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Abstract. Credit allows a lender to loan out surplus capital to a bor-
rower. In the traditional economy, credit bears the risk that the bor-
rower may default on its debt, the lender hence requires upfront collat-
eral from the borrower, plus interest fee payments. Due to the atomicity
of blockchain transactions, lenders can offer flash loans, i.e., loans that
are only valid within one transaction and must be repaid by the end of
that transaction. This concept has lead to a number of interesting attack
possibilities, some of which were exploited in February 2020.
This paper is the first to explore the implication of transaction atomicity
and flash loans for the nascent decentralized finance (DeFi) ecosystem.
We show quantitatively how transaction atomicity increases the arbitrage
revenue. We moreover analyze two existing attacks with ROIs beyond
500k%. We formulate finding the attack parameters as an optimization
problem over the state of the underlying Ethereum blockchain and the
state of the DeFi ecosystem. We show how malicious adversaries can
efficiently maximize an attack profit and hence damage the DeFi ecosys-
tem further. Specifically, we present how two previously executed attacks
can be “boosted” to result in a profit of 829.5k USD and 1.1M USD,
respectively, which is a boost of 2.37× and 1.73×, respectively.

1 Introduction

A central component of our economy is credit: to foster economic growth, market
participants can borrow and lend assets to each other. If credit creates new
and sustainable value, it can be perceived as a positive force. Abuse of credit,
however, necessarily entails negative future consequences. Excessive debt can
lead to a debt default — i.e., a borrower is no longer capable to repay the loan
plus interest payment. This leads us to the following intriguing question: What
if it were possible to offer credit without bearing the risk that the borrower does
not pay back the debt? Such a concept appears impractical in the traditional
financial world. No matter how small the borrowed amount, and how short the
loan term, the risk of the borrower defaulting remains. If one were absolutely
certain that a debt would be repaid, one could offer loans of massive volume –
or lend to individuals independently of demographics and geographic location,
effectively providing capital to rich and poor alike.

Given the peculiarities of blockchain-based smart contracts, flash loans emerged.
Blockchain-based smart contracts allow to programmatically enforce the atomic
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execution of a transaction. A flash loan is a loan that is only valid within one
atomic blockchain transaction. Flash loans fail if the borrower does not repay
its debt before the end of the transaction borrowing the loan. That is because
a blockchain transaction can be reverted during its execution if the condition
of repayment is not satisfied. Flash loans yield three novel properties, absent in
traditional finance:

– No debt default risk: A lender offering a flash loan bears no risk that the
borrower defaults on its debt1. Because a transaction and its instructions
must be executed atomically, a flash loan is not granted if the transaction
fails due to a debt default.

– No need for collateral: Because the lender is guaranteed to be paid back,
the lender can issue credit without upfront collateral from the borrower: a
flash loan is non-collateralized.

– Loan size: Flash loans can be taken from public smart contract-governed
liquidity pools. Any borrower can borrow the entire pool at any point in
time. As of September 2020, the largest flash loan pool Aave [13] offers in
excess of 1B USD [1].

To the best of our knowledge, this is the first paper that investigates flash
loans. This paper makes the following contributions:

– Flash loan usage analysis. We provide a comprehensive overview of how
and where the technique of flash loans can and is utilized. At the time of
writing, flash loan pool sizes have reached more than 1B USD.

– Post mortem of existing attacks. We meticulously dissect two events
where talented traders realized a profit of each about 350k USD and 600k
USD with two independent flash loans: a pump and arbitrage from the 15th
of February 2020 and an oracle manipulation from the 18th of February 2020.

– Attack parameter optimization framework. Given the interplay of six
DeFi systems, covering exchanges, credit/lending, and margin trading, we
provide a framework to quantify the parameters that yield the maximum
revenue an adversary can achieve, given a specific trading attack strategy.
We show that an adversary can maximize the attack profit efficiently (in less
than 13ms) due to the atomic transaction property.

– Quantifying opportunity loss. We show how the presented flash loan at-
tackers have forgone the opportunity to realize a profit exceeding 829.5k USD
and 1.1M USD, respectively. We realize this by finding the optimal adver-
sarial parameters the trader should have employed, using a parametrized
optimizer. We experimentally validate the opportunity loss on a locally de-
ployed blockchain mirroring the attacks’ respective blockchain state.

