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Abstract

We present a general method for real-time, vision-
only single-camera simultaneous localisation and mapping
(SLAM) — an algorithm which is applicable to the locali-
sation of any camera moving through a scene — and study
its application to the localisation of a wearable robot with
active vision. Starting from very sparse initial scene knowl-
edge, a map of natural point features spanning a section of
a room is generated on-the-fly as the motion of the camera is
simultaneously estimated in full 3D. Naturally this permits
the annotation of the scene with rigidly-registered graphics,
but further it permits automatic control of the robot’s active
camera: for instance, fixation on a particular object can be
maintained during extended periods of arbitrary user mo-
tion, then shifted at will to another object which has poten-
tially been out of the field of view. This kind of functional-
ity is the key to the understanding or “management” of a
workspace which the robot needs to have in order to assist
its wearer usefully in tasks. We believe that the techniques
and technology developed are of particular immediate value
in scenarios of remote collaboration, where a remote expert
is able to annotate, through the robot, the environment the
wearer is working in.

1 Introduction

A body-mounted visual sensor provides a wearable com-
puter with the opportunity to sense the world from a first-
person perspective. The sensor moves with and observes
the places attended by the wearer — not only enhancing the
chances of recovering the wearer’s state from a privileged
position but providing non-invasive sensing of the surround-
ings which reduces the burdening of the environment with
technological creepers. When the wearable sensor is un-
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der its own control, such that its viewpoint can be moved
and thus a certain amount of independence gained from the
wearer, the system is better described by the term “wearable
visual robot”.

A wearable visual robot is in a position to detect both the
actions of its wearer (e.g. grasping motions) and the state
of the environment (e.g. the pot is boiling), and therefore
has the potential to act as an assistant to a wearer working
in various domains. It could act as an aid to memory in a
construction scenario, helping the wearer keep track of tools
and materials; it could provide warnings of dangerous situ-
ations or objects, or draw attention to those of interest; with
possession of specific domain knowledge it could provide
the wearer with a work-plan — perhaps guiding the medi-
cal treatment administered by a non-expert paramedic in a
remote location.

A more immediate mode of operation than fully au-
tonomous assistant would be to envisage the wearable robot
as the facilitator of help from a remote human expert, as de-
picted in Figure 1. In such remote collaboration, augment-
ing and mediating the environment with information is at-
tractive if information can be positioned relative to specific
objects or places, achieving a true context-specific flow of
information. This augmentation can be beneficial to both
the wearer and to the remote expert. The remote expert
could for example drop virtual notes on top of the objects
present in the space browsed by the wearer. These notes
could be navigation clues, warnings, things to do or any
other sort of information that could be of use to the current
expert/wearer partnership or to other future users.

1.1 Wearable Vision and Localisation

If a wearable robot equipped with a vision system is to
assist its user, either autonomously or via remote annota-
tion, the robot must know where it is with respect to objects
of interest in the surroundings, whether these objects are
known in advance or detected autonomously. While various
other sensor types (often requiring additional scene infras-
tructure, such as magnetic or ultrasonic sensors) can pro-
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Figure 1. A remote expert annotates the envi-
ronment he interacts with via a wearable vi-
sual robot.

vide localisation information, achieving localisation using
only the image data acquired from the robot’s own cam-
era in natural scenes is very appealing: the robot is making
use of the same data type as its human wearer and poten-
tial remote collaborator, and is able directly to make use of
measurements of the objects of interest themselves. Visual
annotation for augmented reality becomes natural and accu-
rate, and restrictions on user movement are removed.

Ego-motion estimation for an agile single camera mov-
ing through general, unknown scenes is a very challenging
problem when real-time performance is required — most
successful structure from motion work has been achieved
under the off-line processing conditions. This task of es-
timating camera motion from measurements of a continu-
ously expanding set of self-mapped visual features is one
of a class of problems known as Simultaneous Localisation
and Mapping (SLAM) in the robotics community.

