Lightweight Description Logics: DL-Lite $\mathcal{A}_{\mathcal{A}}$ and $\mathcal{E} \mathcal{L}^{++}$

Elena Botoeva ${ }^{1}$

KRDB Research Centre
Free University of Bozen-Bolzano

January 13, 2011
Departamento de Ciencias de la Computación Universidad de Chile, Santiago, Chile

[^0]
Outline

(1) Description Logics
(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of $D L-$ Lite $_{A}$
- Reasoning in DL-Lite A
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of DL-LiteA
- Reasoning in DL- LiteA
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

Description Logics

- formal languages for representing knowledge bases
- TBox represents implicit knowledge (a set of axioms)
- ABox represents explicit knowledge (a set of individual assertions)

Description Logics

- formal languages for representing knowledge bases
- TBox represents implicit knowledge (a set of axioms)
- ABox represents explicit knowledge (a set of individual assertions)
- talk about
- concepts

Professor Student Course $\rceil \perp$,

- and roles
teaches attends

Description Logics

- formal languages for representing knowledge bases
- TBox represents implicit knowledge (a set of axioms)
- ABox represents explicit knowledge (a set of individual assertions)
- talk about
- concepts

Professor Student Course $\rceil \perp$,

- and roles
teaches attends
- variable free syntax
- for describing complex concepts

Professor \sqcup Student \exists teaches.PhDCourse \forall hasChild.Male

- for asserting implicit knowledge
\exists teaches ${ }^{-} \sqsubseteq$ Course Professor \sqcap Student $\sqsubseteq \perp$
- for asserting explicit knowledge

Student(john) attends(john, db)

Why Description Logics?

- Decidable fragments of FOL (\Rightarrow Well-defined semantics). DLs provide sound and complete reasoning services:
- checking knowledge base consistency,
- checking logical entailment,
- answering conjunctive queries (unions of CQ).

Why Description Logics?

- Decidable fragments of $F O L$ (\Rightarrow Well-defined semantics). DLs provide sound and complete reasoning services:
- checking knowledge base consistency,
- checking logical entailment,
- answering conjunctive queries (unions of CQ).
- Modelling capabilities. Description Logics (DLs) can express, e.g.:
- Taxonomy of classes of objects,
- UML class diagrams,
- ER models, etc.

Why Description Logics?

- Decidable fragments of FOL (\Rightarrow Well-defined semantics).

DLs provide sound and complete reasoning services:

- checking knowledge base consistency,
- checking logical entailment,
- answering conjunctive queries (unions of CQ).
- Modelling capabilities. Description Logics (DLs) can express, e.g.:
- Taxonomy of classes of objects,
- UML class diagrams,
- ER models, etc.
- DLs are widely used nowadays:
- underly OWL 2, the Semantic Web standard,
- serve as conceptual layer in Ontology Based Data Access,
- for formalizing bio-medical domain, etc.

Lightweight Description Logics

The majority of studied DLs is intractable:

- Satisfiability of the basic DL $\mathcal{A L C}$ is ExpTime-complete.
- Satisfiability of $\mathcal{S R O I Q}$, the basis of OWL 2 , is 2NExpTime-complete.

Lightweight Description Logics

The majority of studied DLs is intractable:

- Satisfiability of the basic DL $\mathcal{A L C}$ is ExpTime-complete.
- Satisfiability of $\mathcal{S R O I Q}$, the basis of OWL 2, is 2NExpTime-complete.

Two families of DLs that provide tractable reasoning have been developed, DL-Lite family by Calvanese et al. [5], and $\mathcal{E L}$ family by Baader et al. [2].

- A common feature: no disjunction and no universal restrictions

Professor \sqcup Student $\quad \forall$ hasChild.Male

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of $D L-$ Lite $_{A}$
- Reasoning in DL-Lite A
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

DL-Lite and DL-Lite A

- DL-Lite is a family of tractable logics [5] specifically tailored to efficiently deal with large amounts of data.
- Reasoning in DL-Lite are FOL-rewritable, i.e., we can reduce them to the problem of query evaluation in relational databases. $\Rightarrow \mathrm{AC}^{0}$ in data complexity.

DL-Lite and DL-Lite A

- DL-Lite is a family of tractable logics [5] specifically tailored to efficiently deal with large amounts of data.
- Reasoning in DL-Lite are FOL-rewritable, i.e., we can reduce them to the problem of query evaluation in relational databases. $\Rightarrow \mathrm{AC}^{0}$ in data complexity.
- D L- $^{- \text {ite }_{\mathcal{A}}}$ is the most expressive member of this family.

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of $D L-$ Lite $_{A}$
- Reasoning in DL-Lite A
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

DL-Lite ${ }_{\mathcal{A}}$ Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.

DL-Lite ${ }_{\mathcal{A}}$ Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept and role constructs:

B	$::=A$	$\exists R$	basic concept
C	$::=B$	$\neg B$	complex concept
R	$::=P$	P^{-}	basic role

DL- Lite $_{\mathcal{A}}$ Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept and role constructs:

$$
\begin{array}{l:l|ll}
B & ::=A & \exists R & \text { basic concept } \\
C & ::=B & \neg B & \text { complex concept } \\
R::=P & P^{-} & \text {basic role }
\end{array}
$$

- TBox and ABox assertions:
$B_{1} \sqsubseteq B_{2} \quad$ concept inclusion
$B_{1} \sqsubseteq \neg B_{2} \quad$ disjointness of concepts
$R_{1} \sqsubseteq R_{2} \quad$ role inclusion
$\operatorname{Dis}\left(R_{1}, R_{2}\right) \quad$ disjointness of roles
Funct (R) role functionality

DL- Lite $_{\mathcal{A}}$ Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept and role constructs:

$$
\begin{array}{l:l|ll}
B::=A & \exists R & \text { basic concept } \\
C & ::=B & \neg B & \text { complex concept } \\
R::=P & P^{-} & \text {basic role }
\end{array}
$$

- TBox and ABox assertions:
$B_{1} \sqsubseteq B_{2} \quad$ concept inclusion
$B_{1} \sqsubseteq \neg B_{2} \quad$ disjointness of concepts
$R_{1} \sqsubseteq R_{2} \quad$ role inclusion
$\operatorname{Dis}\left(R_{1}, R_{2}\right) \quad$ disjointness of roles
A(a) membership

Funct (R) role functionality

- A $D L$-Lite $\mathcal{A}_{\mathcal{A}}$ Knowledge Base \mathcal{K} is a pair $\langle\mathcal{T}, \mathcal{A}\rangle$ where
- \mathcal{T} is a finite set of TBox axioms and
- \mathcal{A} is a finite set of membership assertions.

