

Learning Outcomes

- · At the end of this lecture you should:
 - understand how logic relates to computing problems
 - be able to represent Boolean logic problems as:
 - Truth tables
 - Logic circuits
 - Boolean algebra
 - · be able to produce circuits for the half adder and full adder
 - have a feeling for how electronic circuits can be joined together to create number manipulators (simple computers???)

Computer Systems - Architecture (EEdwards)

Boolean Logic

Named after George Boole

Rules for combining operations

Provides a system of logical operations

Describes their application to binary numbers

0 or 1?

TRUE or FALSE?

YES OR NO?

```
Boolean Logic (4.2)
```

What is Logic?

- Dictionary definitions (dictionary.com reduced!)
 - reason or sound judgement
 - a system of principles of reasoning
 - the science that investigates the principles governing correct or reliable inference
- Branch of philosophy
 - Principles of inference
 - Ancient civilizations (India the Rigveda, China Gongsun Long 325 BC)
 - Greek Aristotle (Syllogistic logic)
 - Modern: John Stuart Mill "The science of reasoning", Frege, Russell, Gödel...

Boolean Logic (4.3)

You use logic all the time in your everyday life Computer Systems - Architecture (EEdwards)

Computer Systems - Architecture (EEdwards)

Boolean Logic (4.4)

"If it is raining or the weather forecast is bad then I take an umbrella"					
Truth table:	Raining	Bad forecast	umbrella		
	False	False	False		
	False	True	True		
	True	False	True		
	True	True	True		

ruth table: Raining No Car Umbrella False False False False True False
FalseFalseFalseFalseTrueFalse
False True False
True False False
True True True

Digital Logic

- Computers operate electronically using Logic Gates
 - One or more inputs
 - One output
 - Input and output are binary digits (0 or 1)
 - . 0 = FALSE
 - ∎ 1 = TRUE
- Electronic circuits are easily connected together to perform more complex functions, from these basic "building blocks" of computers

```
Computer Systems - Architecture (EEdwards)
```

Boolean Logic (4.9)

Boolean algebra - rules	
Single variables:	
A•A = A	
A+A = A	
Simplification rules with 1 and 0:	
A•0 = 0	
A•1 = A	
A+0 = A	
A+1 = 1	
Computer Systems - Architecture (EEdwards)	Boolean Logic (4.19)

Boolean Algebra – de Morgan's rules	
(A + B)' = A' • B' (A • B)' = A' + B'	
as before, A and B can be any Boolean expression	
Can generalise to n Boolean variables: (A + B + C + D +)' = A' ⋅ B' ⋅ C' ⋅ D' ⋅	
(A • B • C • D •)' = A ' + B' + C' + D' +	
Computer Systems - Architecture (EEdwards)	Boolean Logic (4.20)

The full adder

Computer Systems - Architecture (EEdwards)

- For a full adder, we need another input, the carry bit from the next less significant bit.
- What is the logic circuit for the full adder?

Boolean Logic (4.25)