Large scale real-time visual mapping of whole rooms,
buildings or even outdoor scenes is currently unfeasible: as
we shall see, the computational complexity of SLAM grows
with map size and this means that the hard real-time con-
straints imposed by the requirement for continuous local-
isation will be violated at some map size. We are there-
fore currently focused on real-time small-scale workspace
localisation. A workspace may be the volume of several
cubic metres in which a wearer must carry out a task.

Localisation within a workspace entails solving a series
of problems imposed by proximity. When objects are close,
perspective changes and objects’ mutual occlusions become
pronounced and frequent even under moderately small mo-
tions of the camera. Furthermore, objects can change po-
sition and orientation or even disappear, perhaps moved

Figure 2. Collar-mounted wearable robot
equipped with a miniature camera manipu-
lated by a three-axis motorized active plat-
form.

by the wearer himself. Another relevant issue is that rel-
atively small objects like hands, can inflict large amounts
of occlusion because they inhabit the space near the sensor.
Our method deals with these issues by mapping a widely-
spaced, sparse set of features to act as localisation land-
marks. While it cannot cope with full scene occlusion (an
issue that would be helped greatly by the use of a wide-
angle lens, at the cost of some angular resolution), partial
scene occlusion and periods when only small numbers of
features are visible are dealt with naturally.

2 A Wearable Robot with Active Vision

At the human scale, a moving lens-camera system is
a good compromise between high angular resolution and
small volume. Both criteria are of great importance for
living beings and thus, not surprisingly, important to any
wearable agent that browses the world using a visual sen-
sor. Depending on its extent, robot motion can be used to
compensate for user posture and motion changes or even
perhaps to access places occluded in the line of sight from
an otherwise fixed sensing location.

We have developed a miniature wearable active vision
system (Figure 2) which in its most recent version incor-
porates an IEEE-1394 camera with a SONY Wfine* CCD,
and field of view (FOV) of about 40◦ horizontal and 30◦

vertical. It is worn at the shoulder as a compromise be-
tween large FOV (minimising occlusion by the body) and
movement independence from the wearer’s viewing direc-
tion [14].



The robot has three rotational degrees of freedom (ele-
vation, pan and cyclotorsion), in a configuration that was
optimised to minimise working volume [13]. It also has a
two-dimensional accelerometer but this was not used in the
current work. Its controller may operate via a wireless or
umbilical connection to the host computer.

We think of this platform as an interface between com-
puter and wearer. Other authors have used wearable active
vision for face tracking [10], and to sense the specific region
that the wearer is attending with his eyes [16].

3 Single Camera SLAM

In this and the following sections we present our general
approach to single camera localisation, valid whether the
camera is worn as in the application presented in this paper,
waved in the hand or even attached to a robot. More general
information on this approach can be found in [4]. In our ap-
proach to visual localisation, the goal is not the processing
of image sequences received from an external source, but
the real-time use of a wearable camera in context. Within
a room, the camera starts approximately at rest with some
known object in view to act as a starting point and provide
a metric scale to the proceedings (this can be as simple as a
standard piece of paper). The camera then moves smoothly
but rapidly, translating and rotating freely in 3D, within the
room or a restricted volume within it, such that various parts
of the unknown environment come into view. The aim is to
estimate its 3D position continuously, promptly and repeat-
ably during arbitrarily long periods of movement. This will
involve accurately mapping (estimating the locations of) a
sparse set of features in the environment.

A key aspect of our scenario is the desire for repeatable
localisation: by this we mean requiring the ability to esti-
mate the location of the camera with just as much accuracy
after 10 minutes of motion as was possible after 10 sec-
onds — a gradual drifting over time is not acceptable. To
achieve this the features detected and mapped must func-
tion as stable, long-term landmarks rather than transient
tracking points, and this implies both that the features must
be strongly salient and identifiable, and that care must be
taken when propagating the uncertainty in their locations.
Early implementations of sequential structure from motion
[1, 9, 2] used the standard short-lived “corner” features fa-
miliar from off-line methods and independent estimators for
the location of each feature, and displayed significant mo-
tion drift over time: the inability either to re-recognise fea-
tures from the past or make correct use of measurements
meant that the trajectories and maps estimated displayed a
gradual divergence over time from the fiducial coordinate
frame.

