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ABSTRACT
Privacy and personalization of mobile experiences are inherently in
conflict: better personalization demands knowing more about the
user, potentially violating user privacy. A promising approach to
mitigate this tension is to migrate personalization to the client, an
approach dubbed client-side personalization. This paper advocates
for operating system support for client-side personalization and
describes MOREPRIV, an operating system service implemented
in the Windows Phone OS. We argue that personalization support
should be as ubiquitous as location support, and should be provided
by a unified system within the OS, instead of by individual apps.

We aim to provide a solution that will stoke innovation around
mobile personalization. To enable easy application personalization,
MOREPRIV approximates users’ interests using personae such as
technophile or business executive. Using a number of case studies and
crowd-sourced user studies, we illustrate how more complex per-
sonalization tasks can be achieved using MOREPRIV.

For privacy protection, MOREPRIV distills sensitive user infor-
mation to a coarse-grained profile, which limits the potential dam-
age from information leaks. We see MOREPRIV as a way to in-
crease end-user privacy by enabling client-side computing, thus
minimizing the need to share user data with the server. As such,
MOREPRIV shepherds the ecosystem towards a better privacy stance
by nudging developers away from today’s privacy-violating prac-
tices. Furthermore, MOREPRIV can be combined with privacy-
enhancing technologies and is complimentary to recent advances
in data leak detection.
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1. INTRODUCTION
Mobile applications are becoming increasingly personalized, flu-

idly adapting themselves to the needs and preferences of their users.
Today, personalization typically aggregates user data in the cloud
and uses it for large-scale data mining. This approach has signifi-
cant advantages for data aggregators, allowing them to present tar-
geted services and ads. However, as the ongoing DoNotTrack de-
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bate illustrates, not all users are comfortable with sharing informa-
tion with large companies such as Facebook or Apple to obtain per-
sonalized results. Recently, a series of papers has highlighted the
severity of data leak problems in mobile apps [16, 32, 20]. How-
ever, existing work in this domain usually only detects when apps
use personalized data (in which case the user’s only remedy is to
not install the app at all), or falsifies the data that apps access [25].
In both cases, the user forgoes the benefits of personalization.

To balance the goals of privacy and personalization, we imple-
mented mobile OS support for rich personalization in the form of
MOREPRIV1 Privacy-aware personalization is a rapidly expand-
ing research area, often taking the form of client-side personaliza-
tion. Encouragingly, a recent study has demonstrated users’ gen-
erally positive attitudes towards client-side personalization [29].
Much of the state-of-the-art client-side personalization work fo-
cuses on solving a specific problem, such as privacy-conscious ad
targeting [44, 22]. Similarly, we observe a trend towards platform-
provided ad support in efforts such as Window 8’s Ads in Apps2

and Blackberry’s integrated Advertising Service3. In contrast, the
focus of MOREPRIV is on creating a platform to unleash developer
creativity across a variety of personalization scenarios.
Client-side personalization: MOREPRIV encourages leaving user
data on the mobile device, mediated by the operating system and
under the control of the user. This approach has many benefits:
the user retains control over data, and cloud providers do not have
to worry about properly securing data, respecting the wide array
of user privacy preferences, complying with local and international
laws, running and powering expensive storage clouds, dealing with
PR repercussions of data leaks and unauthorized tracking (such as
the Apple location data scandal), etc.
OS support: When user preference information is collected from
all apps and OS interactions, it is considerably more accurate com-
pared to what any given app, even the mobile browser, can ob-
tain individually. Furthermore, the user already implicitly trusts
the OS, so performing personalization there does not expand the
trusted computing base. In MOREPRIV, personalization function-
ality draws from a single unified, trustworthy, and protected source
provided by the OS and exposed to developers via a simple API.
Personae: To enable easy application personalization, MOREPRIV
approximates user’s interests using personae such as technophile or
business executive. Personae can be used for a basic level of person-
alization, which can be extended through the use of custom clas-
sifiers. We demonstrate how always-on user interest mining can
effectively and accurately infer user interests in a mobile operating
system. MOREPRIV inference is based on parsing and classifying

1for Mobile OS for Reclaiming Privacy
2http://adsinapps.microsoft.com/en-us
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multiple streams of (sensitive) information about the user within
the OS, such as their email, SMS, Facebook stream, and network
communications. For privacy protection, this sensitive information
is distilled to a coarse-grained profile (as opposed to fine-grained
location data, whose leaks have caused much chagrin among users
and privacy advocates), without being exposed to apps. The use of
personae within the user profile limits the potential for user track-
ing: while persona information can be shared by apps to perform
server-based personalization, for instance, it is not sufficient to link
an individual user across multiple discrete interactions.

1.1 Contributions
In this paper, we
• propose OS-wide personalization to achieve personalization

and privacy on mobile devices, illustrate key opportunities
for mobile operating system designers, and suggest ways in
which mobile applications can be personalized;
• describe our implementation of MOREPRIV on the Windows

Phone OS; and evaluate the use of personae, through use
cases and end-user experiments;
• demonstrate automatic personalization of legacy applications

through case studies and show how MOREPRIV APIs can be
used by new apps for personalization and skinning;
• show how to support custom classifiers, the integrity of which

can be verified using the machinery of zero-knowledge proofs
to provide assurances to 3rd parties when the user has incen-
tive to fake personalization measurements;
• establish that using zero-knowledge proofs in our context is

practical in terms of computational demands experimentally,
finding that a classifier using 100 feature words requires only
11 seconds of prover time, less than a second of transfer time
on a 3G connection, and negligible battery usage;
• present crowd-sourced user studies showing how MOREPRIV

personalization can be effective in a widely-used app such as
Yelp.

1.2 Paper Organization
The rest of this paper is organized as follows: Section 2 provides

the background for mobile privacy and personalization. Section 3
gives an overview of MOREPRIV. Section 4 describes how we
implemented MOREPRIV by modifying the Windows Phone oper-
ating system and demonstrates the MOREPRIV API. Section 5 dis-
cusses support for custom classifiers and describes how to provide
integrity of computed classification results using zero-knowledge
proofs. Section 6 illustrates the benefits of mobile personalization
through case studies and describes the result of our user studies.
Section 7 summarizes the related work and Section 8 concludes.

