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1 ISIT-UMR 6284 CNRS, Université d’Auvergne, Clermont Ferrand, France
{pablo.alcantarilla,adrien.bartoli}@gmail.com

2 Department of Computing, Imperial College London, UK
ajd@doc.ic.ac.uk

Abstract. In this paper, we introduce KAZE features, a novel multiscale 2D fea-
ture detection and description algorithm in nonlinear scale spaces. Previous ap-
proaches detect and describe features at different scale levels by building or ap-
proximating the Gaussian scale space of an image. However, Gaussian blurring
does not respect the natural boundaries of objects and smoothes to the same de-
gree both details and noise, reducing localization accuracy and distinctiveness. In
contrast, we detect and describe 2D features in a nonlinear scale space by means
of nonlinear diffusion filtering. In this way, we can make blurring locally adaptive
to the image data, reducing noise but retaining object boundaries, obtaining su-
perior localization accuracy and distinctiviness. The nonlinear scale space is built
using efficient Additive Operator Splitting (AOS) techniques and variable con-
ductance diffusion. We present an extensive evaluation on benchmark datasets
and a practical matching application on deformable surfaces. Even though our
features are somewhat more expensive to compute than SURF due to the con-
struction of the nonlinear scale space, but comparable to SIFT, our results reveal
a step forward in performance both in detection and description against previous
state-of-the-art methods.

1 Introduction

Multiscale image processing is a very important tool in computer vision applications.
We can abstract an image by automatically detecting features of interest at different
scale levels. For each of the detected features an invariant local description of the image
can be obtained. These multiscale feature algorithms are a key component in modern
computer vision frameworks, such as scene understanding [1], visual categorization [2]
and large scale 3D Structure from Motion (SfM) [3].

The main idea of multiscale methods is quite simple: Create the scale space of an
image by filtering the original image with an appropriate function over increasing time
or scale. In the case of the Gaussian scale space, this is done by convolving the original
image with a Gaussian kernel of increasing standard deviation. For larger kernel values
we obtain simpler image representations. With a multiscale image representation, we
can detect and describe image features at different scale levels or resolutions. Several
authors [4,5] have shown that under some general assumptions, the Gaussian kernel
and its set of partial derivatives are possible smoothing kernels for scale space analysis.
However, it is important to note here that the Gaussian scale space is just one instance
of linear diffusion, since other linear scale spaces are also possible [6].
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The Gaussian kernel is probably the simplest option (but not the only one) to build
a scale space representation of an image. However, it has some important drawbacks.
In Gaussian scale space, the advantages of selecting coarser scales are the reduction
of noise and the emphasis of more prominent structure. The price to pay for this is a
reduction in localization accuracy. The reason for this is the fact that Gaussian blurring
does not respect the natural boundaries of objects and smoothes to the same degree
both details and noise at all scale levels. This loss in localization increases as long as
we detect features at coarser scale levels, where the amount of Gaussian blurring is
higher.

It seems more appropriate to make blurring locally adaptive to the image data so that
noise will be blurred, but details or edges will remain unaffected. To achieve this, differ-
ent nonlinear scale space approaches have been proposed to improve on the Gaussian
scale space approach [7,8]. In general, nonlinear diffusion approaches perform much
better than linear ones [9,10] and impressive results have been obtained in different ap-
plications such as image segmentation [11] or denoising [12]. However, to the best of
our knowledge, this paper is the first one that exploits nonlinear diffusion filtering in
the context of multiscale feature detection and description using efficient schemes. By
means of nonlinear diffusion, we can increase repeatability and distinctiviness when
detecting and describing an image region at different scale levels through a nonlinear
scale space.

Probably one of the reasons why nonlinear diffusion filtering has not been used more
often in practical computer vision components such as feature detection and description
is the poor efficiency of most of the approaches. These approaches normally consist
of the discretization of a function by means of the forward Euler scheme. The Euler
scheme requires very small step sizes for convergence, and hence many iterations to
reach a desired scale level and high computational cost. Fortunately, Weickert et al.
introduced efficient schemes for nonlinear diffusion filtering in [9]. The backbone of
these schemes is the use of Additive Operator Splitting (AOS) techniques. By means
of AOS schemes we can obtain stable nonlinear scale spaces for any step size in a very
efficient way. One of the key issues in AOS schemes is solving a tridiagonal system of
linear equations, which can be efficiently done by means of the Thomas algorithm, a
special variant of the Gaussian elimination algorithm.

