Robotics
Practical 3: Probabilistic Motion

Andrew Davison
a.davison@imperial.ac.uk

1 Introduction

This week we will revisit robot motion and sensing but now with a probabilistic viewpoint, understand-
ing how to model and reason about uncertainty. This practical lays the groundwork for next week’s
session where these components will be brought together into a full algorithm for Monte Carlo Locali-
sation, a probabilistic localisation filter.

This practical will be ASSESSED. There are 30 marks to be gained for completing the objectives de-
fined for today’s practical, out of a total of 100 for the coursework mark for Robotics over the whole
term. Assessment will take place via a short demonstration and discussion of your robots and other re-
sults to me or one of the lab assistants AT THE START OF THE PRACTICAL SESSION ON THURS-
DAY 12th FEBRUARY. No submission of reports, code or other materials is required. We will assign
marks based on our judgement of whether each objective has been successfully achieved, and give you
feedback and tell you your marks on the spot.

2 Objectives

2.1 Representing and Displaying Uncertain Motion with a Particle Set (16 Marks)

In the first practical we saw clearly that even after careful calibration, a robot’s will never do the same
thing every time, because of many small factors which are very difficult to model. If it makes an
estimate of its motion based on odometry, therefore, this measurement will always have uncertainty
relative to its true motion.

In lectures I explained that in probablistic robotics, one way to represent this uncertain estimate and
how it changes over time is via a particle distribution. The figure below shows an example particle
distribution evolving over time to represent the growing uncertainty in the position of a robot navigating
using only odometry, though with a different scale and motion pattern from what we will be using today.

Start location

10 meters




Your key aim this week is to write a program which represents the uncertain motion of your moving
robot in a similar way via a particle distribution, and displays the results in the form of a cloud of
particles drawn in real-time using our Pi web interface (see below).

You will need to demonstrate this program to us next week. Program your robot to follow a full 40cm
square trajectory as in Practical 1, though make your robot move in 10cm steps, stopping after
each movement or turn. We want to see the particle distribution on screen, updating in real-time after
each movement. The particles should move after every robot movement step, and spread out gradually
to represent its growing uncertainty during this motion. No outward looking sensors are to be used in
this part so the uncertainty should always get bigger after each step.

So, in your demonstration we should see, happening at the same time, your actual robot driving on the
floor to complete a square motion in 10cm steps, and on screen a real-time particle display which up-
dates after each movement step. Please pay attention to matching up the coordinate frames of your
robot’s real motion, and your graphics display. Follow the picture we gave in the week 2 practical:

yW

40cm

Fixed World Coordinate
Frame W

L

' 40cm xW
]

The x coordinate is forward, y left, at the start of the motion, and your robot should make left turns.

Note that you should clear the screen each time you redisplay the particles, so that we just see the new
state of the particles rather than showing the whole history as in the figure above.

In preparation for next week your robot should run on the lab carpet rather than paper, and you may
need to alter your tuning and calibration parameters slightly to get accurate motion on carpet. You don’t
need a pencil this week. (We will not be judging the accuracy of your robot this week, and I don’t want
you to spend a long time on calibration, but get it approximately right and if your robot is moving fairly
accurately you will be ready for next week.)

At the start of motion, the set of particles should all be initialised to the origin (x = 0,y = 0,6 = 0).
Each time the robot stops, you should update the position of the particles using the equations below:

* After a straight-line period of motion of distance D:

Tnew x+ (D +e)cosb
Ynew = Y+ (D + 6) sin 6
Onew 0+ f



 After a pure rotation of angle angle «:

Lnew x
Ynew - Yy
enew 0+ o+ g

Here e, f and g are noise terms, which are generated for each particle separately by sampling random
numbers with zero mean and an appropriate standard deviation from a Gaussian distribution. Adding a
small different random amount onto the position of each particle like this will cause spreading like you
see in the diagram.

