Computer Systems - Architecture Tutorial 2 – Representations of Integers

- 1. Convert 188_{10} into binary, octal and hexadecimal.
- 2. Convert ABC₁₆ into binary, octal and decimal.
- 3. Add the following two 20-bit binary numbers. Spaces embedded in the numbers are for readability only.

1st number111100001111000011112nd number10101010101111111111

- 4. Using the two numbers in question 3, subtract the second binary number above from the first.
- 5. What is the square of 10101_2 in base 2?
- 6. What is 14_5 in base 1 (Unary)?
- 7. How many natural numbers can be represented by
 - (i) 8-bits
 - (ii) 10-bits
 - (iii) 16-bits
- 8. For an 8-bit group, work out the representation for -37_{10} in
 - (i) sign & magnitude
 - (ii) one's complement
 - (iii) two's complement
 - (iv) excess-256
 - (v) excess-128
- 9. For a 10-bit group, what range of integers can be represented using
 - (i) sign & magnitude
 - (ii) one's complement
 - (iii) two's complement
 - (iv) excess-512
- 10. Subtract the following 12-bit two's complement numbers (2nd from 1st) 1010 1010 1011

 $-\frac{1011\ 0000\ 1101}{1}$ What is the result in decimal?

N. Dulay

- 12. Express 98765₁₀ in binary coded decimal (BCD)
- 13. Translate the following 6-character string $A := q^*t$ to 8-bit ASCII codes (List your codes as binary and hex values).

Solutions

This page is upside down to discourage you from peeking.

Remember to show your working and to carry out your conversions and calculations without a calculator.

1.
$$188_{10} = 1011_{100} = 274_8 = BC_{16}$$

2. $ABC_{16} = 1010_{1011_{100}} = 5274_8 = 2748_{10}$
3. $Sum = 1_{1001_{1011_{101}} = 0000_{1110}}$
4. $Diff = 0100_{0110_{0011_{0001_{0000}}} = 0000$
5. $Square = 1_{1011_{1001}} = 1001$
6. $1_{1111_{1111_{111}}}$
7. (i) $2^8 = 256$, (ii) $2^{10} = 1024$, (iii) $2^{16} = 65536$
8. (i) 1010_{0101} , (ii) 1101_{1010} , (iii) 1101_{1011} , (iv) 1101_{1011} , (v) 0101_{1011}
9. (i) -511 to $+511$, (ii) -511 to $+511$, (iii) -512 to $+511$, (iv) -512 to $+511$
10. $1111_{1001_{1110}} = decimal -98$
11. $1001_{1000_{0111_{0110}} = 0101$

12.

Char	Α		:		=		q		*		t	
Binary	0100 0001		0011 1010		0011 1101		0111 0001		0010 1010		0111 0100	
Hex	4	1	3	А	3	D	7	1	2	А	7	4