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Abstract
The backends of today’s Internet services rely heavily on
caching at various layers both to provide faster service to
common requests and to reduce load on back-end compo-
nents. Cache placement is especially challenging given the
diversity of workloads handled by widely deployed Internet
services. This paper presents FLUXO, an analysis technique
that automatically optimizes cache placement. Our experi-
ments have shown that near-optimal cache placements vary
significantly based on input distribution.

Categories and Subject Descriptors H.3.5 [Online In-
formation Services]: Web-based services; D.4.2 [Storage
Management]: Distributed memories; D.4.7 [Operating
Systems]: Distributed systems; D.3.2 [Language Classifi-
cations]: Data-flow languages

General Terms Algorithms, Design, Experimentation, Lan-
guages, Management, Performance

Keywords Caching, simulation, optimization, dataflow
model, Internet services, cloud computing

1. Introduction
The backends of today’s Internet services rely heavily on
caching at various layers both to provide faster service to
common requests and to reduce load on back-end compo-
nents. In the context of a large-scale Internet service, a cache
bypasses the computation and/or I/O performed by one or
more components or tiers of the system. For best perfor-
mance, cache contents are usually stored in memory, making
them an expensive and scarce resource.
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To receive the optimal benefit, a cache must be placed
with careful consideration of incoming workload distribu-
tions, cached data sizes, consistency requirements, compo-
nent performance, and many other issues. Unfortunately,
many of these are cross-cutting concerns, and fully under-
standing the implications of a particular cache placement re-
quires a deep understanding of the entire system.

Today’s deployed systems largely rely on developer’s in-
tuition accompanied by localized profiling to select between
cache placements [Henderson 2008]. For instance, a service
architect might use cross-tier caching to alleviate a locally
observed performance bottleneck. However, he or she might
not realize the implications of this local decision on the re-
mainder of the system. Making matters more difficult, both
the service itself and the input workload are subject to rel-
atively frequent changes. In our own experiments, shown in
Section 4, we see that the most effective cache placement
varies significantly depending on input workload.

This paper presents FLUXO, an analysis technique that
automatically optimizes cache placement:

• FLUXO uses a dataflow model of an Internet service’s
coarse-grained behavior and performance to abstract our
reasoning about cache placement from the specific details
of the online service’s implementation. In recent years,
we have seen the emergence of a variety of dataflow-
based programming models for large-scale data analysis
and service composition [Dean 2008, Isard 2007, Yahoo!,
Inc. 2008, Microsoft 2008, Kohler 2000].
• FLUXO uses runtime request tracing of an Internet ser-

vice to capture performance characteristics as well as
input and intermediate data distributions. Request trac-
ing has been used for many analysis techniques in Inter-
net services, but especially for fault diagnosis [Reynolds
2006, Chen 2002, Szeredi 2005] and performance mod-
eling [Abd-El-Malek 2005, Barham 2004].
• FLUXO uses a simulation system combined with a hill-

climbing optimization algorithm to rapidly experiment
with a large space of possibilities and converge on rea-
sonably good cache placement decisions.



2. The Cache Placement Problem
The problem of placing caches in an Internet service can be
viewed abstractly as an optimization problem: a program-
mer must choose the locations and sizes of caches in the
most beneficial way possible and is constrained by the to-
tal amount of resources available for caches.

2.1 Assumptions and Goals
FLUXO’s primary goal is to minimize overall request la-
tency by allocating the cache space provided by a cluster
of caching servers. We assume that services are deployed
within a data center and that all back-end components are
within a single administrative domain. This is in contrast to a
large body of previous work on general, cross-enterprise web
service composition [Rao 2005]. While we do not believe
this is a fundamental limitation, issues of wide-area network
latencies, security, accounting, etc. are outside the scope of
this short paper. Further, we assume that a service runs on
a single machine and that its components make calls to ex-
ternal services as part of their computation. At larger scales,
we speculate that FLUXO could operate in an analogous way
using whole cache servers as its unit of allocation, but we do
not evaluate this case in this paper. We also do not consider
the effects of interaction between our services’ caches and
caches that may exist in front of external services.

