the design matrix:

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} y
$$

Effect sizes in linear methods

Fit a linear model:

$$
Y=\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}
$$

The regression coefficients $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are effect sizes. Regression coefficients in an ordinary least squares setup, where \boldsymbol{X} is the design matrix:

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} y
$$

Define the projection operator:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{Proj}(\boldsymbol{X}, y):=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} y
$$

Effect sizes in linear methods

Fit a linear model:

$$
Y=\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}
$$

The regression coefficients $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are effect sizes. Regression coefficients in an ordinary least squares setup, where \boldsymbol{X} is the design matrix:

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} y
$$

Define the projection operator:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{Proj}(\boldsymbol{X}, y):=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} y
$$

What information does this vector contain? For standardised variables X_{1} and Y :

$$
\begin{aligned}
& \hat{\beta}_{1}=\operatorname{Corr}\left(X_{1}, Y\right) \\
& \hat{\beta}_{2}=\operatorname{Corr}\left(X_{2}, Y\right)
\end{aligned}
$$

Effect size "analogue"

Generic non-linear model:

$$
Y \sim f(\boldsymbol{X})
$$

Once we learn a function \hat{f} we can calculate our predictions

$$
\hat{Y}=\hat{f}(\boldsymbol{X})
$$

Basic idea: $\widetilde{\beta}:=\operatorname{Proj}(\boldsymbol{X}, \hat{Y})$ is still a sensible quantity of interest.

$$
\begin{aligned}
& \tilde{\beta}_{1}=\operatorname{Corr}\left(X_{1}, \hat{Y}\right) \\
& \tilde{\beta}_{2}=\operatorname{Corr}\left(X_{2}, \hat{Y}\right)
\end{aligned}
$$

Cf. model compression [Bucilă, Caruana, Niculescu-Mizil KDD 2006]

Gaussian processes

- Bayesian framework for specifying a prior over functions:

$$
f \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

Gaussian processes

- Bayesian framework for specifying a prior over functions:

$$
f \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

- Regression:

$$
y_{i}=f\left(x_{i}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Gaussian processes

- Bayesian framework for specifying a prior over functions:

$$
f \sim \mathcal{G} \mathcal{P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

- Regression:

$$
y_{i}=f\left(x_{i}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Conjugate model:

$$
\begin{aligned}
{\left[f\left(\boldsymbol{x}_{1}\right) \ldots f\left(\boldsymbol{x}_{n}\right)\right]^{\top} } & \sim \mathcal{N}(\boldsymbol{\mu}, K) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Gaussian processes

- Bayesian framework for specifying a prior over functions:

$$
f \sim \mathcal{G} \mathcal{P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

- Regression:

$$
y_{i}=f\left(x_{i}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Conjugate model:

$$
\begin{aligned}
{\left[f\left(\boldsymbol{x}_{1}\right) \ldots f\left(\boldsymbol{x}_{n}\right)\right]^{\top} } & \sim \mathcal{N}(\boldsymbol{\mu}, K) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Gaussian processes

- Bayesian framework for specifying a prior over functions:

$$
f \sim \mathcal{G} \mathcal{P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

- Regression:

$$
y_{i}=f\left(x_{i}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Conjugate model:

$$
\begin{aligned}
{\left[f\left(\boldsymbol{x}_{1}\right) \ldots f\left(\boldsymbol{x}_{n}\right)\right]^{\top} } & \sim \mathcal{N}(\boldsymbol{\mu}, K) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

- Closed form posterior!

$$
f(\boldsymbol{x}) \mid Y \sim \mathcal{N}\left(K\left(K+\sigma^{2} I\right)^{-1} Y, K-K\left(K+\sigma^{2} I\right)^{-1} K^{\top}\right)
$$

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Prior draw

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Prior draw

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Prior draw

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Prior draw

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Observed data

GP illustration

$$
\begin{aligned}
f & \sim \mathcal{G P}\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \\
y_{i} \mid f\left(\boldsymbol{x}_{i}\right) & \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{i}\right), \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

Posterior

Gaussian processes: the "weight space" view

Given K we can consider a decomposition such that $L^{\top} L=K$. Then

$$
f \sim \mathcal{N}(0, K) \Longleftrightarrow \gamma \sim \mathcal{N}(0, I), f:=L^{\top} \gamma
$$

This resembles the original linear regression problem, but with a new set of covariates. L is $n \times n$, so there are as many parameters as observations (thus "non-parametric"). We need to find a set of coefficients γ.
Now we return to the effect size analogue ${ }^{2}$:

$$
\widetilde{\beta}=\operatorname{Proj}(\boldsymbol{X}, \hat{y})=\operatorname{Proj}(\boldsymbol{X}, f)=\operatorname{Prof}\left(\boldsymbol{X}, L^{\top} \gamma\right)=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} L^{\top} \gamma
$$

Notice:

$$
f \approx \boldsymbol{X} \widetilde{\beta}
$$

Just the starting point-while it can capture interaction effects, it's only assessing marginal importance.

