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Abstract

We present a sequential mosaicing algorithm for a cal-
ibrated rotating camera which can for the first time
build drift-free, consistent spherical mosaics in real-
time, automatically and seamlessly even when previ-
ously viewed parts of the scene are re-visited. Our
mosaic is composed of elastic triangular tiles attached
to a backbone map of feature directions over the unit
sphere built using a sequential EKF SLAM (Extend
Kalman Filter Simultaneous Localization And Map-
ping) approach.

This method represents a significant advance on pre-
vious mosaicing techniques which either require off-line
optimization or which work in real-time but use local
alignment of nearby images and ultimately drift. We
demonstrate the system’s real-time performance with
real-time mosaicing results from sequences with 360 de-
grees pan. The system shows good global mosaicing
ability despite the challenging conditions: hand-held
simple low-resolution webcam, varying natural outdoor
illumination, and people moving in the scene.

1 Introduction

Mosaicing is the process of stitching together data from
a number of images, usually taken from a rotating cam-
era or from a translating camera observing a plane, in
order to create a composite image which covers a larger
field of view than the individual views. While a variety
of approaches have been published for matching up sets
of overlapping images with a high degree of accuracy,
all have relied on off-line optimization to achieve global
consistency. Other previous methods which operate se-
quentially and in real-time suffer from the accumulation
of drift. The goal of this paper is drift-free real-time
mosaic building from a live camera, connected to a PC.

We propose a method for mosaicing which can
achieve real-time operation while benefitting from fea-
ture correspondences across arbitrarily long time peri-
ods and automatic re-capturing of features as areas are
re-visited such that drift is eliminated. For image align-

ment we propose the probabilistic filtering approach
familiar from Simultaneous Localisation and Mapping
(SLAM) in mobile robotics research which has not been
previously applied to image mosaicing. SLAM is the
generic problem which has become well-defined in the
mobile robotics field as the challenge a moving sensor
platform faces when neither its motion nor the structure
of the surrounding scene is known in advance and the
goal is to estimate both. They build a persistent, prob-
abilistic representation of the state of the sensor and
scene map which evolves in response to motion and
new sensor measurements. For mosaicing, we specifi-
cally use an Extended Kalman Filter (EKF) approach
to SLAM with a state vector consisting of stacked pa-
rameters representing the 3D orientation and angular
velocity of the camera and the directions (i.e. view-
sphere coordinates, since no depth can be estimated
for the scene points) of a set of automatically acquired
features, none of which need to be known in advance.

To summarize our complete mosaicing algorithm, we
take the image stream from a rotating camera, build an
efficient, persistent SLAM map of infinite points — di-
rections mapped onto the unit sphere — and use these
as the anchor points of a triangular mesh, built sequen-
tially as the map eventually covers the whole view-
sphere (see Figure 1.) Every triangle in the mesh is
an elastic tile where scene texture is accumulated to
form a mosaic. As each new image arrives, the prob-
abilistic map of infinite points is updated in response
to new measurements and all the texture tiles are re-
warped accordingly. So, every measurement of a point
potentially improves the whole mosaic, even parts not
currently observed by the camera thanks to probabilis-
tic knowledge of the correlations between estimates of
different features. This attribute is especially valuable
when a loop is closed because the whole map benefits
from a large correction, removing drift.

This paper has two main contributions. First, we
present a real-time EKF SLAM algorithm for estimat-
ing the motion for a rotating camera observing points
at infinity — this work was previously published in
conference paper [18] as a ‘visual compass’. The sec-
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Figure 1: Left, An elastic textured triangular mesh is built
over a map of scene directions over the unit sphere. Right
a scene feature, yi, stamped with its texture patch.

ond unpublished and novel contribution is to use this
map of widely spread but high quality features as the
basis for a real-time, drift-free mosaicing system. We
believe that this is the first algorithm which can build
drift-free mosaics over the whole viewsphere in seamless
real-time: no expensive backtracking, batch optimiza-
tion or learning phase is required, and arbitrarily long
image sequences can be handled without slow-down.