2.2 Service Representation
To simplify our analysis of the service, we use a dataflow
model (or service graph) to represent its coarse-grained re-
quest handling behavior. An incoming request is modeled
as data that enters the service graph via a SOURCE node
and travels through the service graph until exiting at a SINK
node. All other nodes in the service graph are application
components, which are allowed to access external services
such as local databases, platform services, or remote Web
services. An example service, whose purpose is to produce a
weather report given an IP address and/or a zip code within
the United States, is shown in Figure 1. In this service, if an
IP address is provided, it is converted by an external service
into the city name where that IP address is located. A second
external service then converts that city name into a weather
report for that city. If a zip code is provided, that zip code is
passed to an external service which resolves it directly into
the weather report for that zip code. In the event that both the
IP address and zip code are provided, both of these chains of
execution are processed simultaneously and the result of the
first chain to complete is returned.

In this representation, computation performed by a node
can be cached by inserting a cache at the incoming edge of
the node. The cache stores the results of the computation
for a subset of inputs received by the node in the past. On
a hit, the cache forwards the results to the outgoing edge
of the node. On a miss, the cache forwards the input to the
node that then performs the computation. The cache then
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Figure 1: The service graph for a weather service application, used in our
case study. The component labeled “split” copies its input to its outputs,
while the component labeled “join” accepts and forwards whichever input
it receives first.

updates its state based on a prescribed replacement policy
before forwarding the result. This process of inserting a node
can be generalized to a subgraph of the dataflow graph. An
example of this is shown in Figure 2. As the figure shows,
the cache node that is inserted has exactly one incoming
and one outgoing edge. FLUXO can be extended to support
caches with multiple incoming and outgoing edges, but this
extension is the subject of future work. If a subgraph has
multiple incoming or outgoing edges, we choose the two
edges that comprise the beginning and end of a path through
all the nodes in the subgraph. For example, in Figure 2, the
edge from C to D is a valid outgoing edge, but not the edge
from B to E.

A cache will only accept one update per user request to
prevent other incoming edges to a cached subgraph from in-
correctly triggering a cache update. If multiple caches share
an incoming edge, the caches are checked in decreasing or-
der by subgraph size and when a larger cache hits, all smaller
caches are skipped. Care must be taken to ensure that the in-
sertion of a cache does not compromise the service’s ability
to complete when a cache hit occurs. We omit a discussion
of the intricacies due to space.

2.3 Potential Cache Locations
In all but the most simple of systems, several interrelated
concerns shape the decision of where to place caches and
how large to make them:

Component properties: The first concern in cache place-
ment is component performance. Good cache placements
should bypass one or more slow components in a system to
mitigate their latencies. Also, cache placements must avoid
violating semantic constraints, such as bypassing compo-
nents that have side-effects or inappropriately caching data
with strong consistency guarantees.

Workload properties: The workload distribution largely de-
termines the cache hit rate. The more repetitive the work-
load, the more effective the cache. Another key aspect of the
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Figure 2: An example dataflow transformation that caches the computation
performed by components B and C.

workload is the data size of the objects being cached, which
affects how many objects can fit into a cache of a given size.
Interdependencies: Further complicating the matter of
cache placement are the dependencies between the compo-
nents and workloads of a service. When multiple caches are
being added to a service graph, one cache can often reduce
the effectiveness of the other caches. For example, each of
the parallel branches in the service shown in Figure 1 can
execute independently and the “Join” component will for-
ward data from the branch that produces its output first. If
its hit rate is high, a cache for one branch can substantially
decrease the need for a cache for the other branch, since
the cache would frequently produce output before the other
branch. Similarly, adding a cache for the subgraph consist-
ing of “IP to City” and “City to Weather” may significantly
change the workload distribution (and cache-ability) of the
individual “City to Weather” component.