2. BACKGROUND
The prevalence of smart phones and other mobile computing de-

vices has opened up new avenues for personalized applications. As
users carry these devices with them wherever they go, they are sub-
ject to a level of user interaction never before seen on a personal
computing platform. Furthermore, they are typically equipped with
cameras, microphones, GPS, and several forms of wireless net-
working, providing a constant stream of data from both the physical
world and the Internet. Common examples of personalization in-
clude Siri, Google Now, and personalized local search. All of these
currently move a considerable amount of user data into the cloud
for processing. We begin by discussing compelling representative
examples of mobile personalization and then proceed to generalize
the requirements for a successful personalization platform.
Personal Assistants: Google Now and Siri are familiar examples

of mobile personalization. Both attempt to perform high-level tasks
on behalf of the user, such as planning commutes, selecting movies,
and making wine recommendations. Over time, these systems learn
the user’s preferences and personalize recommendations accord-
ingly, although the mechanisms by which this happens is propri-
etary. If the user invokes the services frequently, they become
privy to a sizable portion of the user’s day-to-day activities, giv-
ing a valuable window into the user’s life when targeting content
and advertisements. However, this data is processed in the cloud
and is potentially visible to third parties affiliates for analysis. As
such, both the information given directly by the user such as “set a
birthday reminder” and secondary information such as gender and
age may be obtained in bulk.
Shopping: Shopkick (shopkick.com) integrates location-awareness
with user preference data. When a Shopkick user enters a brick-
and-mortar store, the app consults the user’s preferences to offer
discounts and recommendations. Users can scan the barcodes of
interesting items and are rewarded with discounts within the store.
This personalization is interesting in that it allows traditional mer-
chants to to target content, advertisements, and discounts towards
users in much the same manner as online retailers do.
Summary: The apps above share the following set of personaliza-
tion steps [28]: 1. Acquire personalization signal from user interac-
tions with the app; 2. Address the cold start problem of not having
data to base personalization on [38]; often, this is resolved using a
secondary source. Many modern apps encourage the user to sign
up with their Facebook credentials so they can “scrape” their Face-
book data; 3. Refine personalization signal as a result of subsequent
interactions.

3. OVERVIEW
The apps described in Section 2 are representative of the per-

sonalization needs of many apps: they benefit from an understand-
ing of the user, but need not collect enough information about the
user to personally identify them. In this Section, we describe how
MOREPRIV provides this information through the key notion of
personae.

3.1 User Interest Profile: Personae
Personae are custom representations of various walks of life, of-

fering easy-to-understand targets for personalization [40]. In addi-
tion to being easy to understand, the advantage of this technique is
the degree of pseudonymity that it provides [30]. In other words,
using a persona provides a way to declassify sensitive information;
persona data is all that is released about the user to the application,
as opposed to personally-identifiable information like their name or
unique identifiers such as device IMEI.

In our prototype implementation of MOREPRIV, we target eight
personae. Each persona is represented by a Bayesian classifier Cp,
trained on a manually curated list of keywords characteristic to pro-
file p. For example, the business executive persona represents strong
interest in business, finance, and national news. Thus, the corre-
sponding classifier is trained on text from sites as the Financial
Times. On the other hand, the technophile profile represents a strong
interest in technology, so the corresponding classifier is populated
with text from tech blogs.

Our prototype of MOREPRIV supports the following personae:
activist, bachelor, business executive, sports buff, retiree, homemaker,
technophile, tween. Note, however, that we do not advocate for this
specific list of personae. Our goal in choosing the set of personae
is neither completeness nor exclusivity: arguably, it is very difficult
to be comprehensive; similarly, there may be intersections between
these personae. Instead we optimize for ease of understanding by



the user and the developer. We believe these profiles are a rea-
sonable proof of concept but note that our system is modular with
respect to the personae that are used, with updates amounting to
simply re-training a Bayesian classifier on a new list of keywords.

In practice, no user is likely to have interests that match ex-
actly one persona. As such, each persona is assigned a persona
weight that indicates how closely that persona matches the user.
MOREPRIV keeps a vector of these weights, called the user’s pro-
file. Consider an example user who is very interested in technology
news and somewhat interested in financial news. His or her profile
would have a high persona weight for the technophile persona and
a moderate persona weight the executive persona. We believe that
many users understand the value of personae: we performed a brief
anonymous survey of 179 crowd-sourced survey-takers, 39–45%
of respondents are more willing to share persona data, whether in
general or for the purposes of personalization, compared to the fa-
miliar baseline of location data.

3.2 Design Choices
The architectural of MOREPRIV is divided into three parts: User

interactions are observed by personal preference miners, that can
be as diverse as location information miners that tell whether the
user is home or on a trip, or transit miners that discover the activity
of the user (walking, riding a train, in a car, etc.). Miners also pore
over the user’s email, SMS, and Facebook streams to establish the
user’s interests and preferences in news and entertainment. These
interactions are distilled to a user profile by persona classifiers that
come pre-installed (we discuss details of extending the system via
custom classifiers in Section 5). Finally, the profile is used by a va-
riety of personalizers for different forms of personalization. user’s
interests and preferences for news and entertainment.

A key strength of MOREPRIV is that users remain in control of
whether and to what extent to use it, in order to appeal to a wide
spectrum of users. Previous studies have shown that users’ atti-
tudes towards mobile privacy vary greatly: conservative users may
opt-out and turn off personalization or data collection entirely Sec-
tion 4.4. Furthermore, conservative users will likely not to install
any third-party classifiers. More adventurous users who want to
experience extra functionality may install custom classifiers, but
will be prompted for additional permissions at the time of installa-
tion (Section 5.2).