Section 2 is devoted to a literature review and com-
parison between off-line and sequential approaches.
Section 3 covers the essentials of the SLAM map of in-
finite points, and Section 4 describes how features are
added to or removed from the map. Section 5 is de-
voted to the mesh for the mosaic given a map of feature
directions. Finally experimental results and conclusions
are presented in Sections 6 and 7.

2 Related Work

2.1 Image Mosaicing

Mosaic building requires estimates of the relative ro-
tations of the camera when each image was captured.
Classically, the computation of such estimates has been
addressed as an off-line computation, using pair-wise
image matching to estimate local alignment and then
global optimization to ensure consistency. The goal has
normally been to produce visually pleasing panoramic
images and therefore after alignment blending algo-
rithms are applied to achieve homogeneous intensity
distributions across the mosaics, smoothing over image
joins. This paper focuses only on the alignment part
of the process, achieving registration results of quality
comparable to off-line approaches but with the advan-
tage of sequential, real-time performance. Blending or
other algorithms to improve the aesthetic appearance
of mosaics could be added to our approach straightfor-
wardly, potentially also running in real-time.

Szeliski and Shum in [25] presented impressive spher-
ical mosaics built from video sequences, explicitly rec-
ognizing the problem of closing a loop when building
full panoramas (from sequences consisting of a single

looped pan movement). However, their method needed
manual detection of loop closing frames. The non-
probabilistic approach meant that the misalignment de-
tected during loop closing was simply evenly distributed
around the orientation estimates along the sequence.

Sawhney et al. [22] tackled sequences with more
complicated zig-zag pan motions, requiring a more gen-
eral consideration of matching frames which were tem-
porally distant as loops of various sizes are encountered.
Having first performed pairwise matching of consecu-
tive images they could estimate an approximate loca-
tion for each image in the sequence. This was followed
by an iterative hypotheses verification heuristic, applied
to detect matching among geometrically close but tem-
porally distant images to find the topology of the cam-
era motion, and then finally global optimization. Both
[25] and [22] use whole image intensities without feature
detection for the optimization.

Capel and Zisserman in [3] proposed methods based
on matching discrete features; RANSAC is applied
to detect outlier-free sets of pairwise matches among
the images. A global bundle adjustment optimization
produces the final mosaic, achieving super-resolution.
Agapito et al. [9] also used robust feature matching
to perform self-calibration and produce mosaics from
sequences from a rotating and zooming camera.

Brown and Lowe in [2] considered the problem of mo-
saicing not video sequences but sets of widely separated,
uncalibrated still images. Their method used SIFT fea-
tures to perform wide-baseline matching among the im-
ages, and automatically align them into a panorama,
optimizing over the whole set for global consistency us-
ing bundle adjustment.

The recent work of Steedly et al. [24] is perhaps
closest to the current paper because it explicitly consid-
ers questions of computational cost in efficiently build-
ing mosaics from long video sequences (on the order
of a thousand frames), though not arriving at real-
time performance. The key to efficient processing in
their system is the use of automatically assigned key-
frames throughout the sequence — a set of images
which roughly span the whole mosaic. Each frame in
the sequence is matched against the nearest keyframes
as well as against its temporal neighbors. In fact, the
idea of building a persistent map of keyframes as the
backbone of the mosaic can be thought of as very simi-
lar to our sparse SLAM feature map, though their work
lacks sequential probabilistic filtering to guide match-
ing.

To our knowledge, up to now mosaicing algorithms
which truly operate in real-time have been much more
limited in scope. Several authors have shown that the
straightforward approach of real-time frame to frame
image matching can produce mosaics formed by simply
concatenating local alignment estimates. Marks et al.
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[16] presented a real-time system for mosaicing under-
water images using correlation-based image alignment,
and Morimoto and Chellappa a system based on point
feature matching which estimated frame-to-frame rota-
tion at 10Hz [19]. It should be noted that while Mori-
moto and Chellappa used the EKF in their approach,
the state vector contained only camera orientation pa-
rameters and not the locations of feature points as in
our SLAM method.

The clear limitation of such approaches to real-time
mosaicing is that inevitable small errors in frame to
frame alignment estimates accumulate to lead to mis-
alignments which become especially clear when the
camera trajectory loops back on itself — a situation
our SLAM approach can cope with seamlessly.