2.4 Complexity and Scale of State-Space
Analytically modeling the space of potential cache locations
is a challenging proposition. Given T units of memory ca-
pacity, a caching policy involves assigning these units to po-
tential cache locations in the service graph. Given n such
locations, there are (

T +n−1
n−1

)
different caching policies. Explicitly enumerating this expo-
nential space to determine the optimal caching policy is a
daunting task. Even for the simple graph in Figure 1 with
7 possible cache locations, distributing 100 units of capac-
ity requires searching over a billion policies. Accordingly,
unless more efficient analytical methods are found, finding
an approximate solution is the only feasible possibility. In
FLUXO, we experiment with a simulation based approach
that uses a hill-climbing algorithm to search the state space
for reasonably good caching policies.

To reduce the size of our search space, we make the
following observation. The difference between allocating B
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Figure 3: This graph show how the cache utility changes as we modify the
caching policy suggested by FLUXO. The lines represent capacity reallo-
cation from the cache for the entire graph (“All-Encompassing”) to 3 other
potential cache locations. (Split, Join) is the cache for the subgraph contain-
ing the nodes {Split, IP To City, City To Weather, Zip To Weather, Join}.
The other two lines are caches for the individual nodes ”Zip To Weather”
and ”Build HTML” respectively.

bytes to a cache and B + 1 bytes to a cache is likely to be
negligible unless the objects stored in the cache are very
small. When allocating sizes to cache locations, FLUXO
restricts the size of each cache to a multiple of the average
size of data output by that cache’s output component.

Figure 3 shows that the cache utility as a function of the
caching policy is highly non-linear, a significant challenge
to our hill-climbing algorithm. For our experiments, we de-
termine the utility of a caching policy by the net savings
in latency for a simulation of a given input stream. Start-
ing from the policy suggested by FLUXO, Figure 3 shows
the change in cache utility (y-axis) as the cache-capacity (x-
axis) is reallocated from a single cache for the entire graph
(“All-Encompassing”) to 3 other potential cache locations.
The figure reports the utility as a percentage of the utility
of the suggested policy. In our experiments, the service in
Figure 1 processes tens of bytes for each input request. We
expect realistic Internet services to process many orders of
magnitude larger amount of data. Accordingly, the unit of
reallocation (x-axis) used in the simulation of such services
will be larger.

3. Design and Implementation
FLUXO consists of two main parts, the FLUXO runtime and
the FLUXO optimizer. Although the analysis techniques pre-
sented in this paper can apply to any sufficiently decoupled
and instrumented service, our current tracing and simulation
tools assume that services have been written for the FLUXO
runtime. The FLUXO runtime is responsible for running ser-
vices, and is invoked with a description of the service to run
and an optional caching policy that states the size and po-
sition of the service’s caches. As the service receives and
processes a stream of user requests, the FLUXO runtime pro-



duces a stream of runtime observations or events. This or-
dered stream of events is then processed periodically by the
FLUXO optimizer. The optimizer’s responsibility is to gener-
ate a new and effective caching policy based on the observed
event stream. FLUXO does not attempt real-time migration
of system configurations, though others have achieved such
migrations in other contexts [Anderson 2002].

The FLUXO runtime is aware of the service structure
and has the ability to rewire the service graph to insert
caches in accordance with the caching policy, as discussed
in detail in Section 2. The optimization step may be repeated
with arbitrary frequency, limited only by computing power.
Alternatively, caching policy regeneration can be triggered
by a change to the service itself or the typical workload.
For instance, if workloads differ significantly from week to
week, caching policies may be generated on Sunday nights.

3.1 Service Simulator
The FLUXO optimizer contains a service simulator that sim-
ulates a given caching policy to determine its utility, since
to our knowledge no analytic caching model has been de-
veloped that takes into account arbitrary cache interference
and replacement policies in the context of data transforma-
tions. The list of events generated in response to a given
user request constitute a session, and events are processed
by the optimizer one session at a time. The time between the
first event (data exiting the SOURCE node) and the last event
(data entering the SINK node) in a session is that session’s
end-to-end latency.

To simulate a cache hit during a given session, the sim-
ulator temporarily adjusts the event stream for that session.
Events that would not have occurred because of the cache hit
are removed from consideration, and the times on all other
events are adjusted to simulate the time savings produced by
the cache hit. The simulator records the net decrease in end-
to-end latency across all sessions and reports this number as
the simulated caching policy’s utility.