Methodological contribution

Assume we have a posterior distribution over the function f. This induces a posterior distribution over $\widetilde{\beta}$. (Assume it's multivariate normal.)

Recall our goal: rank variables in terms of their importance in interaction with other variables.

A linear model assumes no interaction, while a GP with appropriate kernel or a fully connected neural network assumes all orders of interaction.

Measuring importance through centrality

Consider the posterior distribution $p(\widetilde{\boldsymbol{\beta}})$ and a particular variable of interest j with effect size analogue $\tilde{\beta}_{j}$. Denote the remaining effect size analogues $\widetilde{\boldsymbol{\beta}}_{-j}$. We are interested in the relationship betwen variable j and the rest of the variables, so we consider two distributions:

$$
p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right) \text { and } p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \tilde{\beta}_{j}\right)
$$

One extreme: if the effect of the other variables are totally independent of the effect of $\tilde{\beta}_{j}$, then:

$$
p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)=p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \tilde{\beta}_{j}\right)
$$

Another extreme: $\tilde{\beta}_{j}$ interacts with all other variables. Then $p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)$ and $p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \tilde{\beta}_{j}\right)$ are very far apart.

Illustration: Ranking Influential Players

[Source: Lorin Crawford]

Kullback-Leibler Divergence

We use the KLD to quantify the distance between the distributions.

$$
\operatorname{KLD}\left(p\left(\boldsymbol{\beta}_{-j}\right) \| p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}\right)\right)=\int_{\widetilde{\boldsymbol{\beta}}_{-j}} \log \left(\frac{p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)}{p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \widetilde{\boldsymbol{\beta}}_{j}\right)}\right) p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right) \mathrm{d} \widetilde{\boldsymbol{\beta}}_{-j} .
$$

Kullback-Leibler Divergence

We use the KLD to quantify the distance between the distributions.

$$
\operatorname{KLD}\left(p\left(\boldsymbol{\beta}_{-j}\right) \| p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}\right)\right)=\int_{\widetilde{\boldsymbol{\beta}}_{-j}} \log \left(\frac{p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)}{p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \widetilde{\beta}_{j}\right)}\right) p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right) \mathrm{d} \widetilde{\boldsymbol{\beta}}_{-j}
$$

This is a convenient choice because we will be able to derive it in closed form as the posterior distributions we consider will be multivariate normal.

Kullback-Leibler Divergence

We use the KLD to quantify the distance between the distributions.

$$
\operatorname{KLD}\left(p\left(\boldsymbol{\beta}_{-j}\right) \| p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}\right)\right)=\int_{\widetilde{\boldsymbol{\beta}}_{-j}} \log \left(\frac{p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)}{p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \widetilde{\beta}_{j}\right)}\right) p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right) \mathrm{d} \widetilde{\boldsymbol{\beta}}_{-j}
$$

This is a convenient choice because we will be able to derive it in closed form as the posterior distributions we consider will be multivariate normal.

$$
\boldsymbol{\mu}=\binom{\mu_{j}}{\boldsymbol{\mu}_{-j}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{j} & \boldsymbol{\sigma}_{-j}^{\top} \\
\boldsymbol{\sigma}_{-j} & \boldsymbol{\Sigma}_{-j}
\end{array}\right), \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\lambda_{j} & \boldsymbol{\lambda}_{-j}^{\top} \\
\boldsymbol{\lambda}_{-j} & \boldsymbol{\Lambda}_{-j}
\end{array}\right)
$$

Kullback-Leibler Divergence

We use the KLD to quantify the distance between the distributions.

$$
\operatorname{KLD}\left(p\left(\boldsymbol{\beta}_{-j}\right) \| p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}\right)\right)=\int_{\widetilde{\boldsymbol{\beta}}_{-j}} \log \left(\frac{p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right)}{p\left(\widetilde{\boldsymbol{\beta}}_{-j} \mid \widetilde{\beta}_{j}\right)}\right) p\left(\widetilde{\boldsymbol{\beta}}_{-j}\right) \mathrm{d} \widetilde{\boldsymbol{\beta}}_{-j}
$$

This is a convenient choice because we will be able to derive it in closed form as the posterior distributions we consider will be multivariate normal.

$$
\boldsymbol{\mu}=\binom{\mu_{j}}{\boldsymbol{\mu}_{-j}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{j} & \boldsymbol{\sigma}_{-j}^{\top} \\
\boldsymbol{\sigma}_{-j} & \boldsymbol{\Sigma}_{-j}
\end{array}\right), \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\lambda_{j} & \boldsymbol{\lambda}_{-j}^{\top} \\
\boldsymbol{\lambda}_{-j} & \boldsymbol{\Lambda}_{-j}
\end{array}\right)
$$