Some recent approaches have attempted to achieve
global consistency in real-time by other means — Kim
and Hong [14] demonstrated sequential real time mo-
saic building by performing ‘frame to mosaic’ matching
and global optimization at each step. However, this
approach is limited to small-scale mosaics because the
lack of a probabilistic treatment means that the cost of
optimization will rise over time as the camera continues
to explore. Zhu et al. [27] on the other hand combine
a frame to frame alignment technique with an explicit
check on whether the current image matches to the first
image of the sequence, detection of which leads to the
correction of accumulated drift. Again, the method is
not probabilistic and works only in the special case of
simple panning motions.

2.2 SLAM

The standard approach to SLAM is to use a sin-
gle Gaussian state vector and covariance to represent
stacked sensor and feature estimates and to update this
with the Extended Kalman Filter (EKF) — this ap-
proach was called the ‘stochastic map’ when proposed
initially by Smith and Cheeseman in [23]. It has been
widely used in mobile robotics with a range of differ-
ent sensors; odometry, laser range finders, sonar, and
vision among others (e.g. [5, 11, 20]). This amounts to
a rigorous Bayesian solution in the case that the sen-
sor and motion characteristics of the sensor platform in
question are governed by linear processes with Gaus-
sian uncertainty profiles — conditions which are closely
enough approximated in real-world systems for this ap-
proach to be practical in most cases, and in particular
for small-scale mapping.

Visual sensing has been relatively slow to come to
the forefront of robotic SLAM research. Davison and
Murray [8] implemented a real-time system where a 3D
map of visual template landmarks was build and ob-
served using fixating stereo vision. Castellanos et al.
[4] built a 2D SLAM system combining straight seg-

ments from monocular vision and odometry, and trinoc-
ular straight segments and odometry. In [7] Davison
demonstrated 3D SLAM using monocular vision as the
only sensor, also using a smooth motion model for the
camera to take the place of odometry this system ex-
hibited unprecedented demonstrable real time perfor-
mance for general indoors scenes observed with a low
cost hand-held camera. [6] proposed inverse depth cod-
ing for points allowing to deal with distant, even at
infinite, features. Recently, many other interesting 3D
SLAM systems which rely only on visual sensing have
started to emerge (e.g. [10, 15, 13]).

2.3 Off-line SFM vs. EKF SLAM

In order to directly compare the previous off-line ap-
proaches to mosaicing with our sequential one, we will
focus on methods which rely on discrete feature match-
ing. The off-line approaches generally match features
between images in a pairwise fashion (usually between
temporal neighbours) and then perform a final global
bundle adjustment optimization to achieve good drift-
free solutions.

In our sequential approach, scene structure — a set
of selected points we call a map — and the camera
motion are estimated by iterating the following steps:

1. Predict the locations of all the map features in the
next image, along with a gated search region for
each. The information from all previous images is
implicitly accumulated in this state-based predec-
tion and this leads to tight search regions.

2. Use template matching to exhaustively search for
the feature match only within its search region.

3. Update estimates of the locations of all the
mapped features and the current camera location.

4. Map maintenance, adding new features when new
scene areas are explored and deleting features pre-
dicted to be visible but persistently not matched.

The resulting sparse set of map features, autonomously
selected and matched has — when compared with ‘first
match and then optimize’ approaches — the following
desirable qualities for producing consistent mosaics:

Long tracks — Only features persistently observed
when predicted to be visible are kept in the map,
and are allowed to build up immunity to future
deletion. Highly visible and identifiable features
tend to live on in this process of ‘survival of the
fittest’.

Loop closing tracks — When the camera revisits an
area of the scene previously observed, it has the
natural ability to identify and re-observe ‘old’, loop
closing, features seamlessly.
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To achieve the highest accuracy in every update of
a scene map after matching image features, the update
step would ideally be done using an iterative non-linear
bundle adjustment optimization, but this would be pro-
hibitively expensive. Instead, we apply the EKF as a
sequential approximation to bundle adjustment. Up-
date by bundle adjustment after processing every single
image means a non linear optimization for all camera lo-
cations and all scene features, so processing long image
sequences results in an increasing number of camera lo-
cations and hence an increasing dimension for the bun-
dle adjustment of (3mk + 2nk), where mk is the num-
ber of images, and nk is the number of scene points.
Also, calculating search regions requires the inversion
of a matrix of dimension 3mk + 2nk to compute the
estimation covariance.