3.3 Data Protection and Privacy
So far, our discussion of MOREPRIV has primarily focused on

the personalization benefits of our approach. In the rest of this
section, we focus on privacy-related advantages. In the past several
years, numerous projects have examined data leakage potential on
the mobile phone, including mobile information leakage [16, 20,
14], leading to privacy-enhancing technologies designed to guard
against such data leaks, such as AppFence [25].

We want to draw a contrast between that line of research and
MOREPRIV, which is envisioned as a privacy-by-design approach.
The goal of MOREPRIV is to incentivize the different constituents
of the mobile ecosystem into compliance. MOREPRIV can and
should be combined with privacy monitoring and privacy leak de-
tection tools, but we see that as an orthogonal concern.
Use of personae limits information leaks: At the core of the
MOREPRIV design is the use of personae, which provides a degree
of pseudonymity [30]. Sensitive data is distilled by MOREPRIV to
a restricted, deliberately coarse-grained persona, and is never given
to user mode apps directly [37]. A natural direction to consider is
implementing an information flow restriction approach to mitigate
leaks of persona information. While many research efforts have

argued for information flow and tainting approaches, in both static
and runtime flavors at levels varying from hardware to the appli-
cation runtime, practicable adoption has been slow. We argue that
this is because it is very difficult to deploy these systems without
causing numerous false positives or tolerating many false negatives.
Consequently, we choose not to following this path in MOREPRIV.
Data representation: Our implementation of MOREPRIV main-
tains a vector of persona weights for the user. This vector is main-
tained in memory and it potentially serialized as part of the OS
service that MOREPRIV implements. To make data maintenance
incremental, our implementation records two values for each per-
sona p (out of eight possible personae):

1. relevance: sum of interest scores from classifier Cp, sp
2. support: number of elements that have been scored by Cp,

called np.

Intuitively, sp indicates a raw score of how closely the persona
matches the user, while np indicates the amount of evidence to sup-
port that score. The persona weight is given by the fraction sp/np.
Thus, only two data items per persona are stored. Note that these
vectors are never directly shared with user mode apps.

While this is not encouraged, in our model, apps are allowed
to leak the most relevant persona of the user if they so desire.
However, we consider the consequences of that to be relatively
benign, especially when compared to the current practice of user
monitoring built into many of today’s privacy-leaking apps [24].
MOREPRIV is designed to use a limited number of personae such
that each persona will be the most relevant for many users. Thus,
leaking the top persona of a user has a negligible contribution to-
wards identifying a user and does not identify any specific inter-
ests of the user. Those users that are particularly concerned about
leaking their top persona can still disable apps from accessing this
information.
Permissions: As we saw before, access to persona data in apps is
guarded with a runtime permission prompt, similar to that used for
obtaining location data. This is superior and more meaningful to
the user compared to installation-time permissions [17]. We be-
lieve that this is part of responsible disclosure: the user is informed
of persona data access and is given the opportunity to opt in. Fur-
thermore, access to MOREPRIV’s persona data requires statically
declared permissions at the level of application manifest. Just like
with location data, we can envision extra scrutiny, code reviews,
and testing being applied by the app store to apps that request per-
sona data.
Data synchronization: While the default storage strategy is to
keep the interest profiles local, on the current device, it is entirely
possible to synchronize them — in an encrypted form — with the
cloud. This is not unlike the approach used in Apple’s iCloud
for synchronizing application settings, etc. However, unlike ap-
plication settings, persona information encroaches on user privacy
considerably less. In addition to synchronization across multiple
devices, cloud synchronization also serves as a backup. This ap-
proach is used in several domains, including bookmark synchro-
nization, etc.

3.4 Value Proposition
Our goal with MOREPRIV is to provide an attractive value propo-

sition for all major categories of constituents within the mobile
ecosystem: users, developers, and third party data and ad providers.
We summarize the benefits below.
Users: Recent user studies indicate that users often prefer client-
side personalization to alternatives [29]. Additionally, MOREPRIV
learns an accurate model of the user’s tastes and preferences with-



out the user having to “teach” or configure it. To make it easier
for users to understand, we model the way persona information is
surfaced to the user after GPS location data; the figure to the right
shows an example of a persona prompt within an app. Users can
audit persona information released to every application, to under-
stand when each release has taken place. Users can opt of of data
collection, either partially or entirely. Lastly, for users who are
strongly concerned about privacy, MOREPRIV is designed to be
combined with privacy-enhancing technologies.
Developers: The main advantage for app developers is the MOREPRIV
API. It represents a single OS-level data source for personalization
(as opposed to application-specific, ad-hoc information sources)
allow seamless and uniform functionality for a single user across
many applications, devices, and platforms. It is easy for developers
to use for personalization and skinning, as illustrated in Section 6.1.
The cold start problem [38] common in many personalization tasks
is largely addressed, because of an OS-wide user personalization
context, which apps can easily take advantage of. Finally, OS-wide
data collection for a single repository allows richer and more accu-
rate profile information about the user to be collected, compared to
what any single application can accomplish.
Third-party and ad providers: Data providers are no longer re-
sponsible for storing “toxic” user data and cross-correlating it across
a set of user interactions. Given the mounting pressure by legisla-
tors in the US and Europe to limit the impact of online tracking as
well as mobile app tracking, this can be welcome news. Instead
of trying to engage in user profiling, which is 1) costly, because
it requires maintaining or buying data center capacity, developing
custom software, and paying data mining and support personnel,
and 2) cumbersome, because multiple laws of different localities
must be respected, and there is always a danger of being limited
later in time, a clear alternative is to use the information provided
natively, by the mobile OS [2, 1]. While some third-party provides
will certainly prefer to stick with the state of affairs, less entrenched
ones will find the new approach attractive.

4. IMPLEMENTATION
In order to test the effectiveness of personal preference min-

ers, we instrumented Windows Phone 7.5 (Mango) to capture sev-
eral important personalization signals, sources of data that indicate
likely user preferences. We then use these signals to locally classify
the user with respect to the given personae. There are two facilities
for personalizers in MOREPRIV: a privileged service to perform
automatic personalization within the OS, and a set of APIs that
give third-party applications limited access to the user interest pro-
file. We chose to implement MOREPRIV on top of the Windows
Phone operating system. Similar implementations on Android or
iOS may be possible, and we point out areas in which we take ad-
vantage of features of the Windows Phone and possible analogues
in other mobile operating systems. However, cross-platform results
are not the focus of our work.

