Question

Do you have your laptop here?

A yes $\quad \mathbf{B}$ no $\quad \mathbf{C}$ what's a laptop \mathbf{D} where is here? E none of the above

Floating Point Numbers

6.626068×10^{-34}

- Eddie Edwards
- eedwards@doc.ic.ac.uk
- https://www.doc.ic.ac.uk/~eedwards/compsys
- Heavily based on notes from Naranker Dulay

Eddie Edwards 2008
Floating Point Numbers

Learning Outcomes

- At the end of this lecture you should
- Understand the representation of real numbers in other bases (e.g 2)
- Know the mantissa/exponent representation (in base 10, 2 etc.)
- Be able to express numbers in normalised/un-normalised form
- Be able to convert fractions/decimals between bases
- Know the IEEE 754 floating point format (32 and 64 bit)
- Know the special values and when they should occur
- Understand the issues of accuracy in floating point representation

Number Representation - recap

- We have seen how to represent integers
- positive integers as binary, octal and hexadecimal
- negative integers as one's complement, two's complement, Excess-n
- BCD, ASCI.....
- We have also seen how to perform arithmetic
- Addition
- by adding the binary bits
- overflow conditions
- Multiplication/division
- same "long hand" techniques as base 10
- slightly complicated in two's compliment
- can take the absolute values, perform calculation, then sort out the sign

Eddie Edwards 2008
Floating Point Numbers

Numbers: Large, Small, Fractional

Population of the World	6,879,009,033 people
US National Debt (1990)	\$3, 144, 830, 000, 000
1 Light Year	$9,130,000,000,000 \mathrm{~km}$
Mass of the Sun	$\begin{aligned} & 2,000,000,000,000,000,000,000,000, \\ & 000 \mathrm{~kg} \end{aligned}$
Diameter of an Electron	0.000, 000, 000, 000, 000, 000, 01 m
Mass of an Electron	$\begin{aligned} & 0.000,000,000,000,000,000,000,000 \\ & 000,000,9 \mathrm{~kg} \end{aligned}$
Smallest Measurable length of Time	$\begin{aligned} & 0.000,000,000,000,000,000,000,000 \\ & 000,000,000,000,000,000,1 \mathrm{sec} \end{aligned}$
Pi (to 8 decimal places)	3.14159265...
Standard Rate of VAT	17.5

Large Integers

Example: How can we represent integers up to 30 decimal digits long?
\Rightarrow Binary $\log _{2}\left(10^{30}\right)=\sim 100$ bits (1 decimal digit $=3.322$ bits $)$
> BCD 30×4-bit $=120$ bits
\rightarrow ASCII 30×8-bit $=240$ bits

The Pentium includes instructions for writing multi-precision integer routines using Binary Coded Decimal (BCD) Arithmetic \& ASCII arithmetic

Floating Pointing Numbers

Scientific Notation

Number	$=$		
$M \times 10^{\mathrm{E}}$			
Number	$=M \times 2^{\mathrm{E}}$	\longleftarrow	Decimal
:---			
Binary			

[^0]Eddie Edwards 2008
Floating Point Numbers

Zones of Expressibility

```
> Example: Assume numbers are formed with a Signed 3-digit Mantissa
            and a Signed 2-digit Exponent
>Numbers span from }\pm.001\times1\mp@subsup{0}{}{-99}\mathrm{ to }\pm.999\times1\mp@subsup{0}{}{+99
```

Zones of Expressibility

Reals vs. Floating Point Numbers

	Mathematical Real	Floating-point Number
Range	-Infinity .. + Infinity	Finite
No. of Values	Infinite	Finite
Spacing	Constant \& Infinite	Gap between numbers varies
Errors	$?$	Incorrect results are possible

Normalised Floating Point Numbers

$$
\begin{aligned}
& >\text { Floating Point Numbers can have multiple forms, e.g. } \\
& \qquad \begin{aligned}
0.232 \times 10^{4} & = \\
& =2.32 \times 10^{3} \\
& =23.2 \times 10^{2} \\
& =2320 \times 10^{0} \\
& 232000 \times 10^{-2}
\end{aligned}
\end{aligned}
$$

- For hardware implementation its desirable for each number to have a unique representation $\Rightarrow>$ Normalised Form
> We'll normalise Mantissa's in the Range [1 .. R) where R is the Base, e.g.:

$$
\begin{aligned}
& {[1 . .10) \text { for DECIMAL }} \\
& {[1 . .2) \text { for BINARY }}
\end{aligned}
$$

Eddie Edwards 2008
Floating Point Numbers

Normalised Forms (Base 10)			
	Number	Normalised Form	
	23.2×10^{4}	2.32×10^{5}	
	-4.01×10^{-3}	-4.01×10^{-3}	
	343000×10	3.43×10^{5}	
	$0.0000000989 \times 10^{0}$	9.89×10^{-8}	
Eddie Edwards 2008	Floating Po	Numbers	7.11