– Impact of transaction atomicity on arbitrage. We show quantitatively
how atomicity reduces the risk of revenue from arbitrage. Specifically, by
analyzing 6.4M transactions, we find that the expected arbitrage reward de-
creases by 123.49±1375.32 USD and 1.77±10.59 USD for the DAI/ETH and

1 Besides the risk of smart contract vulnerabilities.
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MKR/ETH markets respectively when the number of intermediary transac-
tions reaches 5, 000.

Paper organization: The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the DeFi background. Section 3 dissects two known flash
loan attacks. Section 4 proposes a framework to optimize the attack revenues
and Section 5 evaluates the framework on the two analyzed attacks. Section 6
analyses the implications of the atomic transaction property. Section 7 provides
a discussion. We conclude the paper in Section 8.

2 Background

Decentralized ledgers, such as Bitcoin [44], enable the performance of trans-
actions among a peer-to-peer network. At its core, a blockchain is a chain
of blocks [17,44], extended by miners crafting new blocks that contain trans-
actions. Smart contracts [49] allow the execution of complicated transactions,
which forms the foundation of decentralized finance, a conglomerate of financial
cryptocurrency-related protocols. These protocols for instance allow to lend and
borrow assets [39,4], exchange [24,11], margin trade [24,3], short and long [3],
and allow to create derivative assets [4]. At the time of writing, the DeFi space
accounts for over 8B USD in smart contract locked capital among different
providers. The majority of the DeFi platforms operate on the Ethereum blockchain,
governed by the Ethereum Virtual Machine (EVM), where the trading rules are
governed by the underlying smart contracts. A decentralized exchange is typi-
cally referred to as DEX. We refer to the on-chain DeFi actors as traders and
distinguish among the two types of traders:
Liquidity Provider: a trader with surplus capital may choose to offer this
capital to other traders, e.g., as collateral within a DEX or lending platform.
Liquidity Taker: a trader which is servicing liquidity provider with fees in
exchange for accessing the available capital.

2.1 DeFi Platforms

We briefly summarize relevant DeFi platforms for this work.
Automated market maker (AMM) DEX: While many exchanges follow the
limit order book design [40,35,34], an alternative exchange design is to collect
funds within a liquidity pool, e.g., two pools for an AMM asset pair X/Y [11,34].
The state (or depth) of an AMM market X/Y is defined as (x, y), where x rep-
resents the amount of asset X and y the amount of asset Y in the liquidity pool.
Liquidity providers can deposit/withdraw in both assets X and Y to in/de-
crease liquidity. The simplest AMM mechanism is a constant product market
maker, which for an arbitrary asset pair X/Y , keeps the product x × y con-
stant during trades. When trading on an AMM exchange, there can be a differ-
ence between the expected price and the executed price, termed slippage [10].
Insufficient liquidity and other front-running trades can cause slippage on an
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AMM [52]. We assume that a constant product AMM ETH/WBTC market is
supplied with 10 ETH and 10 WBTC (i.e., the exchange rate is 1 ETH/WBTC).
A trader can purchase 5 WBTC with 10 ETH (cf. 10×10 = (10+10)× (10−5))
at an effective price of 2 ETH/WBTC. Hence, the slippage is 2−1

1 = 100%.
Margin trading: Trading on margin allows a trader to take under-collateralized
loans from the trading platform and trade with these borrowed assets to amplify
the profit (i.e., leverage). On-chain margin trading platforms remain in control
of the loaned asset (or the exchanged asset) and hence is able to liquidate when
the value of the trader’s collateral drops too low.
Credit and lending: With over 3B USD total locked value, credit represents
one of the most significant recent use-cases for blockchain based DeFi systems.
Due to the lack of legal enforcement when borrowers default, they are required
to provide between 125% [24] to 150% [39] collateral of an asset x to borrow
100% of another asset y (i.e., over-collateralization).