To compare the EKF with bundle adjustment, it
should be considered that, as stated in [26], the EKF
is a sequential approximation to bundle adjustment
where:

1. A motion model is included to relate one camera
location with the next.

2. The EKF is just bundle adjustment’s first half-
iteration because only the most recent camera loca-
tion is computed. The estimated state is reduced,
subsuming all historic camera location estimates
in the feature covariance matrix. The estimated
state, dimension (7 + 2nk), is composed of the last
camera pose and all map features. In our model
the camera state vector has dimension 7: an orien-
tation quaternion and 3D angular velocity.

3. At each step, information about the previous cam-
era pose is subsumed in the covariance matrix. In
doing so, linearization for previous camera poses is
not computed as in the optimal solution, and hence
linearization errors will remain in the covariance
matrix. However, mosaicing with a rotating cam-
era is a very constrained, highly linear problem,
so are convinced that the results we can obtain in
real-time are highly accurate, only falling a little
short of the result a full optimization would pro-
duce.

3 Geometrical Modeling

We start the exposition of our method by explaining
the mathematical models used for features, camera mo-
tion and the measurement process, before proceeding in
Section 4 to the EKF formulation.

Feature Model Feature points are modeled by stor-
ing both geometric and photometric information (see

Figure 1). Geometrically, the feature’s direction rela-
tive to world frame W is parameterized as an angular
azimuth/elevation pair:

yi =
(

θi φi

)>
. (1)

To represent each infinite point photometrically, a tex-
ture patch of fixed size is extracted and stored when the
point is imaged for the first time. This patch is used
for correlation-based matching.

Camera Motion Model It is assumed that the cam-
era translation is small compared with actual feature
depths — true for any camera on a tripod, or well
approximated by a camera rotated in the hand out-
doors. The real-world camera dynamics are modeled as
a smooth angular motion: specifically a ‘constant angu-
lar velocity model’, which states that at each time-step
an unknown angular acceleration impulse drawn from
a zero-mean Gaussian distribution is received by the
camera. The camera state vector is:

xv =
(

qWC

ωC

)
, (2)

where ωC is the angular velocity and qWC is a quater-
nion defining orientation. See Figure 1.

At every time-step, an angular acceleration αC hav-
ing zero mean and fixed diagonal ‘process noise’ co-
variance matrix Pα is assumed to affect the camera’s
motion. Therefore at each processing step of duration
∆t the camera receives an impulse of angular velocity:
ΩC = αC∆t .

So the state update equation is:

fv(xv,n)=
(
qWC

new

ωC
new

)
=

(
qWC × q

((
ωC + ΩC

)
∆t

)
ωC + ΩC

)
(3)

Measurement Model We consider first the projec-
tion of infinite points in a standard perspective camera.
The camera orientation qWC in the state vector defines
the rotation matrix RCW . So the coordinates of a point
y =

(
θ φ

)> on the unit sphere m expressed in frame
C are:

mC = RCW
(

cosφ sin θ − sin φ cosφ cos θ
)> (4)

The image coordinates where the point is imaged are
obtained applying the pinhole camera model to mC :

h
(
mC

)
=

(
uu

vu

)
=


 u0 − f

dx

mC
x

mC
z

v0 − f
dy

mC
y

mC
z


 , (5)

where u0,v0 define the camera’s principal point, f is the
focal length and dx and dy define the size of a pixel. Fi-
nally, a distortion model has to be applied to deal with
real camera lenses. In this work we have used the stan-
dard two parameter distortion model from photogram-
metry [17].
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Figure 2: New features initialization and patch predic-
tion.