3.1 SLAM with First-Order Uncertainty Propa-
gation

The question of motion drift in real-time simulta-
neous localisation and mapping (SLAM) is now well-
understood in mobile robotics research. Extended Kalman
Filter (EKF)-based algorithms, propagating first-order un-
certainty in the coupled estimates of robot and map feature
positions, combined with various techniques for reducing
computational complexity in large maps, have shown great
success in enabling robots to estimate their locations accu-
rately and robustly over large movement areas [7, 12]. In
the first-order uncertainty propagation framework, the over-
all “state” of the system x is represented as a vector which
can be partitioned into the state x̂v of the robot (or camera)
and the states ŷi of entries in the map of its surroundings.
Crucially, the state vector is accompanied by a single co-
variance matrix P which can also be partitioned as follows:

x̂ =









x̂v

ŷ1

ŷ2

:









, P =









Pxx Pxy1
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··
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Py2y2

··

: : :
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The role of the covariance matrix is to represent the uncer-
tainty, to first order, in all the quantities in the state vector.
Feature estimates ŷi can be freely added to or deleted from
the map as required, x and P growing or shrinking dynam-
ically. In normal operation, x and P change in two steps:
1. during motion, a prediction step uses a motion model
to calculate how the robot (or camera) moves and how its
position uncertainty increases; 2. when feature measure-
ments are obtained, a measurement model describes how
map and robot uncertainty can be reduced.

The critical importance of maintaining a full covariance
matrix P, complete with off-diagonal elements, has been ir-
refutably proven in SLAM research. These elements repre-
sent the correlation between estimates which is always in-
herent in map-building. The typical situation is that clusters
of close features will have position estimates which are un-
certain in the world reference frame but highly correlated
with one another — their relative positions are well known.
Holding correlation information means that measurements
of any one of this cluster correctly affects the estimates of
the others, and is the key to being able to re-visit and recog-
nise known areas after periods of neglect.

Successful SLAM approaches have generally operated
using not vision but specialised sensors such as laser range-
finders, and in somewhat restricted conditions including
2D planar robot movement and/or mapping, known robot
control inputs and accurately-modelled dynamics. In vi-
sion, Davison and Murray [6] made early progress in full-
covariance mapping using active stereo and Davison and
Kita [5], in perhaps the first work on SLAM in full 3D, used



a curvature model for unknown surface shape in combina-
tion with active stereo to estimate the location of a robot
moving on non-flat surfaces.

Single camera SLAM with general 3D motion is at the
very difficult extreme of the genre. Among previous work,
that of Chiuso et al.[3] has most in common with the present
paper. They present a real-time, full-covariance Kalman
Filter-based approach to sequential structure from motion,
but aim towards model generation rather than localisation.
Bottom-up 2D feature tracking means that only relatively
slow camera motions are permissible, and does not allow
features to be re-acquired after periods of neglect: their fea-
tures typically survive for 20–40 frames then are replaced
in the state vector by others. This means that motion drift
would eventually enter the system.

There is much interest in real-time camera-based locali-
sation from the wearable computing community. Foxlin [8]
has demonstrated an impressive system combining accurate
inertial sensing with visual measurement of automatically-
mapped fiducial targets placed on a ceiling to provide real-
time localisation over extended indoor areas. Kourogi et
al. [11] also use inertial sensing in combination with visual
recognition of key-framed waypoints to permit localisation-
based annotation.

4 Representing 3D Position and Orientation

We define the coordinate frames W , fixed in the world,
and R, fixed with respect to the camera (see Figure 3). To
ease issues with linearisation and singularities, we choose
a non-minimal representation of 3D orientation, and use a
quaternion. The vector of 7 parameters chosen to represent
position and orientation is therefore:

xp =

(

rW

qWR

)

=
(

x y z q0 qx qy qz

)>

We refer to xp as the position state of the camera: a stan-
dard way to define 3D position and orientation which is
common for any type of moving body. We differentiate be-
tween xp and xv , the actual state of the body, which may
include parameters additional to those representing pure po-
sition such as velocity.