In this paper we propose to perform automatic feature detection and description in
nonlinear scale spaces. We describe how to build nonlinear scale spaces using efficient
AOS techniques and variable conductance diffusion, and how to obtain features that
exhibit high repeatability and distinctiveness under different image transfromations. We
evaluate in detail our novel features within standard evaluation frameworks [13,14] and
a practical image matching application using deformable surfaces.

Our features are named KAZE, in tribute to Iijima [15], the father of scale space
analysis. KAZE is a Japanese word that means wind. In nature wind is defined as the
flow of air on a large scale and normally this flow is ruled by nonlinear processes. In
this way, we make the analogy with nonlinear diffusion processes in the image domain.
The rest of the paper is organized as follows: In Section 2 we describe the related
work. Then, we briefly introduce the basis of nonlinear diffusion filtering in Section 3.
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The KAZE features algorithm is explained in detail in Section 4. Finally, exhaustive
experimental results and conclusions are presented in Section 5 and 6 respectively.

2 Related Work

Feature detection and description is a very active field of research in computer vision.
Obtaining features that exhibit high repeatability and distinctiveness against different
image transformations (e.g. viewpoint, blurring, noise, etc.) is of extreme importance in
many different applications. The most popular multiscale feature detection and descrip-
tion algorithms are the Scale Invariant Feature Transform (SIFT) [16] and the Speeded
Up Robust Features (SURF) [17].

SIFT features were a milestone in feature detection and image matching and are still
widely used in many different fields such as mobile robotics and object recognition.
In SIFT, feature locations are obtained as the maxima and minima of the result of a
Difference of Gaussians (DoG) operator applied through a Gaussian scale space. For
building the scale space, a pyramid of Gaussian blurred versions of the original image
is computed. The scale space is composed of different sublevels and octaves. For the
set of detected features, a descriptor is built based on the main gradient orientation over
a local area of interest of the detected keypoint. Then, a rectangular grid of normally
4 × 4 subregions is defined (according to the main orientation) and a histogram of the
gradient orientations weighted by its magnitude is built, yielding a descriptor vector of
128 elements.

Inspired by SIFT, Bay et al. proposed the SURF detector and descriptor. SURF fea-
tures exhibit better results with respect to repeatability, distinctiveness and robustness,
but at the same time can be computed much faster thanks to the use of the integral
image [18], meaning that Gaussian derivatives at different scale levels can be approxi-
mated by simple box filters without computing the whole Gaussian scale space. Similar
to SIFT, a rectangular grid of 4 × 4 subregions is defined (according to the main ori-
entation) and a sum of Haar wavelet responses (weighted by a Gaussian centered at
the interest keypoint) is computed per region. The final descriptor dimension is nor-
mally 64 or 128 in its extended counterpart. In [19], Agrawal and Konolige introduced
some improvements over SURF by using center-surround detectors (CenSurE) and the
Modified-SURF (M-SURF) descriptor. The M-SURF is a variant of the original SURF
descriptor, but handles better descriptor boundary effects and uses a more robust and
intelligent two-stage Gaussian weighting scheme.

Both of these approaches and the many related algorithms which have followed rely
on the use of the Gaussian scale space and sets of Gaussian derivatives as smoothing
kernels for scale space analysis. However, to repeat, Gaussian scale space does not re-
spect the natural boundaries of objects and smoothes to the same degree both details and
noise at all scale levels. In this paper we will show that by means of nonlinear diffusion
filtering it is possible to obtain multiscale features that exhibit much higher repeatability
and distinctiveness rates than previous algorithms that are based on the Gaussian scale
space. At the cost of a moderate increase in computational cost compared to SURF or
CenSurE, our results reveal a big step forward in performance in both feature detection
and description.
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3 Nonlinear Diffusion Filtering