4 Simultaneous Localization and
Mapping

The algorithm to estimate camera rotation and scene
point directions follows the standard EKF loop [1] of
prediction based on the motion model (Equation 3),
and measurement (Equation 5). All the estimated vari-
ables (the camera state xv and all the estimated feature
directions yi, i = 1 . . . , n) are stacked in a single state
vector x =

(
x>v y>1 . . . y>n

)> with correspond-
ing covariance P representing Gaussian-distributed un-
certainty. Crucial to the method is the usage of the
measurement prediction to actively guide matching.
Next we explain in detail the matching process, the
initialization of system state and feature initialization
and deletion.

Matching Every predicted measurement of a feature
in the map, ĥi, and its corresponding innovation co-
variance, Si, define an gated elliptical acceptance image
region where the feature should lie with high probabil-
ity. In our experiments, defining acceptance regions at
95% probability typically produce ellipses 10–20 pixels
in size.

The first time a feature is observed, we store both
a texture patch and the current camera orientation.
When that feature is later selected for measurement
after camera movement, its predicted texture patch
from the current camera orientation is synthesized via
a warping of the original patch. This permits efficient
matching of features from any camera orientation with-
out the need for invariant feature descriptors. Figure 2
shows an example of the stored and predicted patches.

Search for a feature during re-measurement is carried
out by calculating a normalized correlation score for
every possible patch position lying within the search
region. The position with the highest score, providing
the match score is above a threshold, is considered to
be matching measurement hi.

State Initialization We initialize the state of the
camera with zero rotation — its initial pose defines the
world coordinate frame, and therefore we also assign

zero uncertainty to initial orientation in the covariance
matrix. The angular velocity estimate is also initialized
at zero, but a high value is assigned to σΩ, in our case√

2 rad
sec , in order to deal with an initial unknown ve-

locity. This is a remarkable system characteristic: the
map can be initialized from a camera which is already
rotating. In fact in the experiments, the camera was
already rotating when tracking commenced.

Feature Initialization and Deletion When a new
image is obtained, if the number of features predicted
to be visible inside the image goes below a threshold,
in our case around 15, a new feature is initialized. A
rectangular area without features is selected randomly
in the image, and searched for a single salient point by
applying the Harris detector [12]. Figure 2 shows an
initialization example.

This simple rule means that at the start of track-
ing the field of view is quickly populated with features
which tend to be well-spaced and covering the image.
As the camera rotates and some features go out of view,
it will then demand that new features are initialized —
but if regions of the viewsphere are revisited, new fea-
tures will not be added to the map since old features
(still held in the state vector) are simply re-observed.

When an initial measurement of a new feature is ob-
tained, the state vector is expanded with the new fea-
ture estimate ŷj . Defining Rj the image measurement
noise covariance, the covariance matrix is expanded as
follows:

Pnew = J
(

P 0
0 Rj

)
J>

J =
(

I 0
J1

)
, J1 =

(
∂h−1

i

∂xv
, 0, . . . ,

∂h−1
i

∂zi

)

Features with a low successes/attempts ratio in
matching — in practice 0.5 — are deleted from the
map if at least 10 matches have been attempted. This
simple map maintenance mechanism allows deletion of
non-trackable features — for example those detected on
moving objects or people. Non persistent static scene
features (for instance caused by reflections) are also re-
moved.

5 Meshing and Mosaicing

At any step k we have available a map of infinite points:

Yk = {yi} , i = 1 . . . nk . (6)

After processing every image, the location estimate of
every point in the map is updated and hence changed.
Additionally, on each step some map points might be
deleted or added as new.
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Input data: Mk−1, Yk, image at step k.

Output data: Mk.

Algorithm:

1.- Dk =
�
Dk

l

	
, Spherical Delaunay triangulation.

2.- Mk is a subset of Dk. Every Dk
l is classified as:

Elastically updated triangle: Dk
l already in

Mk−1, but not in Mk . If visible in current
image, the tile texture can be updated.

New and visible: Dk
l not in Mk−1 and the visible

in image k. Dk
l is included in Mk. Texture is

gathered from image k.

New but not visible: Dk
l not in Mk−1 but not fully

visible in image k. It is not added to Mk.

Figure 3: Triangular mosaic update algorithm.