The FLUXO runtime and the FLUXO simulator utilize the
same execution runtime and cache implementation, so we
believe our simulations to be accurate. However, such sim-
ulation is time-consuming, and exploring tradeoffs between
simulator accuracy and runtime remains future work.

3.2 Policy Generator
Examining the entire space of possible caching policies to
determine the best one is infeasible for all but the smallest
services. For realistic services, we apply hill-climbing search
algorithms to identify reasonably good caching policies. A
hill-climbing search starts from a random caching policy and
iteratively improves the solution by choosing the next policy
with best cache utility in the current neighborhood. This it-
eration proceeds until it finds a local optimum. If we pick a
large number of points in the space of possible policies and
perform a hill-climbing search from those points to local op-

Input Cache Locations Allocation
Thin-Tail {City to Weather} 65%

{Split, IP to City} 31%
{IP to City} 4%

Fat-Tail {Split, IP to City, City to Weather, 62%
Zipcode to Weather, Build HTML}
{Split, IP to City} 22%
{IP to City} 9%

Flat {IP to City, City to Weather, Join, 13%
Build HTML}
{IP to City, City to Weather, Join} 13%
{IP to City} 52%
{Zipcode to Weather, Join} 13%

Figure 4: Cache placements recommended by FLUXO for the case study’s
input distributions. Each cache location is described by the subgraph of the
service shown in Figure 1 over which it applies. Caches in this list with the
same input edge are checked from top to bottom.

tima in the solution space, the largest local optimum policy
so discovered is likely to be a good policy to recommend.

During hill-climbing, successor states are generated by
the following method: for each pair of cache locations for
which it is possible, modify the original state by adding the
mean observed output data size in bytes to the first cache’s
allocation and removing that same amount of bytes from the
second cache’s allocation. Each such modification generates
a new successor state.

The more points that are examined by the above method,
the more likely it is that a close-to-optimal solution will be
discovered. Most of the time spent in running the policy gen-
erator is spent evaluating successor states during the hill-
climbing search, since each evaluation requires a complete
simulation. If hill-climbing searches are started from very
low points in the space, a great deal of time will be wasted
climbing toward what are likely poor policies. As an opti-
mization, we evaluate the benefit of a large number of points
and then hill-climb from the top k of those points.

4. Case Study
To evaluate FLUXO in a repeatable manner, we evaluate
its performance on a simple service whose components are
linked to simulated external services. To make experimenta-
tion easier, we use a relatively small service with appropri-
ately scaled-down workload and cache capacity. In our im-
plementation, we analyze 20,000 random points in the space
of possible cache placements and choose the top 200 points
for hill-climbing. We estimate the performance of a point
through a simulated execution of 2700 requests, which re-
quires approximately 50 ms per point. The total amount of
memory available for caching in this simulation is 10 KB,
a size chosen so that the average size of a cache could hold
around 50 average-sized intermediate data items. We neglect
cache warm-up effects since an average-sized cache warms
up within the first 200 requests. The total execution time
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Figure 5: Latency improvements with different cache placement strategies
for different input distributions.

of our analysis, including hill-climbing, is approximately 90
minutes. Unfortunately, this analysis does not scale with the
size of the application, and we plan to explore the use of
faster analytical methods in future work.

The request stream given to the optimizer was also used to
evaluate the service’s performance, so the performance num-
bers given here are optimistic and are meant to convey the
best-case performance of FLUXO’s recommendations. Fu-
ture evaluation will use separate request streams for training
and evaluation.

We consider the following three input distributions in our
experiments: Thin-Tail, the original, heavy-tailed distribu-
tion of IP addresses observed in our production web service
logs; Fat-Tail, the thin-tail distribution, modified so that no
input is queried fewer than five times; and Flat, querying
each input an equal number of times.

We compare the choice made by the FLUXO optimizer
with the following naı̈ve policies: Random, cache bytes
are distributed randomly across all valid cache locations;
Uniform, cache bytes are distributed evenly across all valid
cache locations; and All-encompassing, a single cache is
created from SOURCE node to SINK node.