4.1 Personalization Signals
In order to assign relevance scores to each persona, MOREPRIV

needs data to classify. Here, we leverage our position at the OS
level: all user information must pass through the operating system
in order to be consumed or produced by the user. However, one
must be careful of which data stream to collect: a poor choice can
slow down the device or introduce noise. One must also consider
how data is collected: the collection mechanism should be posi-
tioned at a level of abstraction such that the data has appropriate
context. For example, one may be interested in mining the text of
web pages that the user views, but if the miner interposes at a low

level of the protocol stack, bytes of text will be indistinguishable
from bytes of an image.

In our implementation, we capture five distinct personalization
signals: Facebook data, the Twitter feed, SMS messages, emails,
and HTTP traffic. We briefly discuss our approach to mining each
of these signals on Windows Phone, and we mention how equiva-
lent signals could be captured for an Android Device.
Facebook and Twitter: A unique feature of the Windows Phone
is that several popular networking features are integrated directly
into the operating system and organized into the People Hub. The
intention of the People Hub is to organize social updates in a single,
unified feed called the social feed, which is updated automatically.
The social feed is a good target for mining because it is a rich source
of structured user data. We implemented a miner for Facebook by
reading social feed data from the Facebook service, consisting of
“likes”, posts that the user made, and posts made to the user’s wall.

There is no direct analogue to the People Hub on Android. How-
ever, since the account credentials are stored in the
AccountManager, an Android device could make separate queries
through the APIs exposed by high-value services like Facebook and
Twitter, and classify the results of those queries. Note that this ap-
proach loses an advantages of MOREPRIV, namely that it does not
consume additional network bandwidth.
SMS: due to the simplicity and inherent lack of structure in SMS
messages, we implemented our miner by interposing on the SMS
handler in native code underlying the application framework. Alter-
natively, similar modifications can be made to the C# core libraries
to read SMS messages. To implement a similar miner in Android,
one could periodically query the ContentResolver for SMS con-
tent, and classify each SMS message in turn.
Email: Sending email is exposed to third party users via the
Microsoft.Phone.Tasks classes such as EmailComposeTask.
However, in order to simplify capture of both outgoing and incom-
ing email, we instead interpose on the internal implementation of
SMTP. Although we do not treat fields such as subject and sender
differently from text in the body, interposing on SMTP allows us to
avoid classifying noise, e.g. attached images.
HTTP Traffic: Unlike SMS, HTTP traffic has structure that cannot
be ignored. Fortunately, the Windows Phone passes information to
an HTTP handler which parses the structure of the message. By
interposing on the parser as it parses text, we can gather relevant
web text without adding significant noise from non-textual traffic.

These signals demonstrate an advantage of performing signal
capture at the Operating System level: since the OS and framework
have a very high level of privilege, the user must already trust these
components to handle personal data. As such, the signal capture
mechanisms are already within the user’s trusted computing base.
Instrumentation at the OS level has the unique advantage of being
able to integrate multiple data sources together. This is important
for several reasons. Even very rich data sources can suffer from a
cold-start problem, but are useful in aggregate.

To drive this point home, we conducted a study to see how strongly
a user with a high interest in technology would be classified as a
technophile. While we would expect this score to be high, the qual-
ity of different signals in isolation varies significantly. However,
combining these signals together can boost the correct relevance
score even in the face of irrelevant signal data.

4.2 Building MOREPRIV Classifiers
Each MOREPRIV persona is represented by a Naive Bayesian

classifier. We trained our classifiers offline on manually curated
lists of words obtained for web pages relevant to each profile, e.g.,
techcrunch.com for technophile and espn.com for sports buff. An



alternative source of such pages are taxonomies such as the Open
Directory Project (ODP).

This resulted in thousands of words per persona, which were
subsequently used to obtain the probabilities P (wi|Cj) for each
attribute word wi and each persona Cj . This classification data
was then loaded into an OS-level service.

Although building each classifier can in principle be a difficult
task, especially if a large training set is used, applying classification
to a piece of text is very fast. For example, to find the most relevant
profile for a piece of text, we tokenize it into words and perform a
simple log-likelihood addition for each persona, maximizing over
that value.

4.3 Universal Personalization
In the context of MOREPRIV, we implemented automatic uni-

versal personalization within the OS. To accomplish this, we mod-
ified the Windows Phone C# framework upon which apps are built.
We focused on reordering lists such that elements that are of the
most interest to the user are displayed at the top, while items of
less interest to the user are kept at the bottom. Widget classes like
System.Windows.Controls.ListBox, are (directly or via subclass)
used in many third party apps to display lists. Our modification
changed the way in which list items are displayed on screen, order-
ing them by their relevance to the user profile. In essence, this al-
lows lists to be transparently personalized without any modification
(or knowledge) of the app. An important consideration for univer-
sal personalization is not to personalize “too much”. For example,
if automatic personalization were to be applied to an alphabetized
list, the alphabetic ordering would be lost. Thus, we detect if a list
has been sorted, and if so we do not use the personalized list order-
ing to draw elements, instead relying on the ordering of the internal
ItemSource list.

We have made a small number of changes to the Windows Phone
core C# classes to inform our universal personalization mechanism
that a list has been sorted, such as modifying the List.Sort()
method to keep a sorted flag. When set, the flag causes UI classes
like ListBox to display in their natural order. We emphasize that
universal personalization is often effective, but recognize that au-
tomatically restructuring UI is not always guaranteed to work. For
this reason, we allow universal personalization to be disabled through
the MOREPRIV management menu.

4.4 OS-level Service
Positioning MOREPRIV within the OS provides an opportunity

to collect a great deal of data to build a user interest profile. How-
ever, it also provides an opportunity to perform personalization on
user-level apps without any modification of the app itself.