Nonlinear diffusion approaches describe the evolution of the luminance of an image
through increasing scale levels as the divergence of a certain flow function that controls
the diffusion process. These approaches are normally described by nonlinear partial
differential equations (PDEs), due to the nonlinear nature of the involved differential
equations that diffuse the luminance of the image through the nonlinear scale space.
Equation 1 shows the classic nonlinear diffusion formulation:

∂L

∂t
= div (c (x, y, t) · ∇L) , (1)

where div and ∇ are respectively the divergence and gradient operators. Thanks to the
introduction of a conductivity function (c) in the diffusion equation, it is possible to
make the diffusion adaptive to the local image structure. The function c depends on the
local image differential structure, and this function can be either a scalar or a tensor. The
time t is the scale parameter, and larger values lead to simpler image representations. In
this paper, we will focus on the case of variable conductance diffusion, where the image
gradient magnitude controls the diffusion at each scale level.

3.1 Perona and Malik Diffusion Equation

Nonlinear diffusion filtering was introduced in the computer vision literature in [7].
Perona and Malik proposed to make the function c dependent on the gradient magnitude
in order to reduce the diffusion at the location of edges, encouraging smoothing within
a region instead of smoothing across boundaries. In this way, the function c is defined
as:

c (x, y, t) = g (|∇Lσ (x, y, t)|) , (2)

where the luminance function ∇Lσ is the gradient of a Gaussian smoothed version of
the original image L. Perona and Malik described two different formulations for the
conductivity function g:

g1 = exp
(
− |∇Lσ |2

k2

)
, g2 = 1

1+ |∇Lσ|2
k2

, (3)

where the parameter k is the contrast factor that controls the level of diffusion. The func-
tion g1 promotes high-contrast edges, whereas g2 promotes wide regions over smaller
ones. Weickert [11] proposed a slightly different diffusion function for rapidly decreas-
ing diffusivities, where smoothing on both sides of an edge is much stronger than
smoothing across it. That selective smoothing prefers intraregional smoothing to in-
terregional blurring. This function, which we denote here as g3, is defined as follows:

g3 =

⎧
⎪⎨
⎪⎩

1 , |∇Lσ|2 = 0

1− exp
(
− 3.315

(|∇Lσ |/k)8
)
, |∇Lσ|2 > 0

. (4)

The contrast parameter k can be either fixed by hand or automatically by means of
some estimation of the image gradient. The contrast factor determines which edges
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k = 5.10 k = 12.75 k = 38.25 k = 89.25

Fig. 1. The conductivity coefficient g1 in the Perona and Malik equation as a function of the
parameter k. Notice that for increasing values of k only higher gradients are considered. We
consider grey scale images of range 0-255.

have to be enhanced and which have to be canceled. In this paper we take an empirical
value for k as the 70% percentile of the gradient histogram of a smoothed version
of the original image. This empirical procedure gives in general good results in our
experiments. However, it is possible that for some images a more detailed analysis of the
contrast parameter can give better results. Figure 1 depicts the conductivity coefficient
g1 in the Perona and Malik equation for different values of the parameter k. In general,
for higher k values only larger gradients are taken into account.

3.2 AOS Schemes

There are no analytical solutions for the PDEs involved in nonlinear diffusion filter-
ing. Therefore, one needs to use numerical methods to approximate the differential
equations. One possible discretization of the diffusion equation is the so-called linear-
implicit or semi-implicit scheme. In a vector-matrix notation and using a similar nota-
tion to [9], the discretization of Equation 1 can be expressed as:

Li+1 − Li

τ
=

m∑
l=1

Al

(
Li
)
Li+1 , (5)

where Al is a matrix that encodes the image conductivities for each dimension. In the
semi-implicit scheme, for computing the solution Li+1, one needs to solve a linear
system of equations. The solution Li+1 can be obtained as:

Li+1 =

(
I − τ

m∑
l=1

Al

(
Li
)
)−1

Li . (6)

The semi-implicit scheme is absolutely stable for any step size. In addition, it creates
a discrete nonlinear diffusion scale-space for arbitrarily large time steps. In the semi-
implicit scheme, it is necessary to solve a linear system of equations, where the system
matrix is tridiagonal and diagonally dominant. Such systems can be solved very ef-
ficiently by means of the Thomas algorithm, which is a variation of the well-known
Gaussian elimination algorithm for tridiagonal systems.
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4 KAZE Features

In this section, we describe our novel method for feature detection and description in
nonlinear scale spaces. Given an input image, we build the nonlinear scale space up to
a maximum evolution time using AOS techniques and variable conductance diffusion.
Then, we detect 2D features of interest that exhibit a maxima of the scale-normalized
determinant of the Hessian response through the nonlinear scale space. Finally, we com-
pute the main orientation of the keypoint and obtain a scale and rotation invariant de-
scriptor considering first order image derivatives. Now, we will describe each of the
main steps in our formulation.