5 A Motion Model for a Smoothly Moving
Camera

In the case of a camera attached to a person, the motion
model must take account of the unknown intentions of the
person, but these can be statistically modelled. The type of
model we choose initially is a “constant velocity, constant
angular velocity model”. This means not that we assume
that the camera moves at a constant velocity over all time,
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Figure 3. Frames and vectors in camera ge-
ometry. S is the shoulder frame, fixed with
respect to the wearer, and R the robot frame
is fixed with respect to the camera.

but that our statistical model of its motion in a time step is
that on average we expect its velocity and angular velocity
to remain the same, while undetermined accelerations oc-
cur with a Gaussian profile. The implication of this model
is that we are imposing a certain smoothness on the cam-
era motion: very large accelerations are relatively unlikely.
Modelling the velocity of the camera in this way means that
we must augment the position state vector xp with velocity
terms to form the state vector:

xv =









rW

qWR

vW

ωW









.

Here vW is the linear velocity and ωW the angular ve-
locity. Angular velocity is a vector whose orientation de-
notes the axis of rotation and whose magnitude the rate of
rotation in radians per second. The total dimension of the
camera state vector is therefore 13. (Note that the redun-
dancy in the quaternion part of the state vector means that
we must perform a normalisation at each step of the EKF
to ensure that each filtering step results in a true quaternion
satisfying q2

0
+ q2

x + q2

y + q2

z = 1; this normalisation is
accompanied by a corresponding Jacobian calculation af-
fecting the covariance matrix.)

We assume that in each time step, unknown acceleration
aW and angular acceleration αW processes of zero mean
and Gaussian distribution cause an impulse of velocity and
angular velocity:

n =

(

VW

ΩW

)

=

(

aW ∆t

αW ∆t

)

to be applied to the camera. Depending on the circum-
stances, VW and ΩW may be coupled together (for exam-
ple, by assuming that a single force impulse is applied to the



rigid shape of the body carrying the camera at every time
step, producing correlated changes in its linear and angular
velocity). Currently, however, we assume that the covari-
ance matrix of the noise vector n is diagonal, representing
uncorrelated noise in all linear and rotational components.
The state update produced is:

fv =









rW
new

qWR
new

vW
new

ωW
new









=









rW + (vW + VW )∆t

qWR
× q((ωW + ΩW )∆t)

vW + VW

ωW + ΩW









.

Here the notation q((ωW +ΩW )∆t) denotes the quater-
nion trivially defined by the angle-axis rotation vector
(ωW + ΩW )∆t.

In the EKF, the new state estimate fv(xv ,u) must be
accompanied by the increase in state uncertainty (process
noise covariance) Qv for the camera after this motion. We
find Qv via the Jacobian calculation:

Qv =
∂fv

∂n
Pn

∂fv

∂n

>

,

where Pn is the covariance of noise vector n. This Jacobian
calculation is complicated but tractable; we do not present
the results here.

The rate of growth of uncertainty in this motion model
is determined by the size of Pn, and setting these parame-
ters to small or large values defines the smoothness of the
motion we expect. With small Pn, we expect a very smooth
motion with small accelerations, and would be well placed
to track motions of this type, but would not be able to cope
with sudden rapid movements. High Pn means that the un-
certainty in the system increases significantly at each time
step, and while this gives the ability to cope with rapid ac-
celerations the very large uncertainty means that a lot of
good measurements must be made at each time step to con-
strain estimates.

6 Visual Feature Measurements

We have followed the approach of Davison and Mur-
ray [6], who showed that relatively large (9×9 to 15×15
pixels) image patches are able to serve as long-term
landmark features with a surprising degree of viewpoint-
independence (see Figure 4(a)). Each interest region
is detected once with the saliency operator of Shi and
Tomasi [15], and matched in subsequent frames using nor-
malised sum-of-squared difference correlation.