DL- Lite $_{\mathcal{A}}$ Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept and role constructs:

$$
\begin{array}{l:l|ll}
B:=A & \exists R & \text { basic concept } \\
C & ::=B & \neg B & \text { complex concept } \\
R::=P & P^{-} & \text {basic role }
\end{array}
$$

- TBox and ABox assertions:

$$
B_{1} \sqsubseteq B_{2} \quad \text { concept inclusion }
$$

$B_{1} \sqsubseteq \neg B_{2} \quad$ disjointness of concepts
$R_{1} \sqsubseteq R_{2} \quad$ role inclusion
$\operatorname{Dis}\left(R_{1}, R_{2}\right) \quad$ disjointness of roles $\quad P(a, b)$ assertions
Funct (R) role functionality

- A DL-Lite $\mathcal{A}_{\mathcal{A}}$ Knowledge Base \mathcal{K} is a pair $\langle\mathcal{T}, \mathcal{A}\rangle$ where
- \mathcal{T} is a finite set of TBox axioms and
- \mathcal{A} is a finite set of membership assertions.

Note: for simplicity attributes, value-domain expressions and identification constraints are not presented.

DL-Lite ${ }_{\mathcal{A}}$ Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

DL- Lite $_{\mathcal{A}}$ Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

I.e., it is not allowed to have things like:

$$
R^{\prime} \sqsubseteq R
$$

Funct(R)

DL-Lite $\mathcal{A}_{\mathcal{A}}$ Syntax

Syntactic restriction to ensure tractability:

Functional roles cannot be specialized.

I.e., it is not allowed to have things like:

$$
\begin{gathered}
R^{\prime} \sqsubseteq R \\
\text { Funct }(R)
\end{gathered}
$$

Otherwise, the resulting logic is ExpTime-hard in the size of ontology[1].

D - $_{\text {- ite }}^{\mathcal{A}}$ Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.

D - $_{\text {- } \text { ite }_{\mathcal{A}}}$ Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept and role constructs

$$
\begin{aligned}
(\neg B)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash B^{\mathcal{I}} \\
(\exists R)^{\mathcal{I}} & =\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}},(x, y) \in R^{\mathcal{I}}\right\} \\
\left(P^{-}\right)^{\mathcal{I}} & =\left\{(y, x) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid(x, y) \in P^{\mathcal{I}}\right\}
\end{aligned}
$$

DL-Lite ${ }_{\mathcal{A}}$ Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept and role constructs

$$
\begin{aligned}
(\neg B)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash B^{\mathcal{I}} \\
(\exists R)^{\mathcal{I}} & =\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}},(x, y) \in R^{\mathcal{I}}\right\} \\
\left(P^{-}\right)^{\mathcal{I}} & =\left\{(y, x) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid(x, y) \in P^{\mathcal{I}}\right\}
\end{aligned}
$$

- TBox and ABox assertions

$$
\begin{array}{lllll}
\mathcal{I} \equiv B \sqsubseteq C & \text { iff } & B^{\mathcal{I}} \subseteq C^{\mathcal{I}} & & \\
\mathcal{I} \equiv R_{1} \sqsubseteq R_{2} & \text { iff } & R_{1}{ }^{\mathcal{I}} \subseteq R_{2}^{\mathcal{I}} & & \\
\mathcal{I} \models \operatorname{Dis}\left(R_{1}, R_{2}\right) & \text { iff } & R_{1}^{\mathcal{I}} \cap R_{2}^{\mathcal{I}}=\emptyset & \mathcal{I} \mid=A(a) & \text { iff } \quad a^{\mathcal{I}} \in A^{\mathcal{I}} \\
\mathcal{I} \equiv \operatorname{Funct}(R) & \text { iff } & \left(x, y_{1}\right) \in R^{\mathcal{I}}, & \mathcal{I} \equiv P(a, b) \quad \text { iff } \quad\left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in P^{\mathcal{I}} \\
& & \left(x, y_{2}\right) \in R^{\mathcal{I}} & & \\
& \Rightarrow y_{1}=y_{2} & &
\end{array}
$$

D - $_{\text {- } \text { ite }_{\mathcal{A}}}$ Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}}, \mathbb{I}^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept and role constructs

$$
\begin{aligned}
(\neg B)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash B^{\mathcal{I}} \\
(\exists R)^{\mathcal{I}} & =\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}},(x, y) \in R^{\mathcal{I}}\right\} \\
\left(P^{-}\right)^{\mathcal{I}} & =\left\{(y, x) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid(x, y) \in P^{\mathcal{I}}\right\}
\end{aligned}
$$

- TBox and ABox assertions

$$
\begin{aligned}
& \mathcal{I} \models B \sqsubseteq C \quad \text { iff } \quad B^{\mathcal{I}} \subseteq C^{\mathcal{I}} \\
& \mathcal{I} \models R_{1} \sqsubseteq R_{2} \quad \text { iff } \quad R_{1}{ }^{\mathcal{I}} \subseteq R_{2}{ }^{\mathcal{I}} \\
& \mathcal{I} \models \operatorname{Dis}\left(R_{1}, R_{2}\right) \quad \text { iff } \quad R_{1}{ }^{\mathcal{I}} \cap R_{2}{ }^{\mathcal{I}}=\emptyset \quad \mathcal{I} \models A(a) \quad \text { iff } \quad a^{\mathcal{I}} \in A^{\mathcal{I}} \\
& \mathcal{I} \models \operatorname{Funct}(R) \quad \text { iff }\left(x, y_{1}\right) \in R^{\mathcal{I}}, \quad \mathcal{I} \equiv P(a, b) \quad \text { iff }\left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in P^{\mathcal{I}} \\
& \left(x, y_{2}\right) \in R^{\mathcal{I}} \\
& \Rightarrow y_{1}=y_{2}
\end{aligned}
$$

- \mathcal{I} is a model of $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ if it satisfies all axioms of \mathcal{T} and \mathcal{A}.

DL-Lite \mathcal{A}^{-}Example

Manager	\sqsubseteq	Employee
AreaManager	\sqsubseteq	Manager
TopManager	\sqsubseteq	Manager
AreaManager	\sqsubseteq	\neg TopManager
\exists worksFor	\sqsubseteq	Employee
\exists worksFor ${ }^{-}$	\sqsubseteq	Project
Employee	\sqsubseteq	\exists worksFor
Project	\sqsubseteq	\exists worksFor ${ }^{-}$
Funct(manages)		
Funct(manages ${ }^{-}$)		
manages	\sqsubseteq	worksFor

Note: $\operatorname{DL-Lite} \mathcal{A}_{\mathcal{A}}$ cannot capture completeness of a hierarchy. This would require disjunction (i.e., OR).

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of DL-LiteA
- Reasoning in DL-Lite A
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

Reasoning Problems

- The Knowledge Base Satisfiability problem is to check, given a D L-Lite $\mathcal{A}_{\mathcal{A}} \mathrm{KB} \mathcal{K}$, whether \mathcal{K} admits at least one model.