4.1 Computation of the Nonlinear Scale Space

We take a similar approach as done in SIFT, discretizing the scale space in logarithmic
steps arranged in a series of O octaves and S sub-levels. Note that we always work
with the original image resolution, without performing any downsampling at each new
octave as done in SIFT. The set of octaves and sub-levels are identified by a discrete
octave index o and a sub-level one s. The octave and the sub-level indexes are mapped
to their corresponding scale σ through the following formula:

σi (o, s) = σ02
o+s/S , o ∈ [0 . . . O − 1], s ∈ [0 . . . S − 1], i ∈ [0 . . .N ] , (7)

where σ0 is the base scale level and N is the total number of filtered images. Now, we
need to convert the set of discrete scale levels in pixel units σi to time units. The reason
of this conversion is because nonlinear diffusion filtering is defined in time terms. In
the case of the Gaussian scale space, the convolution of an image with a Gaussian
of standard deviation σ (in pixels) is equivalent to filtering the image for some time
t = σ2/2. We apply this conversion in order to obtain a set of evolution times and
transform the scale space σi (o, s) to time units by means of the following mapping
σi → ti:

ti =
1

2
σ2
i , i = {0 . . .N} , (8)

It is important to mention here that we use the mapping σi → ti only for obtaining a
set of evolution times from which we build the nonlinear scale space. In general, in the
nonlinear scale space at each filtered image ti the resulting image does not correspond
with the convolution of the original image with a Gaussian of standard deviation σi.
However, our framework is also compatible with the Gaussian scale space in the sense
that we can obtain the equations for the Gaussian scale space by setting the diffusion
function g to be equal to 1 (i.e. a constant function). In addition, as long as we evolve
through the nonlinear scale space the conductivity function tends to be constant for most
of the image pixels except for the strong image edges that correspond to the objects
boundaries.

Given an input image, we firstly convolve the image with a Gaussian kernel of stan-
dard deviation σ0 to reduce noise and possible image artefacts. From that base image
we compute the image gradient histogram and obtain the contrast parameter k in an au-
tomatic procedure as described in Section 3.1. Then, given the contrast parameter and
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ti = 5.12 ti = 20.48 ti = 81.92 ti = 130.04 ti = 206.42

Fig. 2. Comparison between the Gaussian and nonlinear diffusion scale space for several evolu-
tion times ti. First Row: Gaussian scale space (linear diffusion). The scale space is formed by
convolving the original image with a Gaussian kernel of increasing standard deviation. Second
Row: Nonlinear diffusion scale space with conductivity function g3.

the set of evolution times ti, it is straightforward to build the nonlinear scale space in
an iterative way using the AOS schemes (which are absolutely stable for any step size)
as:

Li+1 =

(
I − (ti+1 − ti) ·

m∑
l=1

Al

(
Li
)
)−1

Li . (9)

Figure 2 depicts a comparison between the Gaussian scale space and the nonlinear one
(using the g3 conductivity function) for several evolution times given the same reference
image. As it can be observed, Gaussian blurring smoothes for equal all the structures in
the image, whereas in the nonlinear scale space strong image edges remain unaffected.

