
Robotics

Lecture 4: Probabilistic Robotics

See course website

http://www.doc.ic.ac.uk/~ajd/Robotics/ for up to

date information.

Andrew Davison
Department of Computing
Imperial College London

February 3, 2025

Review: Practical 1

• Gradual ‘motion drift’ from perfect square

• Causes: initial alignment errors; wheel slip; miscalibration; unequal
left/right motors; others . . . ?

• Careful calibration of distance and angle (probably in position
control, by adjusting demand in degrees, and also possibly maximum
speed and gains) improves matters but we will never achieve a
perfect result every time in this experiment.

A Well-Calibrated Robot

• After careful calibration the robot should on average return to the
desired location, but scatter will remain due to uncontrollable factors
(variable wheel slip, rough surface, air currents!?. . .)

• Systematic error removed; what remains are zero mean errors.

• The errors occur incrementally: every small additional movement or
rotation induces a little more potential error.

• The size of the distribution of the errors in the world frame will grow
as the robot moves further around the square.

• We can model the zero mean errors probabilistically: in many cases
a Gaussian (normal) distribution is suitable.

What does this mean for estimating motion?
• Perfect motion integration from odometry is not possible:

R

R

R Coordinate Frame
Carried With Robot

xW

W

W

y

x

y

Fixed World Coordinate
Frame W

θ

Recall from the last lecture: state update equations:

• During a straight-line period of motion of distance D: xnew
ynew
θnew

 =

 x + D cos θ
y + D sin θ

θ


• During a pure rotation of angle angle α: xnew

ynew
θnew

 =

 x
y

θ + α



Uncertainty in Motion
• A better model acknowledges that this ‘ideal’ trajectory is affected

by uncertain perturbations (‘motion noise’). For example, we could
use this simple model:

• During a straight-line period of motion of distance D: xnew
ynew
θnew

 =

 x + (D + e) cos θ
y + (D + e) sin θ

θ + f


• During a pure rotation of angle α: xnew

ynew
θnew

 =

 x
y

θ + α+ g


• Here e, f and g are ‘uncertainty’ terms, with zero mean and a
Gaussian distribution, which model how actual motion might deviate
from the ideal trajectory.

• Adding these terms won’t help us to move a robot more accurately
when it is guided with only odometry; but are important later when
we probabilistically combine odometry with other sensing.

Probabilistic Localisation

Over the next two weeks we will aim beyond local reactive behaviours
towards reliable long-term navigation, via localisation relative to a map.

O

A B

C D

E F

Gx

y

θ

a

b

c

d

e

f

g

h

Probabilistic Robotics

• Problem: simple sensing/action procedures can be locally effective
but are limited in complicated problems in the real-world; we need
longer-term representations and consistent scene models.

• ‘Classical AI’ approaches to long-term estimation based on logical
reasoning about true/false statements fall down when presented
with real-world data.

• Why?
• Advanced sensors don’t lend themselves to straightforward analysis

like bump and light sensors.
• All information which a robot receives is uncertain.

• A probabilistic approach acknowledges uncertainty and uses models
to abstract useful information from data.

• Our goal is an incrementally updated probabilistic estimate of the
position of the robot relative to the map.

Uncertainty in Robotics

Motion estimate:Initial position estimate: Feature depth measurement:

σx σσm zx = 3.34m = 0.10m m = 1.00m = 0.05m z = 0.80m = 0.02m

• Every robot action is uncertain.

• Every sensor measurement is uncertain.

• When we combine actions and measurements and want to estimate
the state of a robot, the state estimate will be uncertain.

• Usually, we will start with some uncertain estimate of the state of a
robot, and then take some action and receive new information from
sensors. We need to update the uncertain state estimate in response
to this.

Probabilistic Inference

x1 x2 x3

1u u2 u3

1y y2

1z z2

x0

z3 z4 z5 z6 z7 z8

y3

• What is my state and that of the world around me?

• Prior knowledge is combined with new measurements; most
generally modelled as a Bayesian Network.

• A series of weighted combinations of old and new information.

• Sensor fusion: the general process of combining data from many
different sources into useful estimates.

• This composite state estimate can then be used to decide on the
robot’s next action.