Binary \& Decimal Fractions

Binary	Decimal
0.1	0.5
0.01	0.25
0.001	0.125
0.11	0.75
0.111	0.875
0.011	0.375
0.101	0.625

[^1]Floating Point Numbers

Decimal Fraction to Binary Fraction

```
\(>\) Example: What is \(0.6875_{10}\) in binary?
    \(0.6875 * 2=1.3750\)
    \(0.3750 * 2=\mid 0.7500\)
    \(0.7500 * 2=1.5000\)
    \(0.5000 * 2=1.0000\)
    \(0.0000 * 2=0\)
        Answer: \(0.1011_{2}\)
    > Example What is \(0.1_{10}\) in binary?
Eddie Edwards 2008
\begin{tabular}{|c|c|}
\hline \(0.1_{10}\) in binary? & \\
\hline \multicolumn{2}{|l|}{What is \(0.1_{10}\) in binary?} \\
\hline \[
0.1 * 2=10.2
\] & \\
\hline \(0.2 * 2=0.4\) & \\
\hline \(0.4 * 2=0.8\) & \\
\hline \(0.8 * 2=1.6\) & \\
\hline \(0.6 * 2=1.2\) & \\
\hline \(0.2 * 2=0.4\) and then repeating 0.4, 0.8, 0.6 & \\
\hline > Answer 0.0001100110011001100110011 .... 2 & \\
\hline Eddie Edwards 2008 Floating Point Numbers & 7.15 \\
\hline
\end{tabular}

\section*{Normalised Binary Floating Point Numbers}
\begin{tabular}{|l|l|l|}
\hline Number & Normalised Binary & Normalised Decimal \\
\hline \(100.01 \times 2^{1}\) & \(1.0001 \times 2^{3}\) & \(8.5 \times 10^{0}\) \\
\hline \(1010.11 \times 2^{2}\) & \(1.01011 \times 2^{5}\) & \(4.3 \times 10^{1}\) \\
\hline \(0.00101 \times 2^{-2}\) & \(1.01 \times 2^{-5}\) & \(3.90625 \times 10^{-2}\) \\
\hline \(1100101 \times 2^{-2}\) & \(1.100101 \times 2^{+4}\) & \(9.86328125 \times 10^{-2}\) \\
\hline
\end{tabular}

Eddie Edwards 2008
Floating Point Numbers
7.16

\section*{Floating Point Multiplication}
\[
\begin{aligned}
\mathrm{N} 1 \times \mathrm{N} 2=(\mathrm{M} 1 & \left.\times 10^{\mathrm{E} 1}\right) \times\left(\mathrm{M} 2 \times 10^{\mathrm{E} 2}\right) \\
& =(\mathrm{M} 1 \times \mathrm{M} 2) \times\left(10^{\mathrm{E} 1} \times 10^{\mathrm{E} 2}\right) \\
& =(\mathrm{M} 1 \times \mathrm{M} 2) \times\left(10^{\mathrm{E} 1+\mathrm{E} 2}\right)
\end{aligned}
\]
i.e. We multiply the Mantissas and Add the Exponents
```

Example: 20* 6 = (2.0 < 10 1) \times (6.0 * 100)

```

```

 = 12.0\times10 }\mp@subsup{}{}{1
    ```
We must also normalise the result, so the final answer \(=1.2 \times 10^{2}\)
Eddie Edwards \(2008 \quad\) Floating Point Numbers

\section*{Truncation and Rounding}
```

> For many computations the result of a floating point operation can be
too large to store in the Mantissa.
> Example: with a 2-digit mantissa
2.3\times1\mp@subsup{0}{}{1*}2.3\times1\mp@subsup{0}{}{1}=5.29\times1\mp@subsup{0}{}{2}
> TRUNCATION => 5.2 1 10 2 (Biased Error)
> ROUNDING }\quad=5.3\times1\mp@subsup{0}{}{2}\quad\mathrm{ (Unbiased Error)

Floating Point Addition

Exponent Overflow \& Underflow

> EXPONENT OVERFLOW occurs when the Result is too Large i.e. when the Result's Exponent > Maximum Exponent
\Rightarrow A floating point addition such as $4.5 \times 10^{3}+6.7 \times 10^{2}$ is not a simple mantissa addition, unless the exponents are the same
\Rightarrow we need to ensure that the mantissas are aligned first.
Example: if Max Exponent is 99 then $10^{99} * 10^{99}=10^{198}$ (overflow)
$\mathrm{N} 1+\mathrm{N} 2=\left(\mathrm{M} 1 \times 10^{\mathrm{E} 1}\right)+\left(\mathrm{M} 2 \times 10^{\mathrm{E} 2}\right)$
$=\left(\mathrm{M} 1+\mathrm{M} 2 \times 10^{\mathrm{E} 2-\mathrm{El}}\right) \times 10^{\mathrm{EL}}$
> To align, choose the number with the smaller exponent \& shift mantissa the corresponding number of digits to the right.

Example: $\quad 4.5 \times 10^{3}+6.7 \times 10^{2}=4.5 \times 10^{3}+0.67 \times 10^{3}$
$=5.17 \times 10^{3}$
$=5.2 \times 10^{3}$ (rounded)

On Overflow => Proceed with incorrect value or infinity value or raise an Exception

EXPONENT UNDERFLOW occurs when the Result is too Small
 i.e. when the Result's Exponent < Smallest Exponent

Example: if Min Exp. is -99 then $10^{-99} * 10^{-99}=10^{-198}$ (underflow)
On Underflow => Proceed with zero value or raise an Exception

Comparing Floating-Point Values

