Computer Systems - Architecture Tutorial 2 - Representations of Integers

1. Convert 188 into binary, octal and hexadecimal.
2. Convert ABC_{16} into binary, octal and decimal.
3. Add the following two 20-bit binary numbers. Spaces embedded in the numbers are for readability only.

1st number	1111	0000	1111	0000	1111
2nd number	1010	1010	1011	1111	1111

4. Using the two numbers in question 3, subtract the second binary number above from the first.
5. What is the square of $10101{ }_{2}$ in base 2 ?
6. What is 145 in base 1 (Unary) ?
7. How many natural numbers can be represented by
(i) 8 -bits
(ii) 10 -bits
(iii) 16-bits
8. For an 8-bit group, work out the representation for $-37{ }_{10}$ in
(i) sign \& magnitude
(ii) one's complement
(iii) two's complement
(iv) excess- 256
(v) excess-128
9. For a 10-bit group, what range of integers can be represented using
(i) sign \& magnitude
(ii) one's complement
(iii) two's complement
(iv) excess-512
10. Subtract the following 12-bit two's complement numbers (2nd from 1st)

$$
101010101011
$$

$-\underline{101100001101}$
What is the result in decimal?
12. Express 98765_{10} in binary coded decimal (BCD)
13. Translate the following 6-character string $\mathrm{A}:=\mathrm{q}^{*} \mathrm{t}$ to 8 -bit ASCII codes (List your codes as binary and hex values).

Solutions

This page is upside down to discourage you from peeking.
Remember to show your working and to carry out your conversions and calculations without a calculator.

1. $\quad 188_{10}=1011_{-} 1100_{2}=274_{8}=\mathrm{BC}_{16}$
2. $\quad \mathrm{ABC}_{16}=1010 _1011_{-} 1100_{8}=5274_{8}=2748_{10}$
3. $\operatorname{Sum}=1 _1001 _1011 _1011 _0000 _1110$
4. \quad Diff $=$ 0100_0110_0011_0001_0000
5. \quad Square $=1 _1011 _1001$
6. $1_{-1111_{-} 1111_{1}}$
7.

(i) $2^{8}=256, \quad$ (ii) $2^{10}=1024$, (iii) $2^{16}=65536$
8. (i) 1010_0101, (ii) 1101_1010, (iii) 1101_1011, (iv) 1101_1011, (v) 0101_1011
9. (i) -511 to +511 , (ii) -511 to +511 , (iii) -512 to +511 , (iv) -512 to +511
10. 1111_1001_1110 = decimal -98
11. 1001_1000_0111_0110_0101
12.

Char	A	:	=	q	*	t
Binary	01000001	00111010	00111101	01110001	00101010	01110100
Hex	41	3 A	3 D	$7 \quad 1$	2 A	74