Reasoning Problems

- The Knowledge Base Satisfiability problem is to check, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$, whether \mathcal{K} admits at least one model.
- The Query Answering problem is to compute, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$ and a query q (either a CQ or a UCQ) over \mathcal{K}, the set $\operatorname{ans}(q, \mathcal{K})$ of certain answers.

Reasoning Problems

- The Knowledge Base Satisfiability problem is to check, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$, whether \mathcal{K} admits at least one model.
- The Concept Satisfiability problem is to decide, given a TBox \mathcal{T} and a concept C, whether there exist a model \mathcal{I} of \mathcal{T} such $C^{\mathcal{I}} \neq \emptyset$.
- The Concept Subsumption problem is to decide, given a $\operatorname{TBox} \mathcal{T}$ and concepts C_{1} and C_{2}, whether for every model \mathcal{I} of \mathcal{T} it holds that $C_{1}{ }^{\mathcal{I}} \subseteq C_{2}{ }^{\mathcal{I}}\left(\mathcal{T} \models C_{1} \sqsubseteq C_{2}\right)$.
- The Role Subsumption problem is to decide, given a TBox \mathcal{T} and roles R_{1} and R_{2}, whether for every model \mathcal{I} of \mathcal{T} it holds that $R_{1}{ }^{\mathcal{I}} \subseteq R_{2}{ }^{\mathcal{I}}\left(\mathcal{T} \models R_{1} \sqsubseteq R_{2}\right)$.
- The Query Answering problem is to compute, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$ and a query q (either a CQ or a UCQ) over \mathcal{K}, the set $\operatorname{ans}(q, \mathcal{K})$ of certain answers.
- The Concept Instance Checking problem is to decide, given an object name a, a concept B, and a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, whether $\mathcal{K} \vDash C(a)$.
- The Role Instance Checking problem is to decide, given a pair (a, b), a role R, and a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, whether $\mathcal{K} \models R(a, b)$.

First Order Logic Rewritability

ABox \mathcal{A} can be stored as a relational database in a standard RDBMS as follows:

- For each atomic concept A of the ontology:
- define a unary relational table tab_{A}
- populate tab_{A} with each $\langle c\rangle$ such that $A(c) \in \mathcal{A}$
- For each atomic role P of the ontology,
- define a binary relational table tab_{P}
- populate tab_{P} with each $\left\langle c_{1}, c_{2}\right\rangle$ such that $P\left(c_{1}, c_{2}\right) \in \mathcal{A}$

We denote with $D B(\mathcal{A})$ the database obtained as above.

First Order Logic Rewritability

ABox \mathcal{A} can be stored as a relational database in a standard RDBMS as follows:

- For each atomic concept A of the ontology:
- define a unary relational table tab_{A}
- populate tab_{A} with each $\langle c\rangle$ such that $A(c) \in \mathcal{A}$
- For each atomic role P of the ontology,
- define a binary relational table tab_{P}
- populate tab_{P} with each $\left\langle c_{1}, c_{2}\right\rangle$ such that $P\left(c_{1}, c_{2}\right) \in \mathcal{A}$

We denote with $D B(\mathcal{A})$ the database obtained as above.

Definition

KB satisfiability (QA) in $D L-$ Lite $_{\mathcal{A}}$ is FOL-rewritable if, for every \mathcal{T} (and every $U C Q q$) there exists a FO query q^{\prime}, such that for every nonempty \mathcal{A} (and every tuple of constants \vec{a} from \mathcal{A}),
$\langle\mathcal{T}, \mathcal{A}\rangle$ is satisfiable iff $q^{\prime}()$ evaluates to false in $D B(\mathcal{A})$ $\left(\vec{a} \in \operatorname{ans}(q,\langle\mathcal{T}, \mathcal{A}\rangle)\right.$ iff $\left.\vec{a}^{D B(\mathcal{A})} \in q^{\prime D B(\mathcal{A})}\right)$.

First Order Logic Rewritability

ABox \mathcal{A} can be stored as a relational database in a standard RDBMS as follows:

- For each atomic concept A of the ontology:
- define a unary relational table tab_{A}
- populate tab_{A} with each $\langle c\rangle$ such that $A(c) \in \mathcal{A}$
- For each atomic role P of the ontology,
- define a binary relational table tab_{P}
- populate tab_{P} with each $\left\langle c_{1}, c_{2}\right\rangle$ such that $P\left(c_{1}, c_{2}\right) \in \mathcal{A}$

We denote with $D B(\mathcal{A})$ the database obtained as above.

Definition

KB satisfiability (QA) in $D L-$ Lite $_{\mathcal{A}}$ is FOL-rewritable if, for every \mathcal{T} (and every $U C Q q$) there exists a FO query q^{\prime}, such that for every nonempty \mathcal{A} (and every tuple of constants \vec{a} from \mathcal{A}),
$\langle\mathcal{T}, \mathcal{A}\rangle$ is satisfiable iff $q^{\prime}()$ evaluates to false in $D B(\mathcal{A})$ $\left(\vec{a} \in \operatorname{ans}(q,\langle\mathcal{T}, \mathcal{A}\rangle)\right.$ iff $\left.\vec{a}^{D B(\mathcal{A})} \in q^{\prime D B(\mathcal{A})}\right)$.

We show that KB satisfiability and QA in DL-Lite $\mathcal{A}_{\mathcal{A}}$ are FOL-rewritable.

Knowledge Base Satisfiability

Problem

Given a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, check whether there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$

Knowledge Base Satisfiability

Problem

Given a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, check whether there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$

- Positive Inclusions (PIs) are inclusions of the form

$$
B_{1} \sqsubseteq B_{2}, R_{1} \sqsubseteq R_{2}
$$

- Negative Inclusions (NIs) are inclusions of the form

$$
B_{1} \sqsubseteq \neg B_{2}, \operatorname{Dis}\left(R_{1}, R_{2}\right) \text {, or Funct }(R)
$$

Satisfiability of KBs with only PIs

Positive inclusions cannot introduce contradicting information:

Satisfiability of KBs with only Pls

Positive inclusions cannot introduce contradicting information:

Theorem
Let $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ be a D L-Lite $_{\mathcal{A}} K B$ such that \mathcal{T} consists only of Pls. Then \mathcal{K} is satisfiable.

Satisfiability of KBs with only Pls

Positive inclusions cannot introduce contradicting information:

Theorem
Let $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ be a D L-Lite $_{\mathcal{A}} K B$ such that \mathcal{T} consists only of Pls. Then \mathcal{K} is satisfiable.

We can always build a model by adding missing tuples to satisfy Pls.