To explore automatic personalization, we altered the Windows
Phone C# framework to reorder lists in the application UI, as de-
scribed in Section 4.3, based on the persona weights. For legacy
applications such as news readers, this has the effect of not only re-
ordering the order in which stories are displayed (stories more rele-
vant to the user’s interests are shuffled to the top), but also reorder-
ing entire categories of subjects such that the “technology news”
category page of a news reader app appears earlier in the menu
than the “arts section” for a technophile. Finally, users can control
how MOREPRIV is used by toggling two independent facilities:
Toggling personalization: When personalization is off, the user
will have the regular Windows Phone experience. When person-
alization is on, OS-level personalization is enabled and apps have
access to the user’s persona.
Toggling collection: This allows users to to freeze their profile
scores. This indicates to MOREPRIV that it should not track any

behavior of the user until persona refinement is re-enabled. This
is a form of a privacy mode, similar to those supported in modern
browsers.

4.5 MOREPRIV APIs
MOREPRIV also exposes APIs to third party developers that al-

low application-specific personalization. We discuss three of these
API functions:

• IsMoRePrivEnabled() returns true if personalization is en-
abled. We allow users to toggle personalization on and off as
part of the MOREPRIV configuration UI.
• TopProfile() return the most relevant profile to the user

if personalization is enabled, and null otherwise. This is
useful for application skinning, for example by changing the
background of the app based on the top profile of the user.
• Ignore(Object o) Informs MOREPRIV not to apply OS-

level personalization to o. This allows developers to bypass
the GUI features such as automatic list reordering.

We have also written a wrapper library that checks for these API
functions and calls them if present. Thus, app developers can write
a single app that will work on both MOREPRIV-enabled and plain
OSes (albeit without personalization).

5. INTEGRITY AND EXTENSIBILITY
There is growing evidence that the need for trusted user identities

in advertising is growing4. These cases are emblematic of the com-
monly occurring case in which a 3rd party requires knowledge that
the classification of users is accurate and trustworthy. A signature-
based scheme may prevent benign users from loading hacked clas-
sifiers, but when it comes to malicious users, no such recourse is
available. While the operating system itself is trusted by the user,
the 3rd party may not trust the integrity of apps and classifiers: ma-
licious users can install or “sideload” a hacked classifier to send
fabricated data.

Instead, we extended MOREPRIV to optionally use zero- knowl-
edge proofs to provide a solution to the problem of integrity of user
profiling, effectively guaranteeing to third parties that the personal-
ization signal can be trusted through checkable proofs of computa-
tional integrity.

5.1 Design Choices
In some cases, the information provided by the default classifiers

is not sufficient for personalization. However, while we want to
support greater extensibility, we do not want to expose sensitive
user data to untrusted 3rd parties.

In this paper, we consider two ways to architect the system we
have described. The monolithic architecture provides only the built-
in, default user classifier. However, we acknowledge that in some
settings, more application-specific classifiers may be called for.
Since classifiers may need to be upgraded as a result of retraining,
the customizable classifier approach allows for custom classifiers
to optionally be installed at the discretion of the user.
Monolithic: The model discussed in this paper thus far assumes
a single monolithic set of MOREPRIV classifiers which are imple-
mented as an operating system service. As such, they are part of
the TCB. A consumer of the user profile can trust the profile com-
putation under the assumption that the operating system has not
been tampered with. We feel that this is a sensible assumption,

4See http://bit.ly/13hJpNk, http://tcrn.ch/PR5ZDL, http://bit.
ly/1bT5mFD, http://on.wsj.com/1e57ms1, http://bit.ly/1bT5mFD, and [8]
for discussions of advertising fraud and its implications.



since tampering with the OS can invalidate the integrity of the ob-
servations on the basis of which the user profile is calculated. The
main shortcomings of this monolithic approach is the difficulty in
upgrading the classifiers and the fact that that classifiers are part of
the TCB.
Customizable: An alternative model discussed in the rest of this
section allows for custom classifiers to be installed in the same way
that regular apps are installed, without affecting the OS and adding
to the TCB. The user is responsible for checking installation- and
runtime permissions to ensure these classifiers do not leak data in-
appropriately, just as they are for any other mobile app. Alterna-
tively, as proposed in several recent projects [46, 26, 14, 16, 25,
31], classifiers can be subjected to static or runtime analysis to gain
further assurance.

5.2 Deploying Custom Classifiers
In our model, custom classifiers are distributed as third-party ap-

plications in the same manner as other third-party software on mo-
bile platforms. When the user installs a classifier application, he is
prompted for permission to let the app interact with MOREPRIV by
monitoring keywords among the personalization signals discussed
in Section 4.1; this permission is requested at the same time as
the other platform-specific permissions supported by the operating
system. When the classifier is installed, MOREPRIV registers the
needed keywords that are listed in the classifier’s manifest.

To perform classification, the application queries MOREPRIV
via an exposed API that returns the number of times each feature
word was observed in the signals as a vector w = [w0, . . . , wn].
After receiving an updated set of word counts, the classifier runs its
custom algorithm, and uses the result as needed. Whether this clas-
sification step is performed periodically in the background, or on-
demand when requested, is an application-specific design choice
left up to the classifier developer. Similarly, the choice of when to
provide a proof of integrity is left to the developer; it can happen
each time a new classifier is constructed (for an absolute guaran-
tee of integrity), or only when the classifier consumer decides to
challenge the client (for a probabilistic guarantee).

5.3 Motivating Example
Suppose that a third-party service, such as AdMob, needs to de-

termine a characteristic about the user that it cannot derive from
the built-in personae. For example, it may want to determine if
the user is a student, in order to determine whether to display ad-
vertisements about spring break vacation packages. In this situa-
tion, AdMob can utilize a classifier developed in-house, which is
installed as a user-level application on the user’s device much as a
third-party ad library is on existing mobile platforms.