The mosaics we build are made up of a set of textured
elastic triangular tiles attached to the map of infinite
points. A mesh triangle Tj is defined as:

Tj = {j1, j2, j3,TXj} , (7)

where {j1, j2, j3, } identify the map points to which the
triangle is attached and TXj defines the triangle tex-
ture. The triangle is termed as elastic because the lo-
cation estimates of the points to which it is attached
are updated at every step, and hence the triangle and
texture are deformed accordingly.

The triangular mesh mosaic at step k is defined as:

Mk =
{
T k

j

}
, j = 1 . . .mk . (8)

5.1 Updating the Mesh

As the map is updated at every step, the mosaic has
to be updated sequentially as well. The mosaic update
consists of updating the elastic triangles, and potential
deletion and creation of triangles.

Figure 3 summarizes the algorithm to sequentially
update the mosaic Mk−1 into Mk. After processing
image k, the map Yk is available. A spherical Delaunay
triangulation Dk for the map Yk points is computed
using Renka’s [21] algorithm:

Dk =
{
Dk

l

}
, (9)

where every triangle Dk
l = {l1, l2, l3} is defined by the

corresponding 3 map features. The complexity of the
triangulation is O(nk log nk) where nk is the number of
map features.

The triangles which will be included inMk are a sub-
set of the triangles in the full triangulation Dk. Every
triangle Dk

l in Dk is classified to determine its inclusion
in Mk mosaic according to the algorithm described in

Figure 4: Mesh update example. Triangle {456} is elasti-
cally updated. {128} new and visible: created because of
new map point 8. {247} new not visible; the triangle was
not in Mk−1, but it is not totally visible in image k. {136}
is deleted as map point 3 is removed. Points 1, 2, 4 and 6 are
kept in the map but a significant change in the estimated
position of point 1 has caused the triangulation to ‘flip’, so,
{126} , {246} are deleted, while {124} , {146} are new and
visible.

Figure 5: (a) Triangular tile defined by map points E,F,G,
meshed as subtriangles represented over the unit sphere.
(b) Shows the backprojection in the image; notice how the
subtriangles also compensate the radial distortion.

Figure 3: triangles are either carried over from the pre-
vious mosaic or newly created if texture can be imme-
diately captured from the current image. Notice that
triangles in Mk−1 but not in Dk

l (due to a change in
mesh topology) are deleted. Figure 4 illustrates with
an example the different cases in the triangular mesh
mosaic update.

5.2 Tile Texture Mapping

The three points defining a triangular tile are positions
on a unit sphere. The texture to attach to each tile is
taken from the region in the image between projections
of these three vertices. In a simple approach to mosaic
building, the triangles could be approximated as pla-
nar, and the mosaic surface a rough polyhedral. How-
ever better results can be achieved if the triangular tile
is subdivided into smaller triangles that are backpro-
jected over the spherical mosaic surface. Additionally,
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Figure 6: 360◦ pan and cyclotorsion. Top left: first im-
age in sequence. The first image on the second row is at
the loop closure point; notice the challenging illumination
conditions. Third row: unit sphere with feature patches,
triangular mesh and simple texture.

the camera radial distortion is better compensated by
the subtriangles. Figure 5 illustrates the improvement
due to the division of a triangular tile into subtriangles.

6 Experimental Results

We present experiments demonstrating sequential mo-
saic building using images acquired with a low cost Uni-
brain IEEE1394 camera with a 90◦ field of view and
320×240 monochrome resolution at 30 fps. The first ex-
periment shows the result from a sequence taken from a
hand-held camera performing a 360◦ pan and cyclotor-
sion rotation — this early experiment performed offline
in a Matlab implementation. The second experiment
shows results obtained in real-time in a full C++ im-
plementation with the more sophisticated sub-triangle
mosaicing method. Both sequences were challenging
because there were pedestrians walking around, and the
camera’s automatic exposure control introduced a great
deal of change in the image contrast and brightness in
response to the natural illumination conditions.

6.1 360◦ Pan and Cyclotorsion

The hand-held camera was turned right around about
1.5 times about a vertical axis, so that the originally-
viewed part of the scene came back into view in ‘loop
closure’. Care was taken to ensure small translation,
but relatively large angular accelerations were permit-
ted and the camera rotated significantly about both pan
and cyclotorsion axes.