2.2 Reverting EVM State Transitions

The Ethereum blockchain is in essence a replicated state machine. To achieve a
state transition, one applies as input transactions that modify the EVM state
following rules encoded within deployed smart contracts. A smart contract can be
programmed with the logic of reverting a transaction if a particular condition is
not met during execution. The EVM state is only altered if a transaction executes
successfully, otherwise, the EVM state is reverted to the previous, non-modified
state.

Flash Loans. Flash loans are possible because the EVM allows the reversion of
state changes. A flash loan is only valid within a single transaction and relies
on the atomicity of blockchain (and, specifically, EVM) transactions within a
single block. Flash loans entail two important new financial properties: First,
a lender does not need to provide upfront collateral to request a loan of any
size, up to the flash loan liquidity pool amount. Any lender, willing to pay the
required transaction fees (which typically amounts to a few USD) is an eligible
lender. Second, risk-free lending: If a lender cannot pay back the loan, the flash
loan transaction fails. Ignoring smart contract and blockchain vulnerabilities,
the lender is hence not exposed to the risks of a debt default.

2.3 Flash Loan Usage in the Wild

To our knowledge, the Marble Protocol introduced the concept of flash loans [8].
Aave [13] is one of the first DeFi platforms to widely advertise flash loan capabil-
ities (although others, such as dYdX also allow the non-documented possibility
to borrow flash loans) since January 2020. At the time of writing, Aave charges
a constant 0.09% interest fee for flash loans and amassed a total liquidity be-
yond 1B USD [1]. In comparison, the total volume of U.S. corporation debt
reached 10.5T USD in August, 2020 [12].
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Fig. 1: Accumulative flash loan amounts of 13 cryptocurrencies on Aave. Note
that the y-axis is a logarithmic scale.

By gathering all blockchain event logs from Aave with a full archive Ethereum
node, we find 5, 616 flash loans issued from the Aave smart contract (cf. 0x398eC7
346DcD622eDc5ae82352F02bE94C62d119) between the 8th of January, 2020 and
the 20th of September, 2020. In Figure 1, we show the accumulative flash loan
amounts of 13 different loan currencies. Among them, DAI is the most popular
with the accumulative amount of 447.2M USD. We inspect and classify the Aave
flash loan transactions depending on which platforms the flash loans interact
with (cf. Figure 11 in Appendix A). We notice that most flash loans interact
with lending/exchange DeFi systems and that the flash loan’s transaction costs
(i.e., gas) appear significant (at times beyond 4M gas, compared to 21k gas for
regular Ether transfer). The dominating use cases are arbitrage and liquidation.
Further details are presented in Appendix A.
Flash Loan Arbitrage example: The value of an asset is typically determined
by the demand and supply of the market, across different exchanges. Due to a
lack of instantaneous synchronization among exchanges, the same asset can be
traded at slightly different prices on different exchanges. Arbitrage is the pro-
cess of exploiting price differences among exchanges for a financial gain [46].
In Figure 2, we present, as an example, the execution details of a flash loan
based arbitrage transaction on the 31st of July, 2020. The arbitrageur borrowed
a flash loan of 2.048M USDC, performed two exchanges, and realized a profit
of 16.182k USDC (16.182k USD). This example highlights how given atomic

1.	Flash	Loan	 M	USDC

4.	Repay	 M	USDC

2.	Exchange	 M	USDC
for	 M	DAI

	at	price	 	USDC/DAI		

3.	Exchange	 M	DAI
for	 M	USDC

	at	price	 	USDC/DAI		

dYdX arbitrageur

Curve
Y

Curve
sUSDProfit:	 k	USDC

Fig. 2: High-level executions of a flash loan based arbitrage transaction
0xf749..754a: (1) flash loan; (2) exchange USDC for DAI in Curve Y pool; (3)
exchange DAI for USDC in Curve sUSDC pool; (4) repay. Note that Curve
provides several on-chain cryptocurrency markets, also known as pools.

https://etherscan.io/address/0x398eC7346DcD622eDc5ae82352F02bE94C62d119
https://etherscan.io/address/0x398eC7346DcD622eDc5ae82352F02bE94C62d119
https://etherscan.io/tx/0xf7498a2546c3d70f49d83a2a5476fd9dcb6518100b2a731294d0d7b9f79f754a
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transactions, a trader can perform arbitrage on different on-chain markets, with-
out the risk that the prices in the DEX would intermediately change. Flash loans
moreover remove the currency volatility risk for arbitrageurs. In Section 6, we
quantify the implications of transaction atomicity on arbitrage risks.