This is a compelling example of securely-managed cooperation
between MOREPRIV and a third-party that wishes to personalize,
but it exposes an important concern for the third party. Namely,
because AdMob’s algorithm is running on the user’s device in an
unprotected mode, AdMob has no assurance that the results it ob-
tains correspond to the true results of its algorithm. For example, a
user who wishes to consume ad-supported content without provid-
ing information about themselves may simply install a “dummy”
application in place of AdMob’s, that returns random results.

In this section, we discuss a strategy for balancing this concern
with our central focus of privacy based on recent advances in Non-
Interactive Zero-Knowledge (NIZK) Proofs of Knowledge [7]. We
provide integrity using the same practical assumptions as Danezis et
al. [13] and Schnorr [41], which roots trust in the operating system,
but does not require trusted hardware.

We discuss an implementation of the AdMob scenario given above

that uses zero-knowledge proofs based on the construction of [39],
and show how it can be efficiently parallelized to achieve accept-
able performance. While our implementation is application-specific,
the approach can be generalized without requiring custom zero-
knowledge proof development using one of the many zero-knowledge
proof compilers [3, 4, 33].

5.4 Achieving Computational Integrity
In this section, we begin by giving a brief general overview of

NIZK schemes, and then describe our realization in the context of
MOREPRIV.
Background and Overview: In a NIZK scheme, one party (the
prover) attempts to convince another (the verifier) that it has cor-
rectly performed a computation that is known to both parties, with-
out revealing the inputs that it provides to the computation. Of-
tentimes, the inputs are generated signed by a data provider that
is trusted by the verifier, in order to establish an initial root of in-
tegrity. In our setting, the prover corresponds to a classifier, the
verifier to a service that consumes the classifier’s output, and the
data provider to the MOREPRIV core.

Our NIZK scheme makes use of a non-interactive commitment
scheme, which consists of the algorithms Commit and Open5. Given
a value x, Commit(x) produces a commitment cx as well as a piece
of auxiliary data ox called the opening. The commitment is opened
by revealing (cx, ox), and checking that Open(x, ox, cx) returns
true. Commitments have two useful properties: (1) binding, mean-
ing that Open only returns true when (cx, ox) = Commit(x), and
(2) hiding, meaning that a party who possesses only cx should not
be able to learn anything about x. Abusing notation somewhat, we
use the phrase signed commitment, and write CommitKA(x), to re-
fer to the commitment of x signed with A’s public key. MOREPRIV
provides inputs to the classifier via API calls, which can later be
converted into signed commitments by the operating system when
the consumer service requires a proof of integrity for some output
of the classifier. The integrity of these inputs comes from the con-
sumer service’s trust in the integrity of the operating system, i.e.,
that it has not been compromised.

The scheme that we use requires the following entities:

• The computation f(xpub, xpriv), which takes input known to
both parties xpub as well as input private to the prover xpriv.
• The inputs xpub and xpriv, as well as signed commitments

CommitKTP (xpriv) to the private inputs, using the data provider’s
public key KTP .

As illustrated in Figure 1, it proceeds as follows:

• The data provider sends the prover its private input xpriv, as
well as the signed commitment S = CommitKTP (xpriv).
• The prover runs the computation on both sets of inputs to

learn r = f(xpub, xpriv). It constructs a zero-knowledge
proof of knowledgeP = ZKProof(f, xpub, xpriv, r, S) which
demonstrates that ∃ xpriv.r = f(xpub, xpriv) and
S = CommitKTP (xpriv). Finally, the prover sends P and r
to the verifier.
• The verifier checks P against S and r, which can be done

in roughly the same amount of time taken by the prover to
generate P and compute r.

We refer the reader to the explanation of these schemes given by [7]
for more details.

5For simplicity, we omit certain details relating to security parameters and setup.
For a detailed explanation, the reader should refer to [7, 39]



Data Provider

Prover

Verifier

Private Inputs, Signed Commitments

Public Key

Result, Zero-Knowledge Proof, Signed Commitments

In
te

rn
et

Classifier
Consumer

Kernel

User

M
ob

ile
 D

ev
ic

e

XEPP

Classifier

Figure 1: Zero-knowledge proofs for computational integrity.

5.5 Evaluation
We evaluated our zero-knowledge classifier on a mobile device

to determine its runtime, network utilization, and impact on battery
life. In general, we found our implementation to be quite practical.
Performance is parametrized by the number of feature words in the
classifier.

For the student classifier in this section, based on our practical
experience with Bayesian classification, we believe that using be-
tween 100 and 300 feature words gives sufficient precision. Note
that we do not generally anticipate every single request requiring a
proof; a scenario where a third party would periodically audit the
result is more likely, making the numbers reported below a perfor-
mance upper bound. Moreover, because the prover can run in idle
time, when the phone is unused, and not on demand, we believe
this represents more than acceptable performance.
Setup: Unless stated otherwise, all experiments were performed
on a Nokia Lumia 920 running Windows Phone 8. Experiments
involving networking were performed on a small wireless network
comprised of the mobile device, a laptop (with an Intel 4965AGN
chipset), and a dedicated router not connected to an external net-
work. The Zero-Knowledge protocol was implemented in F# and
C#, using the .NET infinite-precision integer library. For commit-
ments, we used a 1024-bit modulus; for signatures we used SHA1
with RSA, again with a 1024-bit modulus. All experiments used
eight personae, unless otherwise noted.
Basic measurements: Figure 2(a) shows the time taken on the mo-
bile device to compute the classifier result for all personae against
the number of feature words in each persona’s set of Bayesian clas-
sifier. Both cores of the mobile device were utilized without re-
striction. As shown, the time for a classifier size of 300 words
is just under five minutes. Since our current personae classifiers
are of approximately 300 words, we believe this to be a reason-
able overhead. Profiling reveals that nearly all processing time is
devoted to generating cryptographically-secure random noise (for
commitment generation), and integer exponentiation (for the group
operations). This means that while it is not feasible to produce a
new, up-to-date zero-knowledge proof on-demand, one could per-
form these computations in the idle time after a period of user in-
teraction with the phone.