Figure 6 shows selected frames showing the search

Figure 7: Superimposed meshes for 90 frames before loop
closure (red) and 90 frames after loop closure (green). The
part of the mesh opposite the loop closure is magnified at
the left of the figure. The first features detected in the map
are magnified at the right of the figure. We also show the
camera elevation estimation history along with its standard
deviation; notice the uncertainty reduction at loop closure.

region for every predicted feature and the matched ob-
servations. The frames we show are the at the begin-
ning of the sequence, at loop closure and during the
camera’s second lap. At the loop closure, we can see
that of the first two re-visited features, one was not
matched immediately and the other was detected very
close to the limit of its search region. However, in the
following frames most of the re-visited features were
correctly matched despite the challenging illumination
changes. It should be noticed that the loop is closed
seamlessly by the normal sequential prediction-match-
update process, without need any additional steps —
no back-tracking or optimization. The mosaic after pro-
cessing all the images is also shown.

We believe that the seamless way that loop closing
is achieved is in itself a very strong indication of the
achieved angular estimation accuracy with this algo-
rithm. The predictions of feature positions just before
redetection at loop closure only differ from their true
values by around 6 pixels (corresponding to less than
2 degrees) when the camera has moved through a full
360◦. After loop closing and the correction this forces
on the map, this error is significantly improved. On
the second lap, where the rotation of the camera takes
it past parts of the scene already mapped, previously
observed features are effortlessly matched in their pre-
dicted positions, the map having settled into a satisfy-
ingly consistent state.

It is worth noting the effect that loop closing has
on the mesh, and hence on the mosaic. Figure 7 dis-
plays superimposed all of the meshes for the 90 steps
before the loop closure (we plot one in every five steps
in red), along with meshes for the 90 steps after the
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Figure 9: (a) Feature initalized on a moving object. (b)
after 1 and (c) 10 frames, the feature is no longer matched
because it is outside its acceptance region. Eventually this
non matching feature is deleted from the map.

loop closure (plotted in green). Every sequential step
improves our estimates of the locations of all the map
features, but in a loop closure step the improvement
is much greater. As the initial camera orientation is
chosen to be the base reference, the first features in
the map are very accurately located (with respect to
the first camera frame). These features’ locations are
hardly modified by the loop closure, but all other parts
of the mesh are updated significantly. We particularly
draw attention to an area of the mesh 180◦ opposite
the loop closure point, where the feature estimates and
therefore the mesh are noticeably modified in the up-
date corresponding to loop closure thanks to the cor-
relation information held in covariance matrix, despite
the fact that these features are not observed in any
nearby time-step.

Figure 7 also shows graphs of the estimate history
for the two magnified features, along with the standard
deviation in their elevation angles. The feature far from
the loop close area clearly shows a loop closing correc-
tion and covariance reduction. The feature observed at
the start of the sequence shows almost no loop closing
effect because it was observed when the camera location
had low uncertainty.

6.2 Real-Time Mosaic Building

A version of the system has been implemented in C++
achieving real time performance at 320×240 pixels res-
olution, 30 frames/second. We show results from a 360◦

pan rotation. The system initializes a new feature when
less than 15 map features are visible in the image to
keep the map size around a hundred features.

Figure 8 shows the evolution of the mosaic. We fo-
cus on the texture alignment at loop closure. Fig-
ures 8(g) and 8(i) display two magnified mosaic views
close to the loop closure. In each magnified view, the
left-hand part of the mosaic seen got its texture from a
frame at the beginning of the sequence while the right
area got texture from a frame after the loop closure

(frames nearly a thousand images apart). The excel-
lent texture alignment achieved is an indicator of the
advantages of our sequential SLAM approach to mo-
saic building. No blending technique has been applied
to reduce the seam effects.

A movie showing the sequen-
tial mosaicing is available at:
http://webdiis.unizar.es/~josemari/ijcv.avi. The
video shows how the system robustly deals with
moving people and cars. Figure 9 shows an example of
robustness with respect to moving objects. A feature
was intialized on the skirt of a walking pedestrian. As
the feature corresponds to a moving object, after some
time it is no longer matched inside the acceptance
region, and finally it is deleted from the map.