```
> Because of the potential for producing in-exact results, comparing
    floating-point values should account for close results.
> If we know the likely magnitude and precision of results we can adjust for closeness (epsilon), for example, for equality we can:
\(\mathrm{a}=\mathrm{b} \quad \mathrm{a}>(\mathrm{b}-\mathrm{e})\) AND \(\mathrm{a}<(\mathrm{b}+\mathrm{e})\)
\(a=1 \quad a>(1-0.000005)\) AND \(a<1+0.000005\)
\(a>\quad 0.999995\) AND \(a<1.000005\)
Alternatively we can calculate \(|a-b|<e \quad\) e.g. \(|a-1|<0.000005\)
\(>\) A more general approach is to calculate the closeness based on the relative size of the two numbers being compared.
- What is the binary notation for 3.625

\section*{IEEE Floating-Point Standard}
- A 11.011 B 10.101 C 11.101 D 101.11 E 11.11
- What is binary 0.1101 in decimal?
- A 0.8125 B 0.8 C 0.8625 D 0.9125 E 0.7865

\section*{Single Precision Format (32-bit)}
\begin{tabular}{c|c|c|}
\multicolumn{1}{c}{\begin{tabular}{c} 
Sign \\
\multicolumn{1}{c}{} \\
\multicolumn{1}{c}{} \\
\hline
\end{tabular}\(\underset{E}{\text { Exponent }}\)} & \begin{tabular}{c} 
Significand \\
\(F\)
\end{tabular} \\
\hline 1 bit & 8 bits & 23 bits \\
\hline
\end{tabular}
> The mantissa is called the SIGNIFICAND in the IEEE standard
\(\Rightarrow\) Value represented \(= \pm 1 . \mathrm{F} \times 2^{\mathrm{E}-127} \quad 127=2^{8-1}-1\)
> The Normal Bit (the 1.) is omitted from the Significand field \(\Rightarrow\) a HIDDEN bit
\(>\) Single precision yields 24 -bits \(=\sim 7\) decimal digits of precision
> Normalised Ranges in decimal are approximately:
\[
-10^{+38} \text { to }-10^{-38}, \quad 0, \quad+10^{-38} \text { to }+10^{+38}
\]

\section*{Exponent Field}
```

> In the IEEE Standard, exponents are stored as Excess (Bias) Values, not as 2's
Complement Values

- Example: In 8-bit Excess 127
0000 0000
\#..
would be held as 1000 0000
128would be held as 11111111
- Excess notation allows non-negative floating point numbers to be compared using simple integer comparisons, regardless of the absolute magnitude of the exponents.

Double Precision Format (64-bit)

| Sign | | Exponent
 | | Significand | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Value represented $= \pm 1 . \mathrm{F} \times 2^{\mathrm{E}-1023} \quad 1023=2^{11-1}-1$
Yields 53 bits of precision $=\sim 16$ decimal digits of precision

- Normalised Ranges in decimal are approximately:
-10^{+308} to -10^{-308},
$0, \quad+10^{-308}$ to $+10^{+308}$

Double-Precision format is preferred for its greater precision. Single-precision is useful when memory is scarce and for debugging numerical calculations since rounding errors show up more quickly.

Example: Conversion to IEEE format

```
What is 42.6875 in IEEE Single Precision Format?
First convert to a binary number: }\quad42.6875=10_1010.101
Next normalise: 1.0101_0101_1 x 25
Significand field is therefore: 0101_0101_1000_0000_0000_000
Exponent field is (5+127=132): 1000_0100
Value in IEEE Single Precision is:
```

| Sign | Exponent | Significand |
| :--- | :---: | :--- |
| $\mathbf{0}$ | $1000 _0100$ | $0101 _0101 _1000 _0000 _0000 _000$ |
| $\mathbf{0 1 0 0} _$_0010__0010__1010__1100__0000__0000__0000 | | |

[^2][^3]
Example: Conversion from IEEE format