In this section we consider the measurement model of
the process of measuring a feature already in the SLAM
map. First, the estimates xp of camera position and yi (a
straightforward 3D position vector) of feature position al-
low the value of this measurement to be predicted. Con-
sidering the vector sum of Figure 3, the position of a point

(a) (b)

Figure 4. (a) Feature image patches. Patches
are detected as in [15] and generally corre-
spond to well-localised point objects, though
reflections or depth discontinuities can throw
up unsuitable candidates: in SLAM, these
can be rejected over time since they do not
behave as stationary landmarks when ob-
served from many viewpoints. (b) Search re-
gions during a period of high acceleration:
the positions at which features are found
(small ellipses representing estimates after
filtering) lie towards the boundary of the large
search ellipses.

feature relative to the camera is expected to be:

hR
L = R

RW (yW
i − rW ) .

RRW is the rotation matrix transforming between from cam-
era frame R and world frame W . The position (u, v) at
which the feature is expected to be found in the image can
be found using the standard pinohle camera model:

hi =

(

u

v

)

=





u0 − fku
hR

Lx

hR
Lz

v0 − fkv
hR

Ly

hR
Lz



 .

Here f is the camera focal length and ku and kv are CCD
pixel densities in the horizontal and vertical directions re-
spectively. Further, however, we can also calculate the un-
certainty in this prediction, represented by the innovation
covariance matrix Si. Knowledge of Si is what permits an
active approach to image search; Si represents the shape
of a 2D Gaussian pdf over image coordinates and choos-
ing a number of standard deviations (gating, normally at
3σ) defines an elliptical search window within which the
feature should lie with high probability. In our system, cor-
relation searches always occur within gated search regions,
maximising efficiency and minimising the chance of mis-
matches. See Figure 4(b).

Si has a further role in active search: it is a measure of
the information content expected of a measurement. Essen-
tially, feature searches with high Si (where the result is dif-
ficult to predict) will provide more information and produce
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Figure 6. Frame-by-frame evolution of the
probability density over feature depth repre-
sented by a particle set. 100 equally-weighted
particles are initially spread evenly along the
range 0.5m to 5.0m; with each subsequent im-
age measurement the distribution becomes
more peaked and more closely Gaussian.

more reduction in the uncertainty in estimates of the cam-
era and feature positions. Specifically, since Si depends on
the uncertainty in the relative position of the camera and a
feature, choosing the features with high Si for measurement
acts to reduce the uncertainty in the map consistency as a
whole (always attempting to squash the multi-dimensional
uncertainty in the system along the widest dimension pos-
sible). In an implementation of vision-based SLAM for a
robot with steerable cameras [6] this led directly to active
control of the viewing direction towards profitable measure-
ments; here we currently do not directly control the camera
movement to select valuable feature measurements but in
the case that many candidate measurements are available
we select those with high innovation covariance. Choosing
measurements like this aims to squash the uncertainty in
the system along the longest axis available at each step, and
helps to ensure that no particular component of uncertainty
in the estimated state gets out of hand.

7 Automatic Feature Initialisation Using Fac-
tored Sampling

The projective nature of camera measurements means
that while our measurement model tells us the value of an
image measurement given the position of the camera and a
feature, it cannot be directly inverted to give the position of

a feature given an image measurement and camera position
since the feature depth is unknown. This means that ini-
tialising features in single camera SLAM will be a difficult
task: initial 3D positions for features cannot be estimated
from one measurement alone.

An obvious way to initialise features would be to track
them in 2D in the image over a number of frames and then
perform a mini-batch update when enough evidence had
been gathered about their depth. However, this would vi-
olate our top-down methodolgy and waste available infor-
mation: such 2D tracking is actually very difficult when the
camera is potentially moving fast. Additionally, we will
commonly need to initialise features very quickly because a
camera with a narrow field of view may soon pass them by.