The best way to adjust the standard deviations of the Gaussians for each of e, f and g which you sample
is by running the whole program for the square trajectory and observing the total amount of particle
spreading which occurs. e, f and g represent different things, so each should have a different standard
deviation, though all shouldh have zero mean as long as your robot is well calibrated. In principle, the
amount your particles spread out should agree with the amount of uncertainty you think your robot has
in its motion. So if your robot can complete the square trajectory and get back to its starting point with
around a Scm standard deviation total error, look for this amount of spread in the particles at the end of
the motion by looking at your graphics display (you can judge by eye the amount of spreading relative
to the size of the 40cm trajectory and 10cm steps).

Note that it usually makes sense to err on the side of too much uncertainty in the way that the particles
spread out because when the robot is out in the real world and especially running on carpet it may
be less precise than during the experiment we did on paper two weeks ago. We would expect that
the particles spreading out to around Scm standard deviation over the whole square motion would be
reasonable for most robots. The following sections have further details.

2.1.1 Web Interface and Displaying Output

You may have already been using the web interface with your Raspberry Pi Robots which makes it easy
to interact with programs running on the Pi from any device on the college network (PC, tablet, etc.).
Instructions for how to install and use this were given in the setup guide you should have completed
in the first week: http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/
wifi_setup.txt.

Remember that if you have the webserver correctly installed, you should be able to click straight
through to it via this link (using your Pi’s MAC address): http://www.doc.ic.ac.uk/~ajd/
robotics/l.

You can copy programs to the Pi through this interface, run them and see text output in the browser.

This week we will be using the other functionality it provides, which is to enables real-time 2D graphics
output from your Pis via special formatted Python print statements. You can output simple 2D graphics
from a Python program to the web interface which can be used to visualise the state of a particle filter
by drawing lines and points. The Python program does not need to call any libraries to achieve this
drawing. It simply has to print text in the correct format. While most print statements will lead to the
raw text being displayed in the browser, if you print lines with the drawLine or drawParticles keywords
they are picked up by the web server and interpreted as graphics commands.

So in Python:

e Drawing lines: print ("drawLine:" + str(line)) , where 1ine is a 4-tuple (x0,
v0, x1, yl).


http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/wifi_setup.txt
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/wifi_setup.txt
http://www.doc.ic.ac.uk/~ajd/robotics/
http://www.doc.ic.ac.uk/~ajd/robotics/

* Drawing particles: print ("drawParticles:" + str(particles)),whereparticles
should be a list of 3-tuples (x, vy, theta).

These drawing commands will use a standard graphics coordinate system to draw in a window within
the web display. You define a suitable transformation between (z, %) robot coordinates and screen
graphics coordinates to suitably scale and orient your display so that it is clear easy to see what is going
on with the particles, and so that the display has the same orientation as the picture above.

Note that a known issue with our graphics functionality through the web browser is that it does not cope
perfectly with very rapid drawing calls, or calls to draw a very high number of particles or lines. You
should be fine with 100 particles, displayed at a rate up to several times a second.

2.1.2 The Particle Set

The set of particles, each of which has values for x; = (x;,y;, 0;) and weight w;, can be stored in pre-
allocated Python arrays of length NUMBER_OF _PARTICLES. A suitable initial value for

NUMBER_OF _PARTICLES this week is 100. In this week’s practical, the weights w; of the particles
will not be important and should just be set to 1/ NUMBER_OF _PARTICLES. The weights become
important next week when we incorporate sonar measurements.

The web interface provides a simple way to display a set of points on screen to represent the positions
of a particle set. You should experiment to find a suitable scale so that the particle set stays within the
bound of the interface window at all times.

2.1.3 Generating Random Numbers

Random numbers for use in the particle movement can be easily generated in Python using the random
module. Seehttp://docs.python.org/3/library/random.html|for full documentation.
In particular, this week you will need to generate random numbers sampled from a Gaussian distri-
bution. The function random.gauss (mu, sigma) generates a random number sampled from a
Gaussian distribution with mean mu and standard deviation sigma.