Bayesian Probabilistic Inference

• ‘Bayesian’ has come to be known as a certain view of the meaning
of probability theory as a measure of subjective belief.

• Probabilities describe our state of knowledge — nothing to do with
randomness in the world.

• Bayes’ Rule relating probabilities of discrete statements:

P(XZ) = P(Z|X)P(X) = P(X|Z)P(Z)

⇒ P(X|Z) =
P(Z|X)P(X)

P(Z)

• Here P(X) is the prior; P(Z|X) the likelihood; P(X|Z) the posterior;
P(Z) sometimes called marginal likelihood.

• We use Bayes’s Rule to incrementally digest new information from
sensors about a robot’s state. Straightforward use for discrete
inference where X and Z each have values which are one of several
labels such as the identity of the room a robot is in.

Probability Distributions: Discrete and Continuous

• Discrete probabilistic inference generalises to large numbers of
possible states as we make the bin size smaller and smaller.

• A continuous Probability Density Function p(x) is the limiting case
as the widths of bins in a discrete histogram tend to zero.

1
3
.1

8

1
3
.1

9

1
3
.2

0

1
3
.2

1

1
3
.2

2

1
3
.2

3

1
3
.2

4

1
3
.2

5

1
3
.2

6

1
3
.2

7

20

10

 0

m−1

m

Robot Position

P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

0.01

0.03

0.10

0.21

0.24

0.19

0.14

0.06

0.02

1
3
.1

8

1
3
.1

9

1
3
.2

0

1
3
.2

1

1
3
.2

2

1
3
.2

3

1
3
.2

4

1
3
.2

5

1
3
.2

6

1
3
.2

7

20

10

 0

m−1

m

Robot Position

P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

0
.0

0
2

5

0
.0

0
2

5

0
.0

0
5

0

0
.0

0
5

0

0
.0

0
5

0

0
.0

1
0

0

0
.0

1
0

0

0
.0

1
5

0

0
.0

3
0

0 0
.0

2
2

5

0
.0

3
2

5

0
.0

4
5

0

0
.0

5
0

0

0
.0

5
5

0

0
.0

6
0

0

0
.0

6
7

5

0
.0

6
5

0 0
.0

5
7

5

0
.0

5
0

0

0
.0

4
5

0

0
.0

4
5

0

0
.0

5
5

0

0
.0

4
5

0 0
.0

4
2

5

0
.0

3
2

5

0
.0

3
0

0

0
.0

3
5

0

0
.0

2
7

5

0
.0

2
0

0 0
.0

0
7

5

0
.0

0
5

0

0
.0

0
7

5

0
.0

0
5

0

0
.0

0
5

0

0
.0

0
2

5

0
.0

0
0

0

1
3
.1

8

1
3
.1

9

1
3
.2

0

1
3
.2

1

1
3
.2

2

1
3
.2

3

1
3
.2

4

1
3
.2

5

1
3
.2

6

1
3
.2

7

20

10

 0

m−1

m

Robot Position

P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

• The probability that a continuous parameter lies in the range a to b
is given by the area under the curve:

Pa→b

∫ b

a

p(x)dx

• But generic high resolution representation of probability density is
very expensive in terms of memory and computation.

Probability Representations: Gaussians

Prior

Likelihood

Posterior

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• Explicit Gaussian (or normal) distributions are often represent the
uncertainty in sensor measurements very well.

• Wide Gaussian prior multiplied by likelihood curve to produce a
posterior which is tighter than either. The product of two Gaussians
is always another Gaussian.

Probability Representations: Particles

Prior

Posterior

• Here a probability distribution is represented by a finite set of
weighted samples of the state {xi ,wi}, where

∑
i wi = 1.

• Big advantages are simplicity and the ability to represent and shape
of distribution, including multi-modal distributions (with more than
one peak) in ambigiuous situations.

• Disadvantages are a poor ability to represent detailed shape of
distribution when number of particles is low. If we increase the
number of particles to improve this, the computational cost can be
very high.

Probabilistic Localisation

• The robot has a map of its environment in advance.

• The only uncertain thing is the position of the robot.