6.3 Processing Time

Real-time experiments were run on a 1.8 GHz Pentium
M laptop with OpenGL accelerated graphics card. In
a typical run, we might have: a) 70 map features, im-
plying a state vector dimension of 7 + 70× 2 = 147. b)
15 features measured per frame, implying a measure-
ment vector dimension of 15 × 2 = 30. c) 30 fps, so
33.3 ms available for processing. d) Process noise with
standard deviation 4rads−2 modeling expected angular
accelerations.

Under these conditions, an approximate breakdown
of typical processing time 21.5ms per frame is as follows:
a)Image acquisition 1 ms. b) EKF prediction 3 ms. c)
Image matching 2 ms. d) EKF update 10 ms. e), f)
Delaunay triangulation 0.5 ms. g) Mosaic update 5ms.

The remaining time processing is used for the graph-
ics functions, scheduled at low priority, so a graphics
refresh might take place every two or three processed
images.

It should be noticed that the computational com-
plexity of the EKF updates is of order O(N2), where
N is the number of map features. The Delaunay trian-
gulation step has complexity of order O(N log N), while
updating the triangles of the mosaic currently has order
O(N2) (since each triangle is compared with every other
one, though it should be possible to improve this). In
our algorithm the EKF update dominates the compu-
tational cost. We have shown that within the bounds of
a spherical mosaicing problem (where the whole view-
sphere can be mapped with on the order of 100 features)
the complexity is well within practical limits.

7 Conclusions

A mosaic built from an elastic triangular mesh sequen-
tially built over a EKF SLAM map of points at in-
finity inherits the advantages of the sequential SLAM
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Figure 8: Real-time mosaicing with loop closure. (a), (b) sequence start; (c) the frame after the first loop closing match;
(d) a few frames after loop closing (e) the mosaic after almost two full laps. (f) (magnification of (c)) and (g) show two
consecutive steps after loop closing; (g) is a close-up view of two adjacent mosaic areas. In (g) the left-most mosaic tiles got
their texture early in the sequence, while those on the right obtained texture after loop closing. Notice the high accuracy in
texture alignment; the line highlights the seam. (h) (magnification of (d)) and (i) show two consecutive steps after several
loop closing matches. (i) is a close-up view of two adjacent mosaic areas with textures taken from early and loop closing
frames; again notice the alignment quality. A line highlights the seam —otherwise difficult to observe.

approach: probabilistic prior knowledge management
through the sequence, sequential updating, real-time
performance and loop closing.

The experimental results presented using real images
from a low cost camera display the validity of the ap-
proach in a challenging real scene with jittery hand-held
camera movement, moving people and changing illumi-
nation conditions. Real-time seamless loop closing is
demonstrated, removing all the drift from rotation es-
timation and allowing arbitrarily long sequences of ro-
tations to be stitched into mosaics: the camera could
rotate all day and estimates would not drift from the
original coordinate frame as long as the high-quality
features of the persistent map could still be observed.
We think that as well as its direct application to mo-
saicing, this work shows in general the power of the
SLAM framework for processing image sequences and
its ability, when compared with off-line methods, to
efficiently extract important information: pure sequen-
tial processing, long track matches, and loop closing
matches.

Our paper concerns mosaicing, and is intended to of-
fer a contribution when compared with other mosaicing
papers. Full 3D mosaicing in real-time is still some way
off, so we have focused on building 2D mosaics from
sequences with homography geometry — in our pa-
per, specifically from a purely rotating camera, though
we believe that our method could be straightforwardly
modified to also cope with mosaicing a plane observed
by a rotating and translating camera.

We believe that there are many applications which
open up with real-time mosaicing — in any situation
where the goal is to build a living mosaic which is built
up instantly in reaction to camera motion our approach
will be useful. This mosaic can find application espe-
cially in augmented reality because it provides a real-
time link between the camera images and real scene
points. Another interesting possibility real-time mo-
saicing gives is that a user could control the rotation of
the camera while looking at the growing mosaic in order
to extend and improve it actively. In future work, we in-
tend to look at such issues as real-time super-resolution,
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where we envisage a mosaic sharpening before a user’s
eyes thanks to the quality of repeatable rotation regis-
tration.
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