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

- \mathcal{T} : Dis(teaches, attends)
\mathcal{A} : teaches $(\mathrm{john}, \mathrm{db})$, attends $(\mathrm{john}, \mathrm{db})$

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

- \mathcal{T} : Dis(teaches, attends)
\mathcal{A} : teaches $(\mathrm{john}, \mathrm{db})$, attends $(\mathrm{john}, \mathrm{db})$
- \mathcal{T} : Funct(teaches ${ }^{-}$)
\mathcal{A} : teaches(john, db$)$, teaches(david, db)

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

- $\mathcal{T}: \operatorname{Dis}($ teaches, attends)
\mathcal{A} : teaches(john, db$)$, attends(john, db$)$
- $\mathcal{T}:$ Funct(teaches ${ }^{-}$)
\mathcal{A} : teaches(john, db), teaches(david, db)
- \mathcal{T} : Student $\sqsubseteq \neg$ Professor, \exists teaches \sqsubseteq Professor
$\mathcal{A}:$ Student(john), teaches(john, db$)$

Source of Unsatisfiability

However, negative inclusions can cause a KB to be unsatisfiable:

- \mathcal{T} : Dis(teaches, attends)
\mathcal{A} : teaches $(\mathrm{john}, \mathrm{db})$, attends $(\mathrm{john}, \mathrm{db})$
- \mathcal{T} : Funct(teaches ${ }^{-}$)
\mathcal{A} : teaches(john, db$)$, teaches(david, db)
- \mathcal{T} : Student $\sqsubseteq \neg$ Professor, \exists teaches \sqsubseteq Professor
\mathcal{A} : Student(john), teaches (john, db)
- Interaction of negative and positive inclusions has to be considered. \Rightarrow calculate the closure of NIs w.r.t. Pls.

Knowledge Base Satisfiability

Given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, we check its satisfiability as follows:

Knowledge Base Satisfiability

Given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, we check its satisfiability as follows:

Algorithm for checking KB satisfiability

(1) Calculate the closure of NIs.
(2) Translate the closure into a UCQ qunsat asking for violation of some NI.
(3) Evaluate encoding of $q_{\text {unsat }}$ into SQL over $\operatorname{DB}(\mathcal{A})$.

- if $\operatorname{Eval}\left(S Q L\left(q_{\text {unsat }}\right), D B(\mathcal{A})\right)=\emptyset$, then the KB is satisfiable;
- otherwise the KB is unsatisfiable.

Knowledge Base Satisfiability

Given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, we check its satisfiability as follows:

Algorithm for checking KB satisfiability

(1) Calculate the closure of NIs.
(2) Translate the closure into a UCQ qunsat asking for violation of some NI.
(3) Evaluate encoding of $q_{\text {unsat }}$ into SQL over $\operatorname{DB}(\mathcal{A})$.

- if $\operatorname{Eval}\left(S Q L\left(q_{\text {unsat }}\right), D B(\mathcal{A})\right)=\emptyset$, then the KB is satisfiable;
- otherwise the KB is unsatisfiable.

Correctness of this procedure shows FOL-rewritability of KB satisfiability in DL-Lite.

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \text { ヨteaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$
add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches

Closure of Negative Inclusions

Closure of $\mathrm{NIs} \operatorname{cln}(\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg$ teaches
$\left.\begin{array}{lll}\text { - } \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

Closure of Negative Inclusions

Closure of $\mathrm{NIs} \operatorname{cln}(\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg$ Jteaches
$\left.\begin{array}{lll}\quad \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$
add to $\operatorname{cln}(\mathcal{T})$: Professor $\sqsubseteq \neg \exists$ registeredTo

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches
$\left.\begin{array}{lll}\quad \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}) \text { : Professor } \sqsubseteq \neg \exists \text { registeredTo }
$$

$\left.\begin{array}{ll}\text { - } \ln (\mathcal{T}): & \text { Dis(teaches, attends) } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \text { ヨteaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches
$\left.\begin{array}{lll}\text { - } \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}) \text { : Professor } \sqsubseteq \neg \exists \text { registeredTo }
$$

$\left.\begin{array}{ll}\quad \operatorname{cln}(\mathcal{T}): & \text { Dis(teaches, attends) } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } \operatorname{cln}(\mathcal{T}): \text { Dis(teaches, registeredTo) }
$$

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches
$\left.\begin{array}{lll}\text { - } \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}) \text { : Professor } \sqsubseteq \neg \exists \text { registeredTo }
$$

$\left.\begin{array}{ll}\quad \operatorname{cln}(\mathcal{T}): & \text { Dis(teaches, attends) } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}): \text { Dis(teaches, registeredTo) }
$$

- ..

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{lll} & \operatorname{cln}(\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor (or Professor } \sqsubseteq \neg \text { Student) } \\ \mathcal{T}: & \text { ヨteaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches
$\left.\begin{array}{lll}\quad c \ln (\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends (or } \exists \text { attends } \sqsubseteq \neg \text { Professor) } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Professor $\sqsubseteq \neg \exists$ registeredTo
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \begin{array}{l}\text { Dis(teaches, attends) (or Dis(attends, teaches)) } \\ \mathcal{T}:\end{array} \\ \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$ add to $\ln (\mathcal{T})$: Dis(teaches, registeredTo)
- ..

Closure of Negative Inclusions

Closure of $\mathrm{N} / \mathrm{s} \ln (\mathcal{T})$ w.r.t. Pls

- every NI is in $\operatorname{cln}(\mathcal{T})$.
$\left.\begin{array}{ll}\quad c \ln (\mathcal{T}): & \text { Student } \sqsubseteq \neg \text { Professor } \\ \mathcal{T}: & \exists \text { teaches } \sqsubseteq \text { Professor }\end{array}\right\} \Rightarrow$ add to $\operatorname{cln}(\mathcal{T})$: Student $\sqsubseteq \neg \exists$ teaches
$\left.\begin{array}{lll}\text { - } \operatorname{cln}(\mathcal{T}): & \text { Professor } \sqsubseteq \neg \exists \text { attends } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}) \text { : Professor } \sqsubseteq \neg \exists \text { registeredTo }
$$

$\left.\begin{array}{ll}\text { - } \quad \ln (\mathcal{T}): & \text { Dis(teaches, attends) } \\ \mathcal{T}: & \text { registeredTo } \sqsubseteq \text { attends }\end{array}\right\} \Rightarrow$

$$
\text { add to } c \ln (\mathcal{T}): \text { Dis(teaches, registeredTo) }
$$

- ...

Note: functionality does not interact with Pls and other NIs.
Note: the closure is finite since there are polynomially many different NIs.

Translation to FOL Queries

Having calculated $\operatorname{cn}(\mathcal{T})$ we translate it to a $U C Q_{\neq} q_{\text {unsat }}$ as follows.

- Each NI α correspond to a CQ, $\delta(\alpha)$:
- Student $\sqsubseteq \neg \exists$ teaches \Rightarrow
$\exists x$.Student $(x) \wedge \exists y$.teaches (x, y).