4.1 Experimental Setup
Initially, the weather service was backed by actual external
services. We found that these services could not support the
query volume required for a thorough evaluation, and so we
endeavored to simulate these services and to approximate
their functionality as closely as possible.

The simulated external services are backed by an IP and
zip code geolocation database; responses to database queries
are delayed by a random period of time. The sample from
which these random time periods is drawn is given by a
Pareto distribution[Newman 2005], a power-law probability

distribution, chosen because it closely matched the observed
distribution of actual service response times. The parameter-
ization of the distribution varies depending on the external
service being queried. These parameters were estimated by
recording request latencies for each external service across
several hundred queries.

All inputs given to the weather service are IP address-zip
code pairs so that both branches of the service graph can be
exercised. The input set for each experiment consists of a set
of such pairs. Each unique input pair p is queried rp times,
where rp is determined by one of our input distributions.

4.2 Experimental Results
For each of the workload distributions, FLUXO identifies
cache locations in the service graph that provide the high-
est cache hit rate and performance benefit. As shown in Fig-
ure 4, the chosen cache locations vary greatly based on the
type of input distribution. In the thin-tail case, the biggest
cache is placed around the City to Weather node because of
its higher hit rate than in the case of IP address-city mapping.
In the fat-tail case, the cache hit rate of the all-encompassing
cache is high enough to make caching the entire compu-
tation more effective than other strategies. In the flat case,
half of the total cache space is allocated to the component
with the highest latency along the most frequently taken
path, which is IP Address to City. The rest of the space is
allocated evenly among commonly-taken paths. The chart
in Figure 5 shows the improvements in end-to-end latency
achieved by using these recommendations compared to the
naı̈ve strategies. Note that no single policy is most appropri-
ate for all input distributions, although the all-encompassing
cache performs well in all cases. We speculate that an all-
encompassing cache may be sub-optimal for services whose
internal components have a higher degree of temporal lo-
cality than the service as a whole. Testing FLUXO on such
services remains future work.

5. Related Work
Previous successful work in automated design includes stor-
age system design for performance and reliability [Anderson
2002; 2005], recovery planning in storage systems [Keeton
2006], index and view selection in database systems [Agrawal
2000], and model-based resource provisioning in Internet
services [Doyle 2003, Shivam 2005]. It is future work to
incorporate many of these techniques into FLUXO, such
as algorithms for efficiently exploring the configuration
space [Anderson 2005], and improving the performance
models of simulated components [Stewart 2008].

Other work has studied the problems of sizing and place-
ment for document caches in wide-area information dissem-
ination [Kelly 2001, Chu 2008, Wang 1999]. FLUXO, how-
ever, focuses on the automated design of caches for the in-
ternal computation and I/O of a system. The most significant
difference is that FLUXO must analyze cache behaviors in



the context of data transformations, such as the transforma-
tion from IP addresses to zip codes to weather data, compli-
cating the modeling of interference between caches.

6. Future Work
The challenges we are currently addressing include:

Applying FLUXO to imperative programs: The next step
in making FLUXO more applicable to real-world services
is to apply its analysis to dataflow models automatically
extracted from coarse-grained traces of real-world services.

Scalability of analysis algorithms: Promising approaches
to improving our analysis scalability include 1) machine
learning algorithms that are more robust to searching discon-
tinuous spaces; 2) a simple parallelized analysis to exploit
multiple cores or clusters; and 3) caching of common graph
and simulation results across the rounds of our analysis.

Other future work includes using FLUXO’s analysis to opti-
mize additional caching parameters, such as cache lifetimes
and replacement policies; and applying FLUXO to adapt
cache placement decisions on-line as workload changes.

7. Summary
While today, Internet service architects and developers per-
form cache placement based on intuition or rules of thumb,
all the necessary data to fully automate this decision pro-
cess is available through runtime tracing of workload distri-
butions and component performance.

This paper presents FLUXO, a system to automatically
place caches to improve the latency of large-scale online
Internet services. Our results show that, using our dataflow-
based system model and information obtained from runtime
traces, an automatic system can be constructed that produces
good caching policy recommendations. Challenges remain,
however, in improving the scalability of FLUXO’s analytical
techniques and broadening their application.
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