

## Learning Outcomes

- At the end of this lecture you should:
understand how logic relates to computing problems
able be to represent Boolean logic problems as:
- Truth tables
- Logic circuits
- Boolean algebra
- be able to produce circuits for the half adder and full adder
- have a feeling for how electronic circuits can be joined together to create number manipulators (simple computers???)


## Boolean Logic

- Named after George Boole
- Provides a system of logical operations
- Rules for combining operations
- Describes their application to binary numbers


> 0 or $1 ?$ TRUE or FALSE? YES OR NO?

[^0]
## Simple Example

릴 "If it is raining then I will take an umbrella"

- "It is raining" - can be TRUE or FALSE
"I will take an umbrella" - can be TRUE OR FALSE
The truth of "take an umbrella" depends on the truth of "raining"
- Can be represented in the form of a truth
table:

| Raining | Umbrella |
| :---: | :---: |
| False | False |
| True | True |

Can be used to make a decision (i.e. inference): (take umbrella) $=($ raining $)$

Computer Systems - Architecture (EEdwards)

## Example 3

"If it is raining and I have no car then I will take an umbrella"

Truth table:

| Raining | No Car | Umbrella |
| :---: | :---: | :---: |
| False | False | False |
| False | True | False |
| True | False | False |
| True | True | True |

$($ take umbrella) $=(($ raining $)$ AND (NOT car) $)$

[^1]Boolean Logic (4.7)

## Example 2

"If it is raining or the weather forecast is bad then I take an umbrella"
Truth table:

| Raining | Bad forecast | umbrella |
| :---: | :---: | :---: |
| False | False | False |
| False | True | True |
| True | False | True |
| True | True | True |

(take umbrella) = ((raining) OR (bad forecast))

Computer Systems - Architecture (EEdwards)
Boolean Logic (4.6)

## Digital Logic

- Computers make decisions using logic
- Basic logic operations
. NOT
- AND
- OR
- Exclusive OR (XOR)
- Also
. NOT AND (NAND)
- NOT OR (NOR)

Computer Systems - Architecture (EEdwards)

## Digital Logic

- Computers operate electronically using Logic Gates
- One or more inputs
- One output
- Input and output are binary digits (0 or 1)
- $0=$ FALSE
- $1=$ TRUE
- Electronic circuits are easily connected together to perform more complex functions, from these basic "building blocks" of computers


| a | b | x |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Computer Systems - Architecture (EEdwards)
Boolean Logic (4.10)


How many basic logic gates are required
. NOT
. AND
. OR

- XOR - can be made up of NOT, AND and OR gates
- Draw the circuit......
- What is the corresponding logic equation?

Computer Systems - Architecture (EEdwards)

## Summary

- Basic logic gates AND, OR and NOT are enough
- Useful to have others - XOR, NAND etc
- Can have more complex gates (e.g, multiple inputs)

mputer Systems - Architecture (EEdwards)


## Answer

- A $\quad a(X O R) b=(N O T ~ a)$ AND (NOT b) OR ( $a$ OR b)
- B $\quad a(X O R) b=a$ OR ((b AND NOT a) AND b)
- C $\quad a(X O R) b=\operatorname{NOT}((N O T$ a AND NOT b) OR (a AND b))
- D $\quad a(X O R) b=(a$ AND NOT b) OR (NOT a AND b)
- $\mathrm{E} \quad \mathrm{a}(\mathrm{XOR}) \mathrm{b}=(\mathrm{a}$ OR b) AND NOT ( a AND b )

IN FACT C, D or E are correct answers, but D,E more concise

Computer Systems - Architecture (EEdwards)
Boolean Logic (4.14)

## Practical digital circuits



7400 dual in-line package

Computer Systems - Architecture (EEdwards)


## Boolean algebra - rules

There are many rules that can be used for algebraic manipulation

| Negation: | Associative: | Commutative: |
| :--- | :--- | :--- |
| $\left(A^{\prime}\right)^{\prime}=A$ | $(A \cdot B) \cdot C=A \cdot(B \cdot C)$ | $A \cdot B=B \cdot A$ |
| $A \cdot A^{\prime}=0$ | $(A+B)+C=A+(B+C)$ | $A+B=B+A$ |
| $A+A^{\prime}=1$ |  |  |
|  |  |  |
|  | Distributive: |  |
|  | $A \cdot(B+C)=A \cdot B+A \cdot C$ |  |
|  | $A+(B \cdot C)=(A+B) \cdot(A+C)$ |  |
|  | Note the precedence |  |

## Boolean Algebra - de Morgan's rules

$(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
$(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
as before, $A$ and $B$ can be any Boolean expression

Can generalise to n Boolean variables:
$(A+B+C+D+\ldots)^{\prime}=A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot \ldots$
$(A \cdot B \cdot C \cdot D \cdot \ldots)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}+\ldots$

Computer Systems - Architecture (EEdwards)
Boolean Logic (4.20)

| Boolean algebra - rules for XOR |  |
| :---: | :---: |
| $A A^{\prime} B=A \cdot B^{\prime}+A^{\prime} \cdot B$ |  |
| Complement Law for XOR: |  |
|  |  |
| Exclusive NOR (NOT XOR) sometimes called an equivalence gate - why? |  |
|  | Boolean Logic (421) |

## Addition using logic gates

- Suppose we want to add two one-bit inputs?
- What is the truth table for

The sum?
Any bit that might carry over?

The half-adder

The full adder

- For a full adder, we need another input, the carry bit from the next less significant bit.
- What is the logic circuit for the full adder?


The full-adder


Computer Systems - Architecture (EEdwards)
Boolean Logic (4.26)

## Learning Outcomes

- You should now:
understand how logic relates to computing problems
be able to represent Boolean logic problems as:
- Truth tables
- Logic circuits
- Boolean algebra
- be able to produce circuits for the half adder and full adder
- have a feeling for how electronic circuits can be joined together to create number manipulators (simple computers???)

[^2]Boolean Logic (4.28)

This lecture - feedback

- The pace of the lecture was:
$\begin{array}{lllll}\text { A. much too fast } & \text { B. too fast } C \text {. about right } & \text { D. too slow } & \text { E. much too slow }\end{array}$
- The learning objectives were met:
A. Fully B. Mostly C. Partially D. Slightly E. Not at all


[^0]:    Computer Systems - Architecture (EEdwards)

[^1]:    Computer Systems - Architecture (EEdwards)

[^2]:    Computer Systems - Architecture (EEdwards)

