Question

Do you have your laptop here?

A yes **B** no **C** what's a laptop **D** where is here? **E** none of the above

Numbers: Large, Small, Fractional

Edc	lie Edwards 2008	Floating Point Numbers	7.5
	Pi (to 8 decimal places) Standard Rate of VAT	3.14159265 17.5	
	Smallest Measurable length of Time	0.000, 000, 000, 000, 000, 000, 000, 00	,
	Mass of an Electron	0.000, 000, 000, 000, 000, 000, 000, 00	,
	Diameter of an Electron		
	Mass of the Sun	2, 000, 000, 000, 000, 000, 000, 000, 0),
	1 Light Year	9 130 000 000 000 km	
	US National Debt (1990)	\$3, 144, 830, 000, 000	
	Population of the World	6 879 009 033 people	-

Reals vs. Floating Point Numbers

	Mathematical Real	Floating-point Number	
Range	-Infinity +Infinity	Finite	
No. of Values	Infinite	Finite	
Spacing	Constant & Infinite	Gap between numbers varies	
Errors	?	Incorrect results are possible	
	-	·	
Eddie Edwards 2008	Floating Poi	nt Numbers	

Binary	Decimal
0.1	0.5
0.01	0.25
0.001	0.125
0.11	0.75
0.111	0.875
0.011	0.375
0.101	0.625

0.1	l ₁₀ in	binary?	
what is 0.1	0 111 01110	ſŸ ₽	
0.1 * 2	=	0.2	
0.2 * 2	=	0.4	
0.4 * 2	=	0.8	
0.8 * 2	=	1.6	
0.6 * 2	=	1.2	
0.2 * 2	_	0 .4 and then repeating 0.4, 0.8, 0.6	
> Answer	0.0 001	1 0011 0011 0011 0011 0011 2	
ddie Edwards 2008		Floating Point Numbers	7.15

Normalised Binary Floating Point Numbers

Number	Normalised Binary	Normalised Decimal	
100.01 x 2 ¹	1.0001 x 2 ³	8.5 x 10 ⁰	
1010.11 x 2 ²	1.01011 x 2 ⁵	4.3 x 10 ¹	
0.00101 x 2 ⁻²	1.01 x 2 ⁻⁵	3.90625 x 10 ⁻²	
1100101 x 2 ⁻²	1.100101 x 2 ⁺⁴	9.86328125 x 10 ⁻²	
		1	
iddie Edwards 2008 Floating Point Numbers		7.16	

Example: Addition					
> Carry out the addition 42.6875 + 0.375 in IEEE single precision arithmetic					
Number 42.6875 0.375	Sign 0 0	Exponent 1000_0100 0111_1101	Significand 0101_0101_1000_0000_0000_00 1000_0000_0000_0000_0000_000	00	
To add these numbers the exponents of the numbers must be the same => Make the smaller exponent equal to the larger exponent, shifting the mantissa accordingly.					
 Note: We must restore the Hidden bit when carrying out floating point operations. 					
Eddie Edwards 200	8	Floating	9 Point Numbers	7.30	

2	Significand of Larger No	= 1.0101_0101_1000_0000_0000_000		
	Significand of Smaller No	= 1 . 1000_0000_0000_0000_0000_000		
>	Exponents differ by +7 (1000 0100 - 0111 1101). Therefore shift binary			
point of smaller number 7 places to the left:				
	Significand of Smaller No	= 0 .0000_0011_0000_0000_0000_000		
	Significand of Larger No	= 1 . 0101_0101_1000_0000_0000_000		
	Significand of SUM	= 1 . 0101_1000_1000_0000_0000_000		
	Therefore SUM = 1 . 0101_1000_1 x 2 ⁵ = 10_1011.0001 = 43.0625			
	Sign Exponent Significand			
	ດ <u>້</u> າດວ່ດ 100 0101	1000 1 000 0000 0000 000 - 422C 4000H		

Special Values > The IEEE format can represent five kinds of values: Zero, Normalised Numbers, Denormalised Numbers, Infinity and Not-A-Numbers (NANs). > For single precision format we have the following representations: IEEE Value Exponent Significand True Sign Field Field Field Exponent ± Zero 0 or 1 0 0 (All zeroes) ± Denormalised No 0 or 1 0 Any non-zero bit pat. -126 ± Normalised No 0 or 1 1..254 Any bit pattern -126 .. + 127 0 (All zeroes) ± Infinity 0 or 1 255 Not-A-Number 0 or 1 255 Any non-zero bit pat. Eddie Edwards 2008 Floating Point Numbers 7.32

7.35

 What decimal is represented by the hex word C0CA0000

Floating Point Numbers

Answer - -6.3125

Eddie Edwards 2008

• What hex word is -0.75 in IEEE-754?

Answer - BFE800000000000

AA	Infinities (both positive & negative) are used to represent values that exceed the overflow limits, and for operations like Divide by Zero Infinities behave as in Mathematics, e.g. Infinity + 5 = Infinity, -Infinity + -Infinity = -Infinity	1
>	Not-A-Numbers (NaNs) are used to represent the results of operations which have no mathematical interpretation, e.g. $% \left({{{\rm{Not}}} \right) = {{\rm{Not}}} \right)$	h
	0 / 0, +Infinity + -Infinity, 0 \times Infinity, Square root of a -ve number,	
A	Operations with a NaN operand yield either a NaN result (quiet NaN operand or an exception (signalling NaN operand))
Edd	ie Edwards 2008 Floating Point Numbers	7.36

Infinities and NaN's

This lecture - feedback

The pace of the lecture was:

A. much too fast B. too fast C. about right D. too slow E. much too slow

• The learning objectives were met:

A. Fully B. Mostly C. Partially D. Slightly E. Not at all