4.2 Feature Detection

For detecting points of interest, we compute the response of scale-normalized determi-
nant of the Hessian at multiple scale levels. For multiscale feature detection, the set of
differential operators needs to be normalized with respect to scale, since in general the
amplitude of spatial derivatives decrease with scale [5]:

LHessian = σ2
(
LxxLyy − L2

xy

)
, (10)

where (Lxx, Lyy) are the second order horizontal and vertical derivatives respectively,
and Lxy is the second order cross derivative. Given the set of filtered images from the
nonlinear scale space Li, we analyze the detector response at different scale levels σi.
We search for maxima in scale and spatial location. The search for extrema is performed
in all the filtered images except i = 0 and i = N . Each extrema is searched over a rect-
angular window of size σi × σi on the current i, upper i + 1 and lower i − 1 filtered
images. For speeding-up the search for extrema, we firstly check the responses over a
window of size 3×3 pixels, in order to discard quickly non-maxima responses. Finally,
the position of the keypoint is estimated with sub-pixel accuracy using the method pro-
posed in [20].
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The set of first and second order derivatives are approximated by means of 3 × 3
Scharr filters of different derivative step sizes σi. Second order derivatives are approx-
imated by using consecutive Scharr filters in the desired coordinates of the derivatives.
These filters approximate rotation invariance significantly better than other popular fil-
ters such as Sobel filters or standard central differences differentiation [21]. Notice here
that although we need to compute multiscale derivatives for every pixel, we save com-
putational efforts in the description step, since we re-use the same set of derivatives that
are computed in the detection step.

4.3 Feature Description

Finding the Dominant Orientation. For obtaining rotation invariant descriptors, it is
necessary to estimate the dominant orientation in a local neighbourhood centered at the
keypoint location. Similar to SURF, we find the dominant orientation in a circular area
of radius 6σi with a sampling step of size σi. For each of the samples in the circular
area, first order derivatives Lx and Ly are weighted with a Gaussian centered at the
interest point. Then, the derivative responses are represented as points in vector space
and the dominant orientation is found by summing the responses within a sliding circle
segment covering an angle of π/3. From the longest vector the dominant orientation is
obtained.

Building the Descriptor. We use the M-SURF descriptor adapted to our nonlinear
scale space framework. For a detected feature at scale σi, first order derivatives Lx and
Ly of size σi are computed over a 24σi × 24σi rectangular grid. This grid is divided
into 4× 4 subregions of size 9σi× 9σi with an overlap of 2σi. The derivative responses
in each subregion are weighted with a Gaussian (σ1 = 2.5σi) centered on the subre-
gion center and summed into a descriptor vector dv = (

∑
Lx,

∑
Ly,

∑ |Lx|,
∑ |Ly|).

Then, each subregion vector is weighted using a Gaussian (σ2 = 1.5σi) defined over a
mask of 4×4 and centered on the interest keypoint. When considering the dominant ori-
entation of the keypoint, each of the samples in the rectangular grid is rotated according
to the dominant orientation. In addition, the derivatives are also computed according to
the dominant orientation. Finally, the descriptor vector of length 64 is normalized into
a unit vector to achieve invariance to contrast.

5 Experimental Results and Discussion

In this section, we present extensive experimental results obtained on the standard eval-
uation set of Mikolajczyk et al. [13,14] and on a practical image matching applica-
tion on deformable surfaces. The standard dataset includes several image sets (each
sequence generally contains 6 images) with different geometric and photometric trans-
formations such as image blur, lighting, viewpoint, scale changes, zoom, rotation and
JPEG compression. In addition, the ground truth homographies are also available for
every image transformation with respect to the first image of every sequence.

We also evaluate the performance of feature detectors and descriptors under image
noise transformations. We created a new dataset named Iguazu. This dataset consists of
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Fig. 3. Iguazu dataset images with increasing random Gaussian noise values per image

6 images, where the image transformation is the progressive addition of random Gaus-
sian noise. For each pixel of the transformed images, we add random Gaussian noise
with increasing variance considering grey scale value images. The noise variances for
each of the images are the following: Image 2 ± N (0, 2.55), Image 3 ± N (0, 12.75),
Image 4 ±N (0, 15.00), Image 5 ±N (0, 51.00) and Image 6 ±N (0, 102), consider-
ing that the grey value of each pixel in the image ranges from 0 to 255. Figure 3 depicts
the Iguazu dataset.