The approach we therefore take is to initialise a 3D line
into the map from the single measurement, along which. the
feature must lie. This is a semi-infinite line, starting at the
estimated camera position and heading to infinity along the
feature viewing direction, and like other map members has
Gaussian uncertainty in its parameters. Its representation in

the SLAM map is: ypi =

(

rW
i

ĥW
i

)

where ri is the po-

sition of its finite end and ĥW
i is a unit vector describing

its direction. Along this line, a set of discrete depth hy-
potheses are made, analogous to a 1D particle distribution:
currently, the prior probability used is uniform with 100 par-
ticles in the range 0.5m to 5.0m, reflecting indoor operation.
At subsequent time steps, these hypotheses are all tested by
projecting them into the image. As Figure 5 shows, each
particle translates into an elliptical search region. Feature
matching within each ellipse (via an efficient implementa-
tion for the case of search multiple overlapping ellipses for
the same image patch) produces a likelihood for each, and
their probabilities are reweighted. During the time that the
particle depth distribution is being refined, the parameters of
the line are not updated (except via their indirect coupling to
the robot state in the Kalman Filter), and measurements of
it are not used to update the camera position estimate. This
is of course an approximation because in principle measure-
ments of even a partially initialised feature do provide some
information on the camera position.

Figure 6 shows the evolution of the depth distribution
over time, from uniform prior to sharp peak. When the ra-
tio of the standard deviation of depth and the depth estimate
itself drops below a threshold, the distribution is safely ap-
proximated as Gaussian and the feature initialised as a point
into the map — from this point onwards it behaves as a nor-
mal point feature, contributing to the update of the camera
position estimate. Typically a just-initialised feature will
still have a relatively large depth uncertainty (of the order
of a few tens of centimetres), but this is rapidly reduced
once more measurements are obtained.

The important factor of this initialisation is the shape of
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Figure 5. A close-up view of image search in successive frames during feature initialisation. In the
first frame a candidate feature image patch is identified within a region searched with an interest
operator. A 3D ray along which the feature must lie is added to the SLAM map, and this ray is
projected into subsequent images (an epipolar line). A distribution of depth hypotheses from 0.5m to
5m translates via the uncertainty in the new camera position relative to the ray into a set of ellipses
which are all searched to produce likelihoods for Bayesian re-weighting of the depth distribution.
A small number of time-steps are normally sufficient to reduce depth uncertainly sufficiently to
approximate as Gaussian and enable the feature to be added for use in the SLAM map.

the search regions generated by the overlapping ellipses. A
simple depth prior has removed the need to search along the
entire epipolar line, and improved the robustness and speed
of initialisation. In real-time implementation, the speed of
collapse of the particle distribution is aided (and correlation
search work saved) by deterministic pruning of the weakest
particles at each step.

7.1 Map Management

With the ability to add features to the map comes the
need for criteria to decide when this should be necessary,
and potentially when some features should be deleted. Our
map-maintenance criterion aims to keep the number of re-
liable features visible from any camera location close to
a pre-determined value determined by the specifics of the
measurement process, the required localisation accuracy
and the computing power available: currently, numbers in
the region 6–10 are used in this work. Feature “visibil-
ity” (more accurately predicted measurability) is calculated
based on the relative position of the camera and feature, and
the saved position of the camera from which the feature was
initialised: the feature must be predicted to lie within the
image (and not too close to the edge), but further the cam-
era must not have moved or rotated too far from its initial-
isation viewpoint of the feature or we would expect corre-
lation to fail. Features are added to the map if the number
visible in the area the camera is passing through is less than
this threshold. This criterion was imposed with efficiency
in mind — it is not desirable to increase the number of fea-
tures and add to the computational complexity of filtering
without good reason. A feature is deleted from the map
if, after a predetermined number of detection and matching
attempts when the feature should be visible, more than a

fixed proportion (in our work 50%) are failures. This crite-
rion prunes “bad” features which are not true 3D points or
are often occluded.