```
Convert the IEEE Single Precision Value given by BEC0_0000 to Decimal
    BEC0_0000 = 1011_1110_1 100_0000_0000_0000_0000_0000
    Sign Exponent Significand
1 0111_1101 1000_0000_0000_0000_0000_000
Exponent Field = 0111_1101=125
True Binary Exponent = 125-127=-2
Significand Field = 1000_0000_0000_0000_0000_000
Adding Hidden Bit =1.1000_0000_0000_0000_0000_000
Therefore unsigned value = 1.1 \times 2-2 =0.011 (binary)
    = 0.25+0.125 = 0.375 (decimal)
Sign bit = 1 therefore number is -0.375
Eddie Edwards 2008
    Floating Point Numbers
Sign bit \(=1\) therefore number is -0.375
Eddie Edwards 2008
Floating Point Numbers
```


Example: Addition

| Number | Sign | Exponent | Significand |
| :---: | :---: | :---: | :---: |
| 42.6875 | 0 | 1000_0100 | 0101_0101_1000_0000_0000_000 |
| 0.375 | 0 | 0111_1101 | 1000_0000_0000_0000_0000_000 |

> To add these numbers the exponents of the numbers must be the same => Make To add these numbers the exponents of the numbers must be the same
the smaller exponent equal to the larger exponent, shifting the mantissa the smaller exp accordingly.
> Note: We must restore the Hidden bit when carrying out floating point operations.

Example: Addition Contd.

Special Values

| $>$ | The IEEE format can represent five kinds of values: Zero, Normalised Numbers, |
| :--- | :--- |
| | Denormalised Numbers, Infinity and Not-A-Numbers (NANs). |
| $>$ | For single precision format we have the following representations: |

| IEEE Value
 Field | Sign
 Field | Exponent
 Field | Significand
 Exponent | True |
| :--- | :--- | :--- | :--- | :--- |
| \pm Zero | 0 or 1 | 0 | 0 (All zeroes) | |
| \pm Denormalised No | 0 or 1 | 0 | Any non-zero bit pat. | -126 |
| \pm Normalised No | 0 or 1 | $1 . .254$ | Any bit pattern | $-126 . .+127$ |
| \pm Infinity | 0 or 1 | 255 | 0 (All zeroes) | |
| Not-A-Number | 0 or 1 | 255 | Any non-zero bit pat. | |

Denormalised Numbers

> An Exponent of All O's is used to represent Zero and Denormalised numbers, while All 1's is used to represent Infinities and Not-A-Numbers (NaNs)
$>$ This means that the maximum range for normalised numbers is reduced, i.e. for Single Precision the range is $-126 \ldots+127$ rather than
$-127 . .+128$ as one might expect for Excess 127.

Denormalised Numbers represent values between the Underflow limits and zero, i.e. for single precision we have:
$\pm 0 . F \times 2^{-126}$
Traditionally a "flush-to-zero" is done when an underflow occurs
> Denormalised numbers allow a more gradual shift to zero, and are useful in a few numerical applications

IEEE 754 floating point numbers questions

- What decimal is represented by the hex word

Infinities and NaN's

C0CA0000
Answer - -6.3125

- What hex word is -0.75 in IEEE-754?

Answer - BFE8000000000000
$>$ Infinities (both positive \& negative) are used to represent values that exceed the overflow limits, and for operations like Divide by Zero
> Infinities behave as in Mathematics, e.g.
Infinity $+5=$ Infinity, - Infinity $+-\operatorname{Infinity}=-\operatorname{Infinity}$

[^4]This lecture - feedback

- The pace of the lecture was:
A. much too fast \quad B. too fast C. about right \quad D. too slow \quad E. much too slow
- The learning objectives were met:
A. Fully B. Mostly C. Partially D. Slightly E. Not at all

[^0]: > M is the Mantissa (or Significand or Fraction or Argument)
 $>E$ is the Exponent (or Characteristic)
 >10 (or for binary, 2) is the Radix (or Base)

 - Digits (bits) in Exponent \rightarrow Range (Bigness/Smallness)
 > Digits (bits) in Mantissa \rightarrow Precision (Exactness)

[^1]: Eddie Edwards 2008

[^2]: In hexadecimal this value is 422A_C000

[^3]: Eddie Edwards 2008
 Floating Point Numbers

[^4]: Not-A-Numbers (NaNs) are used to represent the results of operations which have no mathematical interpretation, e.g.
 $0 / 0$, + Infinity + -Infinity, $0 \times$ Infinity, Square root of a -ve number,
 Operations with a NaN operand yield either a NaN result (quiet NaN operand) or an exception (signalling NaN operand)