We compare KAZE features against SURF, SIFT and CenSurE features. For SURF
we use the original closed-source library1 and for SIFT we use Vedaldi’s implemen-
tation2 [22]. Regarding CenSurE features we use the OpenCV based implementation,
which is called STAR detector 3. After detecting features with the STAR detector, we
compute a M-SURF descriptor plus orientation as described in [19]. Therefore, we will
denote in this section the STAR method as an approximation of CenSurE feature de-
tector plus the computation of a M-SURF descriptor. We use for all the methods the
same number of scales O = 4, and sublevels S = 3 for the SIFT and KAZE cases. The
feature detection thresholds of the different methods are set to proper values to detect
approximately the same number of features per image.

5.1 KAZE Detector Repeatability

The detector repeatability score between two images as defined in [13], measures the
ratio between the corresponding keypoints and the minimum number of keypoints visi-
ble in both images. The overlap error is defined as the ratio of the intersection and union
of the regions εs = 1− (A

⋂
HtBH) / (A

⋃
HtBH), where A and B are the two re-

gions and H is the corresponding homography between the images. When the overlap
error between two regions is smaller than 50%, a correspondence is considered.

Figure 4 depicts the repeatability scores for some selected sequences from the
standard dataset. We show repeatability scores for SURF, SIFT, STAR and KAZE con-
sidering the different conductivities (g1, g2, g3) explained in Section 3.1. As it can be
observed, the repeatibility score of KAZE features clearly outperforms their competi-
tors by a large margin for all the analyzed sequences. Regarding the Iguazu dataset
(Gaussian noise), the repeatability score of the KAZE features is for some images 20%
higher than SURF and STAR and 40% higher than SIFT. The reason for this is because
nonlinear diffusion filtering smoothes the noise but at the same time keeps the bound-
aries of the objects, whereas Gaussian blurring smoothes in the same degree details
and noise. Comparing the results of the different conductivities, g2 exhibits a slightly

1 Available from http://www.vision.ee.ethz.ch/ surf/
2 Available from http://www.vlfeat.org/
3 Available from http://opencv.willowgarage.com/wiki/
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Fig. 4. Detector repeatability score for an overlap area error 50%. Best viewed in color.

higher repeatability. This can be explained by the fact that g2 promotes wide area re-
gions which are more suitable for blob-like features such as the ones detected by the
determinant of the Hessian. In contrast g1 and g3 promote high-contrast edges which
may be more suitable for corner detection.

5.2 Evaluation and Comparison of the Overall KAZE Features

We evaluate the joint performance of the detection, description and matching for each
of the analyzed methods. Descriptors are evaluated by means of precision-recall graphs
as proposed in [14]. This criterion is based on the number of correct matches and the
number of false matches obtained for an image pair:

recall = #correct matches
#correspondences , 1− precision = #false matches

#all matches , (11)

where the number of correct matches and correspondences is determined by the overlap
error. For the Bikes, Iguazu, Trees and UBC sequences, we show results for the upright
version of the descriptors (no dominant orientation) for all the methods. The upright
version of the descriptors is faster to compute and usually exhibits higher performance
(compared to its corresponding rotation invariant version) in applications where invari-
ance to rotation is not necessary, such is the case of the mentioned sequences.

Figure 5 depicts precision-recall graphs considering the nearest neighbor matching
strategy. As it can be seen, KAZE features obtain superior results thanks in part due to
the much better detector repeatability in most of the sequences. For the Boat and Graffiti
sequences SURF and SIFT obtain comparable results to KAZE features. However, the
number of found correspondences by KAZE is approximately two times higher than
the ones found by SURF and SIFT. Note that in all the analyzed image pairs, except the
Boat and Graffiti ones, KAZE features exhibit recall rates sometimes 40% higher than
SURF, SIFT and STAR for the same number of detected keypoints.
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Fig. 5. Recall vs 1-precision graphs for nearest neighbor matching strategy. The graphs depict the
overall results for detection, description and matching steps jointly for each of the methods. In
parenthesis, next to the name of each of the methods we show the dimension of the descriptor
and the number of found correspondences. Best viewed in color.

5.3 Image Matching for Deformable Surfaces

Complementary to the extensive evaluation on benchmark datasets, we also show results
of image matching in deformable surfaces. In particular, we use the deformable surface
detection method described in [23]. This method, based on local surface smoothness,
is capable of discarding outliers from a set of putative matches between an image tem-
plate and a deforming target image. In template-based deformable surface detection
and reconstruction [24,25], is very important to have a high number of good correspon-
dences between the template and the target image to capture more accurately the image
deformation.