$\operatorname{KLD}\left(\widetilde{\beta}_{j}\right)=\frac{1}{2}\left[-\log \left(\left|\boldsymbol{\Sigma}_{-j} \boldsymbol{\Lambda}_{-j}\right|\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{-j} \boldsymbol{\Lambda}_{-j}\right)+1-p+\alpha_{j}\left(\widetilde{\beta}_{j}-\mu_{j}\right)^{2}\right]$

RATE

"RelATive cEntrality" (RATE):

$$
\begin{gathered}
\operatorname{RATE}\left(\widetilde{\beta}_{j}\right)=\frac{\operatorname{KLD}\left(\widetilde{\beta}_{j}\right)}{\sum_{\ell=1}^{p} \operatorname{KLD}\left(\widetilde{\beta}_{\ell}\right)} \\
\sum_{j=1}^{p} \operatorname{RATE}\left(\widetilde{\beta}_{j}\right)=1
\end{gathered}
$$

Biology application

- Goal: genetic association mapping
- Example: Genome Wide Association Study (GWAS)
- The Wellcome Trust Case Control Consortium (WTCCC)
- $n=14,000,7$ diseases, and 3,000 controls

Crohn's Disease (CD)

blue: previously identified loci; red: potentially novel loci. [Source: Lorin Crawford]

Synthetic experimental setup

Data generating models are as follows:
(i) Standard model: $\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}$,
(ii) Population stratification model: $\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \gamma+\mathrm{Z} \varphi+\varepsilon$.

- p predictors total.
- Random subset j^{*} are truly associated ("causal") variables with $\beta_{j^{*}} \sim \mathcal{N}(0,1)$.
- The rest have $\beta_{j} \sim \mathcal{N}(0,0.001)$.
- Main effects are in X. Interaction effects (subset of the j^{*}) are in W. (Vary percent explained by each.)
- $\mathrm{Z} \varphi$ is structured noise, to mimic population structure. Explains 10% of variance.
- We fit models using a variety of linear methods, and also GP regression + RATE.

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Illustration

$n=500, p=25$ predictors. Predictors $\{23,24,25\}$ have additive and interaction effects.
$\mathrm{X} \boldsymbol{\beta}+\mathrm{W} \boldsymbol{\gamma}$ explain 60% of variation, half from additive and half from interaction.

Covariates

Power analysis

$n=500, p=2500$ predictors. 10 predictors have additive effects, 20 predictors have additive and interaction effects.

(a) Standard Model

(b) Population Stratification Model

Power analysis

Compare power for RATE $>1 / p$, posterior inclusion probability >0.5, multiple testing corrected SCANONE method $P<2 \times 10^{-5}$.

Real data

- Phenotypes of Arabidopsis thaliana
- Versailles Arabidopsis Stock Center publiclines.versailles.inra.fr/page/33

- Used in previous studies for similar methods [Demetrashvili et al 2013]
- $n=403, p=1028$.
- Many genotypes of perfect correlation $r^{2}>0.99$ so final dataset $p=524$ covariates.
- Phenotypes are six biochemical content measurements: allyl, Indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M), 4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8), and 3-hydroxypropyl (OHP3)

Real data

MO413M

Figure: RATE

Real data

Figure: Bayesian spike and slab prior

Real data

Figure: Lasso

Real data

Figure: Elastic net

Real data

Figure: SCANONE

Takeaways from real study

- RATE consistently identifies genomic locations corresponding to known members of biosynthetic pathways in Arabidopsis thaliana and validated findings from previous experimentally based studies
- Same general regions also identified by other methods, but real differences amongst them
- Sparsity inducing methods not always appropriate approaches for mapping studies because we know that the true causal variants are likely not any of the observed marker-even with 10 million SNPs, many un-tagged variants, and groups of nearby variants that are almost perfectly correlated. Real goal is not to find the best single marker but to identify a region (or subnetwork) of the genome that contains the true variant.

Conclusion

- Draft of Crawford, Flaxman, Runcie, and West [2018] on arXiv:1801.07318.
- Replication code is on GitHub https://github.com/lorinanthony/RATE
- Next steps: scalability, deep neural networks, application to frequentist settings, connections with likelihood ratio test and Bayes Factor
- Explainability in Machine Learning Challenge has launched (partners: Imperial, FICO, Google, Berkeley, MIT) http://explainable.ml/

References

- L. Crawford, K.C. Wood, X. Zhou, S. Mukherjee (2017) "Bayesian approximate kernel regression with variable selection." JASA.
- B. Goodman and S. Flaxman (2017) "European Union Regulations on Algorithmic Decision Making and a 'Right to Explanation' ", Al Magazine. [arXiv:1606.08813]
- L. Crawford, S. Flaxman, D. Runcie, M. West (2018) "Predictor Variable Prioritization in Nonlinear Models: A Genetic Association Case Study." Draft on arXiv:1801.07318.

[^0]: ${ }^{1}$ https://www.youtube.com/watch?v=Qi1Yry33TQE and