Figure 2(b) shows the network transfer time required to send the
proof and input commitments against the number of feature words.
To take these measurements, we simulated 3G and 4G cellular net-
works by modulating throughput, latency, and packet loss rate. Av-
erage throughput in each measured configuration (3G, 4G, and Wi-
fi) was 134.4, 198.4, and 945.8 kilobytes per second, respectively.
We observed proofs of less than 200 K that it takes 0.41–1.22
seconds to transmit the setup and proof for a 100 and 300-feature
word classifier, respectively, on an “average” 3G network. We also
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Figure 2: Custom classifier performance metrics

observed reasonably proof sizes of less than 200 KB for even the
largest (300 feature-word classifier).

Figure 2(c) shows the amount of battery draw required by the
classifier module, measured against the number of feature words in
the classifier. This was computed based on CPU utilization, accord-
ing to the model of Mittal et al. [34]. The power required to produce
a proof goes down when multiple cores are available, and there
is sufficient work available for the second core; this trend begins
shortly after 100 feature words. To give these readings some per-
spective, we assume a 24-hour battery charge cycle in order to com-
pute the amount of “battery time” consumed by the prover. Our test
phone (Nokia Lumia 920) advertises a built-in 2,000 mAh battery,
so producing a proof for a 300-word classifier consumes 0.099% of
the available battery, about 40 seconds.
Summary: We believe our scheme to be practical with today’s
cryptographic primitives and mobile hardware in terms of compu-
tation and transmission time. With 100 feature words, the prover
time is about 11 seconds. Transfer time of the proof for 100 fea-
ture words is under a second on an average 3G connection. Battery
utilization (under 1 mAh) is negligible.

6. PERSONALIZATION
MOREPRIV offers many opportunities for personalization. In

this section, we focus on several personalization scenarios in depth,
but note that this is only the tip of the iceberg. Other prominent
examples include keying custom dictionaries for word completion,
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Figure 3: News personalization parameters.

spell-checking, and voice recognition on the persona.

6.1 Personalization Scenarios
RSS News Feed Personalization: To test the usefulness of the
MOREPRIV APIs, we built a custom RSS reader called MoRSS.
This app pulls stories from 10 RSS news feeds, and samples from
these feeds to display a list of stories to the user. MoRSS disables
the OS-level GUI enhancements described in Section 4. Instead,
MoRSS relies on the built-in table in Figure 3 to rate how interest-
ing each feed will be to each persona.

MoRSS can operate with no personalization, in which case sto-
ries from each RSS feed will be sampled uniformly and displayed
to the user in the order in which they are sampled. When person-
alization is enabled, MoRSS queries the MOREPRIV API to deter-
mine the top persona of the user’s profile, and then samples accord-
ing to the column of Figure 3 for that persona.

MoRSS demonstrates the advantages of exposing limited infor-
mation to third party applications: Developers have the flexibility
to reinterpret the top profile in any way that they see fit. Apps such
as MoRSS are free to sample tech stories for the homemaker, even
though the built-in Bayesian classifier for that profile does not have
tech keywords. Furthermore, the personalization can be done in a
privacy-preserving way: MoRSS uses client-side personalization,
so even the owner of the RSS feeds cannot learn the top profile of
the user from the requests that MoRSS makes.
Application Skinning: OS-level personalization has broad appli-
cability, even beyond networked device use. As a demonstration,
we implemented a simple calculator that is re-skinned using the
MOREPRIV API for each persona. For instance, when the top pro-
file is retiree, the calculator goes into a high contrast mode with large
text and buttons.

We highlight this example to show that MOREPRIV provides
an alternative to forcing complicated configuration menus on users
who nonetheless prefer different configurations. An app like the
calculator could use profile data to provide an initial configuration
that is likely to be close to what the user wants, and allow her to
tweak configuration options from there.

6.2 Personalization Case Study: Yelp
The goal of the rest of the section is to demonstrate that persona-

level personalization is useful and would be appreciated, were it
provided by the operating system natively. However, effective per-
sonalization is not an easy task. It is both an art and a science,
requiring a combination of technical and design skills, deep under-
standing of the target market, and the particulars of the application.
Thus, we believe that a dedicated effort to create such a service
would have even better results.

Chicago LA Madison NY SF Seattle

General 50% 33% 56% 50% 50% 39%
Executive 63% 76% 50% 53% 68% 47%

Boost 13% 43% -6% 3% 18% 8%
Figure 4: Percentage of survey responders who prefer the executive personalization
over the default one.

Personalizing Yelp: For our personalization target, we have cho-
sen business recommendations using the Yelp API to get location-
aware reviews and listings for businesses such as restaurants, hair
salons, doctors, etc. popular in the US. The app includes a sub-
set of the Yelp categories at http://bit.ly/441TNj relevant to a
persona. When run, it pulls in a large number of Yelp listings, and
prioritizes those in categories relevant to the top profile.

We have manually curated a list of 28 categories in the Yelp tax-
onomy (out of about 700) for business executive, intended to sug-
gest an activity that an executive might bring business associates
to. Categories fall into a more upscale niche, such as steakhouses,
wine bars, or auction houses. To personalize, we sort the full set
of Yelp results returned by reviewer rating “stars”. We then search
for a listing in a category relevant to the top persona not already
selected for display. If there are no such listings, we select the
highest ranked remaining listing in a category relevant to the top
persona (even if we have already selected another listing in that
category). We note that there are many additional features upon
which to select listings, such as price, ambiance, availability of Wi-
Fi, etc. Our experiment does not use these features, as doing so
violates the Yelp API terms of use. Such restrictions could be ig-
nored by an official Yelp app. In a general sense, we assume that
the business executive persona applies at all times, which may not
always be valid [12].
Methodology: Using the Instant.ly crowd-sourcing platform, we
hired survey takers to answersix preference questions pertaining
to the following cities: Chicago, LA, Madison, NY, SF, and Seat-
tle. A sample survey can be seen at http://www.instant.ly/
s/B55pX. One question was asked for every city, phrased as fol-
lows: We are trying to understand which listing is more relevant for
YOU. In other words, where are you more likely to go to and spend money
at? Which listing below do you find more relevant and why?