2.2 Waypoint Navigation (8 Marks)

The proof of good localisation is if it can be used to achieve accurate navigation. You can make a point
estimate of the current position and orientation of the robot by taking the mean of all of the particles:

N
1=1

Based on this estimate you can then control the robot to move towards a target location. Note that this
week, this mean estimate is just calculated from odometry so is not very interesting — as the particles
spread out as uncertainty increases, their mean will not change — but with this machinery in place you
will be set up for next week when the particle distribution will also be affected by sonar measurements.

Provide your robot with the capability to perform position-based navigation via simple path planning
through a set of waypoints. A waypoint is an (W, W) position relative to the world coordinate frame
W through which the should pass. Write a function navigateToWaypoint (float X, float
Y) which, given the robot’s current estimated location (x,y, #), drives it to the waypoint at (W, W)
specified in metre units. Most straightforwardly this will be achieved by first a turn on the spot through

4


http://docs.python.org/3/library/random.html

the appropriate angle and then a straight forward motion of the right distance. Refer back to the lecture
notes from week 2 on position-based path planning, and please use the same 2D coordinate frame
convention defined in the figures in that lecture such that the robot starts at (z,y,0) = (0,0, 0) with its
forward direction aligned with the x-axis, the y axis points left and positive § representing a left turn.

Prove the operation of your path planning function to use by demonstrating a short interactive program
where a user is asked to enter (IV,, W) coordinates in metres which the robot will then move to before
asking for more coordinates. We ask you to demo this in the assessment and give you some coordinates
for the robot to drive to, so make sure your program is well tested. (Again, bear in mind that at this stage
your robot is navigating only based on odometry so there will be inevitable drift in its position over long
motions; but with this machinery in place we will be ready to implement a full MCL localisation and
navigation system next week.)

2.3 Sonar Investigation (6 Marks)

The sonar is the crucial outward-looking sensor which we will use to make contact with the mapped
world in Monte Carlo Localisation next week.

This week we will make some initial quantitive investigation of its properties. We will attempt to
calibrate the sonar by comparing the values it returns with ground truth obtained from measurements
with a ruler or tape measure (there are some around the lab and I should have some spares). Set up your
sonar sensor with a simple program to read continuously and report depth values to the screen (look at
the example program NXT-Ultrasonic_Sensor.py on your Raspberry Pis to see how to do this).

2.3.1 Sonar Calibration Questions to Answer

On paper, prepare brief answers to these questions, showing any measurements that you recorded to
support your answers. We will ask you about all of these at the assessment:

1. When placed facing and perpendicular to a smooth surface such as a wall, what are the minimum
and maximum depths that the sensor can reliably measure?

2. Move the sonar so that it faces the wall at a non-orthogonal incidence angle. What is the maxi-
mum angular deviation from perpendicular to the wall at which it will still give sensible readings?

3. Do your sonar depth measurements have any systematic (non-zero mean) errors? To test this, set
up the sensor at a range of hand-measured depths (20cm, 40cm, 60cm, 80cm, 100cm) from a wall
and record depth readings. Are they consistently above or below what they should be?

4. What is the the accuracy of the sonar sensor and does it depend on depth? At each of two chosen
hand-measured depths (40cm and 100cm), make 10 separate depth measurements (each time
picking up and replacing the sensor) and record the values. Do you observe the same level of
scatter in each case?

5. In arange of general conditions for robot navigation, what fraction of the time do you think your
sonar gives garbage readings very far from ground truth?



	Introduction
	Objectives
	Representing and Displaying Uncertain Motion with a Particle Set (16 Marks)
	Web Interface and Displaying Output
	The Particle Set
	Generating Random Numbers

	Waypoint Navigation (8 Marks)
	Sonar Investigation (6 Marks)
	Sonar Calibration Questions to Answer