R

R

R Coordinate Frame
Carried With Robot

xW

W

W

y

x

y

Fixed World Coordinate
Frame W

θ

World Frame W

yW

zW

xW

x (left)R

z (forward)R

y (up)R

Camera Frame R

r

y

h
L

• The robot stores and updates a probability distribution representing
its uncertain position estimate.

Monte Carlo Localisation (Particle Filter)
• Cloud of particles represent uncertain robot state: more particles in

a region = more probability that the robot is there.

(Dieter Fox et al.1999, using sonar. See animated gif at
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

montecarlolocalization.gif .)

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/montecarlolocalization.gif
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/montecarlolocalization.gif

The Particle Distribution

• A particle is a point estimate xi of the state (position) of the robot
with a weight wi .

xi =

 xi
yi
θi


• The full particle set is:

{xi ,wi} ,

for i = 1 to N. A typical value might be N = 100.

• All weights should add up to 1. If so, the distribution is said to be
normalised:

N∑
i=1

wi = 1 .

Displaying a Particle Set

• We can visualise the particle set by plotting the x and y coordinates
as a set of dots; more difficult to visualise the θ angular distribution
(perhaps with arrows?) — but we can get the main idea just from
the linear components.

Steps in Particle Filtering

These steps are repeated every time the robot moves a little and makes
measurements:

1. Motion Prediction based on Proprioceptive Sensors.

2. Measurement Update based on Outward-Looking Sensors.

3. Normalisation.

4. Resampling.

Motion Prediction

• We know that uncertainty grows during blind motion.

• So when the robot makes a movement, the particle distribution
needs to shift its mean position but also spread out.

• We achieve this by passing the state part of each particle through a
function which has a deterministic component and a random
component.

Motion Prediction

• During a straight-line period of motion of distance D: xnew
ynew
θnew

 =

 x + (D + e) cos θ
y + (D + e) sin θ

θ + f


• During a pure rotation of angle angle α: xnew

ynew
θnew

 =

 x
y

θ + α+ g


• Here e, f and g are zero mean noise terms — i.e. random numbers
typically with a Gaussian distribution. We generate a different
sample for each particle, which causes the particles to spread out.

Motion Prediction

• We need to find the appropriate standard deviations of the
Gausssian distributions from which to sample e, f and g . Make
some initial estimates; then adjust by looking at the particle spread
over an extended motion and match the distribution to experiments
(see practical sheet).

• If your robot is to move through variable step sizes, the values of
these standard deviations should change with the distance move.
The correct way to do this is to scale the variance proportional to
the linear or angular distance moved — variance is additive, so for
instance two 1m steps will cause the same spread as one 2m step.

Measurement Updates

• A measurement update consists of applying Bayes Rule to each
particle; remember:

P(X|Z) = P(Z|X)P(X)
P(Z)

• So when we achieve a measurement z , we update the weight of each
particle as follows:

wi(new) = P(z |xi)× wi ,

remembering that the denominator in Bayes’ rule is a constant
factor which we do not need to calculate because it will later be
removed by normalisation.

• P(z |xi) is the likelihood of particle i ; the probability of getting
measurement z given that it represents the true state.

Likelihood Function

• The form of a likelihood function comes from a probabilistic model
of the outward-looking sensor.

• Having calibrated a sensor and understood the uncertainty in its
measurements we can build a probabilistic measurement model for
how it works. This will be a probability distribution (specifically a
likelihood function) of the form:

P(z |xi)

Such a distribution will often have a Gaussian shape.

Inferring an Estimate and Position-Based Navigation

• At any point, our uncertain estimate of the location of the robot is
represented by the whole particle set.

• If we need to, we can make a point estimate of the current position
and orientation of the robot by taking the mean of all of the
particles:

x̄ =
N∑
i=1

wixi .

• i.e. the means of the x , y and θ components are all calculated
individually and stored in x̄.

• The robot could use this for instance to plan A → B waypoint
navigation.

This week’s practical: Simple Sensor Control Loops and
Wall Following

• Example wall follower:
https://www.youtube.com/watch?v=BU9k5Z0CKjs. We will try
to do even better with smooth proportional gain!

https://www.youtube.com/watch?v=BU9k5Z0CKjs