A degree of clutter in the scene can be dealt with even
if it sometimes occludes landmarks. As long as clutter does
not too closely resemble a particular landmark, and does
not occlude it too often from viewing positions within the
landmark’s region of expected visibility, attempted mea-
surements while the landmark is occluded will simply fail
and not lead to a filter update. Problems only arise if mis-
matches occur due to a similarity in appearance between
clutter and landmarks, and this can potentially lead to catas-
trophic failure. The correct operation of the system relies
on the fact that in most scenes very similar objects do not
commonly appear in a close enough vicinity to lie within a
single image search region (and special steps would need to
be taken to enable the system to work in scenes with a lot
of repeated texture).

8 Active Camera Control: Saccade and Pur-
suit

The capability for active robotic control of the orien-
tation of the wearable camera really comes into its own
when combined with the detailed real-time localisation in-
formation available from visual SLAM. In previous work
[14], a roll/pitch accelerometer sensor mounted on the wear-
able robot permitted self-levelling orientation control of the
camera with respect to gravity. Full 3D localisation how-
ever also allows control of the camera based on position
information — for instance it enables:

• Extended fixation on a 3D object during wearer mo-
tion.



• Controlled saccades between known objects in arbi-
trary positions, even when the target is out of the cur-
rent field of view.

These are capabilities which were certainly impossible us-
ing only orientation sensing. Once a map of various features
has been built up, the robot can be directed at will to any
mapped feature and commanded to control its orientation
to maintain fixation during an extended period of user mo-
tion. Continuous tracking of a single feature is something
which could be achieved in simpler ways, using a visual
servoing approach. In our scheme, however, since global
localisation is continuously recovered, a further command
can then send the robot back to fixate any other known fea-
ture: the camera position estimate, feature position estimate
and knowledge of the current robot angles permit immedi-
ate calculation of the control demand necessary for fixation.

8.1 Control Scheme

A single simple control rule is used to calculate robot ori-
entation demands during feature fixation tracking and inter-
feature saccades. First, as when making feature measure-
ments, the vector from the camera centre to the feature on
which fixation is desired is calculated and transformed into
the camera frame of reference R.

hR
L = R

RW (yW
i − rW ) .

Knowledge via odometry of the current wearable robot mo-
tor angles permits calculation of the rotation matrix RSR

transforming between the camera frame R and the shoul-
der frame S; using this (and assuming that the offsets
in the robot geometry are small such that the camera ro-
tates approximately about its optic centre), we calculate the
camera-feature vector in the shoulder frame:

hS
L = R

SRhR
L .

This vector can then be decomposed to determine the ideal
robot angles (elevation and pan) for direct fixation on the
feature. These are not demanded straight away however —
this would lead to very fast camera motions during which
tracking would likely be lost. Rather, a maximum angular
velocity limit is fixed for each axis (currently at 30◦s−1) and
this defines the maximum demand increment issued at any
time. Simultaneously the cyclotorsion degree of freedom
is controlled such that the camera remains maximally hor-
izontal (with respect to the world coordinate frame defined
by the initially known features in the map). This means that
the camera will stay fairly horizontal during the wearer’s
twists and turns, aiding feature matching and tracking.

Terminal"
"RemoteWearable

Visual
Robot

Workspace

Figure 7. Experimental environment.

9 Results

The visual SLAM algorithm was implemented at full
30Hz operation. In the current implementation all vi-
sion and map processing was achieved on a lap-top with a
1.6GHz Centrino processor. In fact, processing at a rate of
less than 30Hz would no doubt be difficult since the inter-
frame motions induced may be very great and the uncer-
tainty required of the motion model such that all search
regions would be very large — there is indeed a power-
ful argument for proceeding to processing rates higher than
30Hz, where the active approach used means that less pro-
cessing would be required on each images since search re-
gions would be smaller reflecting reduced motion uncer-
tainty.

The experimental environment is depicted in Figure 7.
The wearer browses a desk-top scene, manipulating objects
and moving smoothly but freely. Meanwhile a remote oper-
ator (in this case sitting nearby) manipulates the PC where
output from the robot is displayed interactively.