Figure 6(a,b) depicts two frames from the paper dataset [24] where we performed
our image matching experiment. We detect features from the first image and then match
these features to the extracted features on the second image. Firstly, a set of putative cor-
respondences is obtained by using the nearest neighbor distance ratio (NNDR) strategy
as proposed in [16]. This matching strategy takes into account the ratio of distance
from the closest neighbor to the distance of the second closest. Then, we use the set
of putative matches between the two images (that contains outliers) as the input for
the outlier rejection method described in [23]. By varying the distance ratio, we can
obtain a graph showing the number of inliers for different values of the distance ratio.
Figure 6(c) depicts the number of inliers graphs obtained with SURF, SIFT, STAR and
KAZE features for the analyzed experiment. According to the results, we can observe
that KAZE features exhibit also good performance for image matching applications in
deformable surfaces, yielding a higher number of inliers than their competitors.
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(a) (b) (c)

Fig. 6. Image matching in deformable surfaces example. Two frames from the paper dataset [24].
(a) Frame 262 (b) Frame 315 (c) Number of inliers as a function of the nearest neighbor distance
ratio. Best viewed in color.

5.4 Timing Evaluation

In this section we perform a timing evaluation for the most important operations in
the process of computing KAZE features with conductivity function g2 and a com-
parison with respect to SURF, SIFT and STAR. We take into account both the de-
tection and the description of the features (computing a descriptor and dominant ori-
entation or few of them in the case of SIFT). All timing results were obtained on a
Core 2 Duo 2.4GHz laptop computer. Our KAZE code is implemented in C++ based
on OpenCV data structures. The source code and the Iguazu dataset can be downloaded
fromwww.robesafe.com/personal/pablo.alcantarilla/kaze.html.

Table 1. Computation times in seconds for the main steps of the KAZE features computation
with conductivity function g2 and comparison with respect to SURF, SIFT and STAR

KAZE UBC 1 Trees 6
Nonlinear Scale Space 1.14 1.53

Feature Detection 0.68 0.93
Feature Description 0.38 0.20

Total Time 2.20 2.66

SURF 0.89 0.63
SIFT 2.66 2.77
STAR 0.25 0.32

Image Resolution 800× 640 1000 × 700

Number of Keypoints 1463 765

In particular, Table 1 shows timing results in seconds for two images of different
resolution from the standard dataset. As it can be observed, KAZE features are compu-
tationally more expensive than SURF or STAR, but comparable to SIFT. This is mainly
due to the computation of the nonlinear scale space, which is the most consuming step
in our method. However, at the cost of a slight increase in computational cost, our re-
sults reveal a big step forward in performance. In our implementation, we parallelized

www.robesafe.com/personal/pablo.alcantarilla/kaze.html
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the AOS schemes computation for each image dimension, since AOS schemes split the
whole diffusion filtering in a sequence of 1D separable processes. Nevertheless, our
method and implementation are subject to many improvements that can speed-up the
computation of the KAZE features tremendously.

6 Conclusions and Future Work

In this paper, we have presented KAZE features, a novel method for multiscale 2D
feature detection and description in nonlinear scale spaces. In contrast to previous ap-
proaches that rely on the Gaussian scale space, our method is based on nonlinear scale
spaces using efficient AOS techniques and variable conductance diffusion. Despite of
moderate increase in computational cost, our results reveal a step forward in perfor-
mance both in detection and description against previous state-of-the-art methods such
as SURF, SIFT or CenSurE.

In the next future we are interested in going deeper in nonlinear diffusion filtering
and its applications for feature detection and description. In particular, we think that
higher quality nonlinear diffusion filtering such as coherence-enhancing diffusion fil-
tering [21] can improve our current approach substantially. In addition, we will work
in the direction of speeding-up the method by simplifying the nonlinear diffusion pro-
cess and by using GPGPU programming for real-time performance. Furthermore, we
are also interested in using KAZE features for large-scale object recognition and de-
formable 3D reconstruction. Despite a tremendous amount of progress that has been
made in the last few years in invariant feature matching, the final word has by no means
been written yet, and we think nonlinear diffusion has many things to say.
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