Of course, any such survey measures expressed preferences, not
actual preferences, as noted in [36, 42]. However, short of deploy-
ing a modified app in the wild and watching users (who would have
to opt into the study), this is a good initial assessment.
Selecting users: Using the Instant.ly built-in crowd, we created
two survey groups general (21 respondents) and executive (41 re-
spondents). Executives were selected based on the following cri-
teria: age of 35–65, education of college graduate with a four-
year degree or an advanced degree, employed full-time or self-
employed, income in excess of $125,000, and married or living
with a partner. This is a fairly simplistic way to reach that demo-
graphic, but we believe it suffices for our experiments. Given that
these listings are somewhat location-specific, we tried to avoid lo-
cation biases that might have been present in the recruiting process.
Results: Figure 4 presents the results of our study. We show pref-
erence for the executive treatment over the generic Yelp results for
the general user group and the executive user group, reflecting the
percentage of users who prefer the executive personalization. Over-
all, the boost, i.e. the difference in preference for executive in the
executive demographics vs. the general population is most pro-
nounced for Los Angeles (43%) and San Francisco (18%). The
average boost across the cities is about 30%, which indicates that,
on average, the executive personalization is quite effective.



7. RELATED WORK
Most efforts in the rapidly-growing space of mobile privacy re-

search focus on detection and prevention techniques for informa-
tion leaks, especially those in Android mobile apps [45, 26, 43, 15,
35]. TaintDroid [16] and Aquifer [35] are representative projects
in this space, whose full overview we omit for space reasons. Our
work takes a complementary position: leak detection tools prevent
malicious use of private data, while MOREPRIV offers devlopers a
route to use private data in a way that does not damage the privacy
of the user.

Resolving the tension between extensible personalization and
privacy is not a new problem, which we attempt to address with our
custom classifiers mechanism. Much work has been done on ver-
ified extensions, in contexts as diverse as OS drivers and browser
extensions. The problem of checking extensions for privacy leaks
can be addressed via static analysis [6], type systems [21], and run-
time information flow tracking. This kind of validation can be in-
tegrated with MOREPRIV or applied ahead of time by app store
maintainers, but validating extensions is not the focus of our work.
In contrast to many extensible systems, we do not require that cus-
tom classifiers be written in a special language, as, for example
in [18].

MOREPRIV falls into the category of efforts advocating client-
side computing as a way to enhance user privacy. In the context
of ad delivery, several researchers advocate remedying the problem
by storing the necessary sensitive personal data on the client, along
with all ads to be matched [23, 44, 27]. When an ad is displayed,
it is matched to personal information locally, thus sidestepping the
need to leak to the ad network. Accounting and click-fraud pre-
vention are addressed using either additional semi-trusted parties,
or homomorphic encryption. Although MOREPRIV can be used in
the context of personalized advertising, it has broader applicability
than advertising alone.

RePriv [18] explored personalization opportunities in the con-
text of a web browser by building a user interest profile based on
the user’s browsing history. RePriv profiles classify the sites the
user visits based on the Open Directory Project (ODP) taxonomy
of interests. Unlike RePriv, we focus on the mobile space. We go
further by integrating our system directly into the operating sys-
tem, drawing from more diverse data sources, and provide integrity
through zero-knowledge proofs.

Both MOREPRIV and RePriv are representative of an expand-
ing line of work focusing on client-side computing for privacy.
There are a number of notable differences between RePriv and
MOREPRIV: 1) MOREPRIV user data is very coarse-grained, and
its disclosure to apps is limited. This persona-based approach is
substantially different than the taxonomy-based approach of RePriv;
2) MOREPRIV does not impose a development language and an
onerous-to-use type system on the developer; 3) MOREPRIV alone
provides automatic personalization for legacy apps. The focus on
integrity and the use of Zero-Knowledge proof techniques is spe-
cific to MOREPRIV as well; 4) Since MOREPRIV is at the OS level,
it has access to different, rich sources or data - personalization ap-
proaches for the browser and OS are substantially different.

Zero-knowledge proofs [5, 7, 13] have seen extensive use in the
privacy and applied cryptography literature. Zero-Knowledge pro-
tocols have been developed for proving linear relations [9], equality
and inequality [41], logical connectives [9], multiplication [10], di-
vision and modulo [11], and set membership [10]. Taken together,
this work allows the construction of a zero-knowledge proof that
expresses the functionality of an arbitrary circuit, as in the case of
fully-homomorphic encryption [19].

8. CONCLUSIONS
This paper proposes operating system-level mechanisms that sup-

port automatic personalization of legacy applications, and simplify
building new personalized applications. Our focus is primarily
on mobile operating systems. Implementing a tool at this level
allows us leverage a broad variety of user activity, and distill it
into a trusted source of personalization information. We believe
that at the level of the operating system these opportunities are
largely untapped. We demonstrate that personalization can be done
quickly and effectively using personae, which provide a degree of
pseudonymity and are easy for users and developers to understand.

We show how both OS-wide universal personalization and cus-
tom personalization can be done with little effort by the developer,
making us hope that persona and location information can become
equally ubiquitous on mobile devices. We also demonstrate and
experimentally evaluate how MOREPRIV supports integrity of cus-
tom classifiers with the help of zero-knowledge proofs. With a
classifier using 100 feature words, the prover time is about 11 sec-
onds, the time to transfer the proof is under a second on an aver-
age 3G connection, and the battery utilization is negligible — un-
der 1 mAh. Our results show that trusted classification is feasible
with today’s zero-knowledge techniques.

Finally, we performed a crowd-sourced user study showing that
MOREPRIV-style personalization improves the relevance of Yelp
results, with business executives preferring MOREPRIV personal-
ized results most of the time (a boost of ~30%). In our experiments
we have observed cases where the general population and users
with a particular persona disagree on what is most relevant, high-
lighting the need for user profiling and personalization.

We believe MOREPRIV is timely and can enable game-changing
innovation around privacy through client-side computing.
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