The system is able routinely to keep track of localisation
during long periods of several minutes of wearer motion,
including often tracking through times when only very few
features are visible thanks to the stability provided by the
motion model — there is no minimum to the number of
features that must be successfully measured at each frame
although of course more is always preferable. After an ex-
tended period of movement, a typical map generated may
have around 50 or 60 features and span a working volume of
several cubic metres. Larger maps than this are unfeasible
with the current implementation due to real-time processing
constraints.

The positions of six features corresponding to corners



of a paper target were given to the system as prior knowl-
edge (image patches were selected and saved by hand, and
their 3D positions relative to a defined coordinate frame ac-
curately measured — these features are inserted into the
SLAM map with zero uncertainty, and therefore all rows
and columns of the covariance matrix relating to them will
always have zero values). The initial position xv of the cam-
era within this coordinate frame was also measured, though
this estimate is inserted into the state vector accompanied
by a covariance Pxx which corresponding to an uncertainty
of a few centimetres and this enables tracking to start as
long as the initial camera position is reasonably close to
that defined. It would of course be desirable to be able
to start tracking without the need for a known target, but
currently this seems unfeasible: the target defines a known
length scale for the system without which progress would
be difficult since our scheme makes use of metric priors in
the motion model and initialisation process.

Linear acceleration noise components in Pn were set to a
standard deviation of 1ms−2, and angular components with
a standard deviation of 6rads−2. The relatively large angu-
lar term was necessary to cope with the rapid changes in
orientation of a worn camera.

9.1 Interface for Collaboration with a Remote Ex-
pert

Two real-time graphical displays are presented to the re-
mote expert: a three-dimensional reconstruction of the esti-
mated locations of the camera and features, and the image
view from the camera augmented with feature estimates,
a world coordinate frame and other graphics. The remote
expert’s role in collaboration is to click on the displays to
highlight objects for the wearer’s attention. It is actually
very difficult for the remote collaborator to click reliably
on objects in the rapidly-moving camera view — the stable
3D view in the world coordinate frame proves valuable for
this, though more detailed graphics than the set of points
currently drawn for rendering speed would be desirable.

9.2 Video

A video accompanying this paper is available from our
website (see figure 8). This presents the results achieved
in the best manner and shows different views of real-time
SLAM, wearable robot control and annotation. In graphi-
cal views, the feature colours used indicate their status: red
features have been measured at the current time-step, blue
indicates that an attempted measurement has failed, and yel-
low that a measurement was not attempted (the feature hav-
ing been evaluated as not measurable from this position or
because enough better features have already been selected).
A feature currently being used as the target for fixation is

drawn in green, and should consistently appear close to the
image centre. Simple view augmentation with wire-frame
cubes centred at the location of a selected feature highlights
certain positions. The cubes’ orientations are fixed relative
to the world coordinate frame and they have constant 3D
size.

10 Conclusions

We have presented a fully-automatic real-time visual lo-
calisation and mapping system which is a very important
step towards useful wearable vision and relevant to all types
of camera motion estimation. Current limitations of the al-
gorithm include that it can only handle a certain number
of features (perhaps 60 with full graphical output, or 100
without) within real-time processing constraints. This is
enough to span a workspace, but not a whole room. Effi-
cient SLAM implementations and improved feature match-
ing are required to improve this.

The feature matching would benefit from more
viewpoint-independent characteristics; in particular it can-
not cope with too much camera rotation about the optic axis
although with the wearable robot cyclotorsion control miti-
gates this. We are currently investigating 3D surface patches
as a replacement for the current 2D features.

The narrow field of view of the wearable is a problem
for the SLAM algorithm, in which it is desirable to see a
wide spread of features at all times. A more wide-angle
lens should be beneficial since fewer features will need to
be added to the map.

We do not currently make use of any inertial sensing,
although incorporating this would be a natural step. The in-
evitable increase in performance would need to be weighed
against the small increase in system complexity involved, as
well as the loss of algorithmic generality: a purely vision-
based method is more readily applied to different hardware
platforms.

Current plans are to move the system away from the
desktop to more general large-scale scenes.
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