Translation to FOL Queries

Having calculated $c \ln (\mathcal{T})$ we translate it to a $\mathrm{UCQ}_{\neq} q_{\text {unsat }}$ as follows.

- Each NI α correspond to a CQ, $\delta(\alpha)$:
- Student $\sqsubseteq \neg \exists$ teaches \Rightarrow
$\exists x$.Student $(x) \wedge \exists y$.teaches (x, y).
- Funct(teaches ${ }^{-}$) \Rightarrow
$\exists x_{1}, x_{2}, y$.teaches $\left(x_{1}, y\right) \wedge$ teaches $\left(x_{2}, y\right) \wedge x_{1} \neq x_{2}$.

Translation to FOL Queries

Having calculated $c \ln (\mathcal{T})$ we translate it to a $\mathrm{UCQ}_{\neq} q_{\text {unsat }}$ as follows.

- Each NI α correspond to a CQ, $\delta(\alpha)$:
- Student $\sqsubseteq \neg \exists$ teaches \Rightarrow

$$
\exists x . \overline{\text { Student }}(x) \wedge \exists y . \text { teaches }(x, y)
$$

- Funct(teaches ${ }^{-}$) \Rightarrow

$$
\exists x_{1}, x_{2}, y . \operatorname{teaches}\left(x_{1}, y\right) \wedge \text { teaches }\left(x_{2}, y\right) \wedge x_{1} \neq x_{2}
$$

- $\operatorname{Dis(attends,~teaches)~} \Rightarrow$

$$
\exists x, y \text {.attends }(x, y) \wedge \text { teaches }(x, y)
$$

- Then

$$
q_{\text {unsat }}=\bigvee_{\alpha \in \operatorname{cln}(\mathcal{T})} \delta(\alpha)
$$

Query evaluation

Let q be a UCQ.

- We denote by $\operatorname{SQL}(q)$ the encoding of q into an SQL query over $D B(\mathcal{A})$.
- We indicate with $\operatorname{Eval}(\operatorname{SQL}(q), D B(\mathcal{A}))$ the evaluation of $\operatorname{SQL}(q)$ over $D B(\mathcal{A})$.

FOL-rewritability of satisfiability in $\operatorname{DL-Lite} \mathcal{A}_{\mathcal{A}}$

Theorem

Let $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ be a $D L$-Lite $\mathcal{A}_{\mathcal{A}} K B$. Then, \mathcal{K} is unsatisfiable iff Eval(SQL($\left.q_{\text {unsat }}, D B(\mathcal{A})\right)$ returns true.

In other words, satisfiability of a $D L-$ Lite $_{\mathcal{A}}$ ontology can be reduced to FOL-query evaluation.

Query Answering

Problem

Query answering over a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ is a form of logical implication: find all tuples \vec{c} of constants of \mathcal{A} s.t. $\mathcal{K} \models q(\vec{c})$

We are interested in so called certain answers, i.e., the tuples that are answers to q in all models of $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$:

$$
\operatorname{cert}(q, \mathcal{K})=\left\{\vec{c} \mid \vec{c} \in q^{\mathcal{I}}, \text { for every model } \mathcal{I} \text { of } \mathcal{K}\right\}
$$

Note: We have assumed that the answer $q^{\mathcal{I}}$ to a query q over an interpretation \mathcal{I} is constituted by a set of tuples of constants of \mathcal{A}, rather than objects in $\Delta^{\mathcal{I}}$.

Query Answering over Satisfiable KBs

Given a $\mathrm{CQ} q$ and a satisfiable $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, we compute $\operatorname{cert}(q, \mathcal{K})$ as follows:

Algorithm for answering CQs over KBs

(1) Using \mathcal{T}, rewrite q into a UCQ $r_{q, \mathcal{T}}$ (the perfect rewriting of q w.r.t. \mathcal{T}).
(2) Encode $r_{q, \mathcal{T}}$ into SQL and evaluate it over \mathcal{A} managed in secondary storage via a RDBMS, to return $\operatorname{cert}(q, \mathcal{K})$.

Query Answering over Satisfiable KBs

Given a $\mathrm{CQ} q$ and a satisfiable $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, we compute $\operatorname{cert}(q, \mathcal{K})$ as follows:

Algorithm for answering CQs over KBs

(1) Using \mathcal{T}, rewrite q into a UCQ $r_{q, \mathcal{T}}$ (the perfect rewriting of q w.r.t. \mathcal{T}).
(2) Encode $r_{q, \mathcal{T}}$ into SQL and evaluate it over \mathcal{A} managed in secondary storage via a RDBMS, to return $\operatorname{cert}(q, \mathcal{K})$.

Correctness of this procedure shows FOL-rewritability of query answering in DL-Lite.
\rightsquigarrow Query answering over DL-Lite ontologies can be done using RDBMS technology.

Query Rewriting

Consider the query $\quad \mathrm{q}(x) \leftarrow \operatorname{Professor}(x)$
Intuition: Use the PIs as basic rewriting rules:
AssistantProf \sqsubseteq Professor as a logic rule: $\operatorname{Professor}(z) \leftarrow$ AssistantProf(z)

Query Rewriting

Consider the query

$$
\mathrm{q}(x) \leftarrow \operatorname{Professor}(x)
$$

Intuition: Use the PIs as basic rewriting rules:

$$
\begin{array}{cl}
& \text { AssistantProf } \sqsubseteq \text { Professor } \\
\text { as a logic rule: } & \text { Professor }(z) \\
\leftarrow \text { AssistantProf }(z)
\end{array}
$$

Basic rewriting step:

when an atom in the query unifies with the head of the rule, substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

Query Rewriting

Consider the query $\quad \mathrm{q}(x) \leftarrow \operatorname{Professor}(x)$
Intuition: Use the PIs as basic rewriting rules:

$$
\begin{array}{ll}
& \text { AssistantProf } \sqsubseteq \text { Professor } \\
\text { as a logic rule: } & \text { Professor }(z) \leftarrow \text { AssistantProf }(z)
\end{array}
$$

Basic rewriting step:

when an atom in the query unifies with the head of the rule, substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.
In the example, the PI AssistantProf \sqsubseteq Professor applies to the atom Professor (x). Towards the computation of the perfect rewriting, we add to the input query above, the query

$$
\mathrm{q}(x) \leftarrow \text { AssistantProf }(x)
$$

Query Rewriting (cont'd)

Consider the query

$$
\mathrm{q}(x) \leftarrow \text { teaches }(x, y) \text {, Course }(y)
$$

and the PI

$$
\begin{gathered}
\exists \text { teaches }{ }^{-} \sqsubseteq \text { Course } \\
\text { as a logic rule: } \quad \text { Course }\left(z_{2}\right) \stackrel{\text { teaches }\left(z_{1}, z_{2}\right)}{\leftarrow}
\end{gathered}
$$

The PI applies to the atom Course(y), and we add to the perfect rewriting the query

$$
\mathrm{q}(x) \leftarrow \text { teaches }(x, y), \text { teaches }\left(z_{1}, y\right)
$$

Query Rewriting (cont'd)

Consider the query

$$
\mathrm{q}(x) \leftarrow \text { teaches }(x, y) \text {, Course }(y)
$$

and the PI

$$
\begin{gathered}
\exists \text { teaches }{ }^{-} \sqsubseteq \text { Course } \\
\text { as a logic rule: } \quad \text { Course }\left(z_{2}\right) \stackrel{\text { teaches }\left(z_{1}, z_{2}\right)}{\leftarrow}
\end{gathered}
$$

The PI applies to the atom Course(y), and we add to the perfect rewriting the query

$$
\mathrm{q}(x) \leftarrow \text { teaches }(x, y), \text { teaches }\left(z_{1}, y\right)
$$

Consider now the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, y) and the PI

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$
The PI applies to the atom teaches (x, y), and we add to the perfect rewriting the query

$$
\mathrm{q}(x) \leftarrow \operatorname{Professor}(x)
$$

Query Rewriting - Constants

Conversely, for the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, databases) and the same Pl as before \quad Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$
teaches(x, databases) does not unify with teaches $(z, f(z))$, since the skolem term $f(z)$ in the head of the rule does not unify with the constant databases.

Query Rewriting - Constants

Conversely, for the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, databases) and the same Pl as before

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$
teaches(x, databases) does not unify with teaches $(z, f(z))$, since the skolem term $f(z)$ in the head of the rule does not unify with the constant databases.

In this case, the PI does not apply to the atom teaches(x, databases).

Query Rewriting - Constants

Conversely, for the query $\quad \mathrm{q}(x) \leftarrow$ teaches(x, databases) and the same Pl as before

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$
teaches(x, databases) does not unify with teaches $(z, f(z))$, since the skolem term $f(z)$ in the head of the rule does not unify with the constant databases.

In this case, the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished, since unifying $f(z)$ with y would correspond to returning a skolem term as answer to the query:

$$
\mathrm{q}(x, y) \leftarrow \text { teaches }(x, y)
$$

Query Rewriting - Join variables

An analogous behavior to the one with constants and with distinguished variables holds when the atom contains join variables that would have to be unified with skolem terms.

Consider the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, y), Course (y) and the PI

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$

The PI above does not apply to the atom teaches (x, y).

Query Rewriting - Reduce step

Consider now the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, y), teaches (z, y) and the PI

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$

This PI does not apply to teaches (x, y) or teaches (z, y), since y is in join, and we would again introduce the skolem term in the rewritten query.

Query Rewriting - Reduce step

Consider now the query $\quad \mathrm{q}(x) \leftarrow$ teaches (x, y), teaches (z, y) and the PI

Professor $\sqsubseteq \exists$ teaches as a logic rule: teaches $(z, f(z)) \leftarrow \operatorname{Professor}(z)$
This PI does not apply to teaches (x, y) or teaches (z, y), since y is in join, and we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches (x, y) and teaches (z, y). This rewriting step is called reduce, and produces the query

$$
\mathrm{q}(x) \leftarrow \operatorname{teaches}(x, y)
$$

Now, we can apply the PI above, and add to the rewriting the query

$$
\mathrm{q}(x) \leftarrow \operatorname{Professor}(x)
$$

Query Rewriting Algorithm

Algorithm PerfectRef(Q, \mathcal{T}_{P})
Input: union of conjunctive queries Q, set of D L-Lite $_{\mathcal{A}}$ Pls \mathcal{T}_{P}
Output: union of conjunctive queries $P R$ $P R:=Q$;
repeat
$P R^{\prime}:=P R$;
for each $q \in P R^{\prime}$ do
for each g in q do
for each $\mathrm{PI} /$ in \mathcal{T}_{P} do
if I is applicable to g then $P R:=P R \cup\{\operatorname{Apply} P I(q, g, I)\}$;
for each g_{1}, g_{2} in q do
if g_{1} and g_{2} unify then $P R:=P R \cup\left\{\tau\left(\operatorname{Reduce}\left(q, g_{1}, g_{2}\right)\right)\right\} ;$
until $P R^{\prime}=P R$;
return $P R$

Observations:

- Termination follows from having only finitely many different rewritings.
- Nls or functionalities do not play any role in the rewriting of the query.

Query answering in DL-Lite - Example

TBox: Professor $\sqsubseteq \exists$ teaches \exists teaches ${ }^{-} \sqsubseteq$ Course

Query: $\mathrm{q}(x) \leftarrow$ teaches (x, y), Course (y)
Perfect Rewriting: $\mathrm{q}(x) \leftarrow$ teaches (x, y), Course (y) $\mathrm{q}(x) \leftarrow$ teaches (x, y), teaches $(-, y)$ $\mathrm{q}(x) \leftarrow$ teaches $\left(x,{ }_{-}\right)$ $\mathrm{q}(x) \leftarrow \operatorname{Professor}(x)$

ABox: teaches(john, databases) Professor(mary)

It is easy to see that evaluating the perfect rewriting over the ABox viewed as a database produces as answer \{john, mary\}.

Query answering in DL-Lite

Theorem

Let \mathcal{T} be a DL-Lite TBox, \mathcal{T}_{P} the set of PIs in \mathcal{T}, q a $C Q$ over \mathcal{T}, and let $r_{q}, \mathcal{T}=\operatorname{PerfectRef}\left(q, \mathcal{T}_{P}\right)$. Then, for each $A B$ ox \mathcal{A} such that $\langle\mathcal{T}, \mathcal{A}\rangle$ is satisfiable, we have that

$$
\operatorname{cert}(q,\langle\mathcal{T}, \mathcal{A}\rangle)=\operatorname{Eval}\left(S Q L\left(r_{q}, \mathcal{T}\right), D B(\mathcal{A})\right) .
$$

In other words, query answering over a satisfiable DL-Lite ontology is FOL-rewritable.

Query answering in DL-Lite

Theorem

Let \mathcal{T} be a DL-Lite TBox, \mathcal{T}_{P} the set of PIs in \mathcal{T}, q a $C Q$ over \mathcal{T}, and let $r_{q}, \mathcal{T}=\operatorname{PerfectRef}\left(q, \mathcal{T}_{P}\right)$. Then, for each $A B$ ox \mathcal{A} such that $\langle\mathcal{T}, \mathcal{A}\rangle$ is satisfiable, we have that

$$
\operatorname{cert}(q,\langle\mathcal{T}, \mathcal{A}\rangle)=\operatorname{Eval}\left(S Q L\left(r_{q}, \mathcal{T}\right), D B(\mathcal{A})\right) .
$$

In other words, query answering over a satisfiable DL-Lite ontology is FOL-rewritable.

Notice that we did not mention NIs or functionality assertions of \mathcal{T} in the result above. Indeed, when the ontology is satisfiable, we can ignore N/s and functionalities and answer queries as if they were not specified in \mathcal{T}.

Complexity of Reasoning in DL-Lite

Theorem

Checking satisfiability of DL-Lite $\mathcal{A}_{\mathcal{A}} K B s$ is
(1) PTime in the size of the $K B$ (combined complexity).
(2) AC^{0} in the size of the ABox (data complexity).

Theorem

Query answering over DL-Lite $\mathcal{A}_{\mathcal{A}} K B s$ is
(1) NP-complete in the size of query and KB (combined comp.).
(2) PTime in the size of the $K B$.
(0) AC^{0} in the size of the $A B o x$ (data complexity).

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of DL-LiteA
- Reasoning in DL- Lite A
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E} \mathcal{L}$

$\mathcal{E} \mathcal{L}$ and $\mathcal{E} \mathcal{L}^{++}$

$\mathcal{E L}$ is another family of tractable logics $[2,3]$.

- it is expressive enough to model bio-medical ontologies like SNOMED;
- allows for horn inclusions and qualified existential restrictions:

Heartdisease $\sqcap \exists$ has-loc.HeartValve \sqsubseteq CriticalDisease

Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of DL-LiteA
- Reasoning in DL- LiteA
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E L}$

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept constructs:

$$
C, D::=\top|\perp| A|\{a\}| C \sqcap D \mid \exists P . C
$$

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept constructs:

$$
C, D::=\top|\perp| A|\{a\}| C \sqcap D \mid \exists P . C
$$

- TBox and ABox assertions:

$$
\begin{array}{clcl}
C \sqsubseteq D & \text { concept inclusion } & A(a) & \text { membership } \\
P_{1} \circ \ldots \circ P_{n} \sqsubseteq P & \text { complex role inclusion } & P(a, b) & \text { assertions }
\end{array}
$$

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept constructs:

$$
C, D::=\top|\perp| A|\{a\}| C \sqcap D \mid \exists P . C
$$

- TBox and ABox assertions:

$$
\begin{array}{clcl}
C \sqsubseteq D & \text { concept inclusion } & A(a) & \text { membership } \\
P_{1} \circ \cdots \circ P_{n} \sqsubseteq P & \text { complex role inclusion } & P(a, b) & \text { assertions }
\end{array}
$$

- An $\mathcal{E} \mathcal{L}^{++}$Knowledge Base \mathcal{K} is a pair $\langle\mathcal{T}, \mathcal{A}\rangle$ where
- \mathcal{T} is a finite set of TBox axioms and
- \mathcal{A} is a finite set of membership assertions.

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept constructs:

$$
C, D::=\top|\perp| A|\{a\}| C \sqcap D \mid \exists P . C
$$

- TBox and ABox assertions:

$$
\begin{array}{clcl}
C \sqsubseteq D & \text { concept inclusion } & A(a) & \text { membership } \\
P_{1} \circ \cdots \circ P_{n} \sqsubseteq P & \text { complex role inclusion } & P(a, b) & \text { assertions }
\end{array}
$$

- An $\mathcal{E} \mathcal{L}^{++}$Knowledge Base \mathcal{K} is a pair $\langle\mathcal{T}, \mathcal{A}\rangle$ where
- \mathcal{T} is a finite set of TBox axioms and
- \mathcal{A} is a finite set of membership assertions.

Note: the concrete domain constructor, which is a part of $\mathcal{E} \mathcal{L}^{++}$, is not presented here.
Note: complex role inclusions allow expressing transitivity of roles ($P \circ P \sqsubseteq P$) and role hierarchy $\left(P_{1} \sqsubseteq P_{2}\right)$.

$\mathcal{E} \mathcal{L}^{++}$Syntax

- Let N_{A}, N_{P}, N_{a} be sets of concept, role and individual names, respectively. Let $A \in N_{A}, P \in N_{P}, a \in N_{a}$.
- Concept constructs:

$$
C, D::=\top|\perp| A|\{a\}| C \sqcap D \mid \exists P . C
$$

- TBox and ABox assertions:

$$
\begin{array}{clcl}
C \sqsubseteq D & \text { concept inclusion } & A(a) & \text { membership } \\
P_{1} \circ \cdots \circ P_{n} \sqsubseteq P & \text { complex role inclusion } & P(a, b) & \text { assertions }
\end{array}
$$

- An $\mathcal{E} \mathcal{L}^{++}$Knowledge Base \mathcal{K} is a pair $\langle\mathcal{T}, \mathcal{A}\rangle$ where
- \mathcal{T} is a finite set of TBox axioms and
- \mathcal{A} is a finite set of membership assertions.
$\mathcal{E} \mathcal{L}$ concept constructs and assertions.

$\mathcal{E} \mathcal{L}^{++}$Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.

$\mathcal{E} \mathcal{L}^{++}$Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept constructs

$$
\begin{aligned}
(T)^{\mathcal{I}} & =\Delta^{\mathcal{I}} & (C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(\perp)^{\mathcal{I}} & =\emptyset & (\exists P . C)^{\mathcal{I}} & =\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}},(x, y) \in P^{\mathcal{I}}\right\} \\
(\{a\})^{\mathcal{I}} & =\left\{a^{\mathcal{I}}\right\} & & (\exists)
\end{aligned}
$$

$\mathcal{E} \mathcal{L}^{++}$Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept constructs

$$
\begin{aligned}
(T)^{\mathcal{I}} & =\Delta^{\mathcal{I}} & (C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(\perp)^{\mathcal{I}} & =\emptyset & (\exists P . C)^{\mathcal{I}} & =\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}},(x, y) \in P^{\mathcal{I}}\right\} \\
(\{a\})^{\mathcal{I}} & =\left\{a^{\mathcal{I}}\right\} & & (\exists)
\end{aligned}
$$

- TBox and ABox assertions

$$
\begin{array}{lll}
\mathcal{I} \models C \sqsubseteq D & \text { iff } & C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\
\mathcal{I} \models P_{1} \circ \cdots \circ P_{n} \sqsubseteq P & \text { iff } & P_{1}^{\mathcal{I}_{0}} \circ \ldots \circ P_{n}^{\mathcal{I}} \\
\mathcal{I} \models A(a) & \text { iff } & a^{\mathcal{I}} \in A^{\mathcal{I}} \\
\mathcal{I} \models P(a, b) & \text { iff } & \left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in P^{\mathcal{I}}
\end{array}
$$

$\mathcal{E} \mathcal{L}^{++}$Semantics

- An interpretation \mathcal{I} is a pair $\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$:
- for every concept name $A, A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$;
- for every role name $P, P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$;
- for every individual name $a, a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- Concept constructs

$$
\begin{array}{rlrl}
(T)^{I} & =\Delta^{I} & (C \sqcap D)^{I} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(\perp)^{I} & =\emptyset & (\exists P . C)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}},(x, y) \in P^{\mathcal{I}}\right\} \\
(\{a\})^{I} & =\left\{a^{I}\right\} & &
\end{array}
$$

- TBox and ABox assertions

$$
\begin{array}{lll}
\mathcal{I} \models C \sqsubseteq D & \text { iff } & C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\
\mathcal{I} \models P_{1} \circ \cdots \circ P_{n} \sqsubseteq P & \text { iff } & P_{1} \mathcal{I}^{I} \ldots \circ P_{n}{ }^{\mathcal{I}} \\
\mathcal{I} \models A(a) & \text { iff } & a^{\mathcal{I}} \in A^{\mathcal{I}} \\
\mathcal{I} \models P(a, b) & \text { iff } & \left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in P^{\mathcal{I}}
\end{array}
$$

- \mathcal{I} is a model of $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ if it satisfies all axioms of \mathcal{T} and \mathcal{A}.

$\mathcal{E} \mathcal{L}^{++}:$Example ${ }^{2}$

```
    Endocardium }\sqsubseteq\mathrm{ Tissue }\sqcap\exists\mathrm{ cont-in.HeartWall }\square\exists\mathrm{ cont-in.HeartValve
        HeartWall }\sqsubseteq BodyWall \sqcap \existspart-of.Heart
        HeartValve }\sqsubseteq BodyValve \sqcap\exists\mathrm{ part-of.Heart
        Endocarditis \sqsubseteq Inflammation }\square\mathrm{ Jhas-loc.Endocardium
    Inflammation }\sqsubseteq\mathrm{ Disease }\sqcap\mathrm{ ヨacts-on.Tissue
Heartdisease }
    \existshas-loc.HeartValve }\sqsubseteq CriticalDiseas
        Heartdisease \equiv Disease }\square\mathrm{ Ghas-loc.Heart
    part-ofo part-of }\sqsubseteq part-o
    part-of \sqsubseteq cont-in
    has-loc o cont-in \sqsubseteq has-loc
```


Outline

(1) Description Logics

(2) Description Logic $D L-$ Lite $_{A}$

- Syntax and Semantics of DL-LiteA
- Reasoning in DL-LiteA
- Knowledge Base Satisfiability
- Conjunctive Query Answering
(3) Description Logic $\mathcal{E} \mathcal{L}^{++}$
- Syntax and Semantics of $\mathcal{E} \mathcal{L}^{++}$
- Reasoning in $\mathcal{E} \mathcal{L}$

Reasoning Problems

- The Concept Subsumption problem is to decide, given a $\operatorname{TBox} \mathcal{T}$ and concepts C and D, whether for every model \mathcal{I} of \mathcal{T} it holds that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Reasoning Problems

- The Concept Subsumption problem is to decide, given a TBox \mathcal{T} and concepts C and D, whether for every model \mathcal{I} of \mathcal{T} it holds that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- The Conjunctive Query Entailment problem is to decide, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$ and a boolean query q over \mathcal{K}, whether $\mathcal{K} \vDash q$.

Reasoning Problems

- The Concept Subsumption problem is to decide, given a TBox \mathcal{T} and concepts C and D, whether for every model \mathcal{I} of \mathcal{T} it holds that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- The Concept Satisfiability problem is to decide, given a $\operatorname{TBox} \mathcal{T}$ and a concept C, whether there exist a model \mathcal{I} of \mathcal{T} such $C^{\mathcal{I}} \neq \emptyset$.
- The Knowledge Base satisfiability problem is to check, given a $D L$-Lite $\mathcal{A}_{\mathcal{A}} \mathrm{KB} \mathcal{K}$, whether \mathcal{K} admits at least one model.
- The Conjunctive Query Entailment problem is to decide, given a D L-Lite $_{\mathcal{A}} \mathrm{KB} \mathcal{K}$ and a boolean query q over \mathcal{K}, whether $\mathcal{K} \vDash q$.
- The Instance Checking problem is to decide, given an object name a, a concept B, and a $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, whether $\mathcal{K} \models B(a)$.

Complexity of Reasoning in $\mathcal{E} \mathcal{L}$

Theorem
Subsumption in $\mathcal{E} \mathcal{L}^{++}$can be decided in polynomial time (a polytime tableax for deciding subsumption).

Complexity of Reasoning in $\mathcal{E} \mathcal{L}$

Theorem
Subsumption in $\mathcal{E L}^{++}$can be decided in polynomial time (a polytime tableax for deciding subsumption).

Theorem

Entailment of conjunctive queries in $\mathcal{E} \mathcal{L}^{++}$(already in $\mathcal{E} \mathcal{L}^{+}$) is undecidable. ([7],[6]).

Complexity of Reasoning in $\mathcal{E} \mathcal{L}$

Theorem
Subsumption in $\mathcal{E} \mathcal{L}^{++}$can be decided in polynomial time (a polytime tableax for deciding subsumption).

Theorem

Entailment of conjunctive queries in $\mathcal{E} \mathcal{L}^{++}$(already in $\mathcal{E} \mathcal{L}^{+}$) is undecidable. ([7],[6]).

Theorem

Entailment of unions of conjunctive queris in $\mathcal{E L}$ is:
(1) PTiME-complete with respect to data complexity;
(2) PTime-complete with respect to KB complexity;
(3) NP-complete with respect to combined complexity.

Thank you
 for your attention!

R A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations.
J. of Artificial Intelligence Research, 36:1-69, 2009.
F. Baader, S. Brandt, and C. Lutz.

Pushing the $\mathcal{E} \mathcal{L}$ envelope.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364-369, 2005.
F. Baader, C. Lutz, and B. Suntisrivaraporn.

CEL—a polynomial-time reasoner for life science ontologies.
In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages 287-291. Springer, 2006.
雷 F. Baader, C. Lutz, and B. Suntisrivaraporn.
Efficient reasoning in $\mathcal{E} \mathcal{L}+$.

In Proc. of the 19th Int. Workshop on Description Logic (DL 2006), volume 189 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2006.

圊 D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385-429, 2007.

嗇 A. Krisnadhi and C. Lutz.
Data complexity in the $\mathcal{E} \mathcal{L}$ family of description logics.
In Proc. of the 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007), pages 333-347, 2007.

R R. Rosati.
On conjunctive query answering in $\mathcal{E L}$.

In Proc. of the 20th Int. Workshop on Description Logic (DL 2007), volume 250 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2007.

[^0]: ${ }^{1}$ Part of the slides is borrowed from Diego Calvanese