Besides arbitrage, we noticed another two use cases for flash loans: (i) wash
trading (fraudulent inflation of trading volume), (ii) loan collateral swapping
(instant swapping from one collateral to another), and also a variation of flash
loan, (iii) flash minting (the momentarily token in- and decrease of an asset).
We elaborate further on these in Appendix B and provide real-world examples.

2.4 Related work

There is a growing body of work focusing on various forms of manipulation and
financially-driven attacks in cryptocurrency markets.
Crypto Manipulation: Front-running in cryptocurrencies has been extensively
studied [25,22,18,32,5,52]. Remarkably, Daian et al. [22] introduce the concept of
miner extractable value (MEV) and analyze comprehensively the exploitability of
ordering blockchain transactions. Our work focuses on flash loans, which qualify
as a potential MEV that miners could exploit. Gandal et al. [26] demonstrate
that the unprecedented spike in the USD-BTC exchange rate in late 2013 was
possibly caused by price manipulation. Recent papers focus on the phenomenon
of pump-and-dump for manipulating crypto coin prices [51,33,28].
Smart Contract Vulnerabilities: Several exploits have taken advantage of
smart contract vulnerabilities (e.g., the DAO exploit [9]). The most commonly
known smart contract vulnerabilities are re-entrancy, unhandled exceptions,
locked ether, transaction order dependency and integer overflow [37]. Many tools
and techniques, based on fuzzing [36,31,50], static analysis [48,19,47], symbolic
execution [37,43,45], and formal verification [16,14,27,29,30], emerged to detect
and prevent these vulnerabilities. In this work, we focus on DeFi economic se-
curity, which might not result from a single contract vulnerability and could
involve multiple DeFi platforms.

3 Flash Loan Post-Mortem

Flash loans enable anyone to have instantaneous access to massive capital. This
section outlines how that can have negative effects, as we explain two attacks
facilitated by flash loans yielding an ROI beyond 500k%. We evaluate the pro-
posed DeFi attack optimization framework (cf. Section 4) on these two analyzed
attacks (cf. Section 5).

3.1 Pump Attack and Arbitrage (PA&A)

On the 15th of February, 2020, a flash loan transaction (cf. 0xb5c8bd9430b6cc87a
0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838 at an ETH price of 264.71 US-
D/ETH), followed by 74 transactions, yielded a profit of 1, 193.69 ETH (350k

https://etherscan.io/tx/0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838
https://etherscan.io/tx/0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838
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1)	Flash	Loan	Provider	(dYdX)
borrow	10,000.00	ETH

2)	Lending	(Compound)
collateralize	5,500.00	ETH	and	borrow	112.00	WBTC

3.1)	Margin	Trade	Provider	(bZx)
5x	short	1,300.00	ETH	against	WBTC

3.2)	Exchange	(WBTC	Uniswap)
convert	5,637.62	ETH	to	51.35	WBTC

4)	Exchange	(WBTC	Uniswap)
convert	112.00	WBTC	to	6,871.41	ETH

5)	Flash	Loan	Provider	(DyDx)
repay	10,000.00	ETH

3,200.00	ETH 10,071.41	ETH

71.41	ETH

Flash	loan
transaction

(block	9484688)

Block	
9484917	-	9496602

a)	Exchange	(Kyber)
convert	4,377.72	ETH	to	112.00	WBTC

b)	Lending	(Compound)
repay	112.00	WBTC	and	redeem	5,500.00	ETH

ETH	Flow

WBTC	Flow

Uniswap	Pool	Size
2817.77	ETH	
77.09	WBTC

8455.40	ETH	
25.74	WBTC

Uniswap	Pool	Size
8455.40	ETH
25.74	WBTC

1583.98	ETH	
137.74	WBTC

Fig. 3: The pump attack and arbitrage. The attack consists of two parts, a flash
loan and several loan redemption transactions.

USD) given a transaction fee of 132.36 USD (cumulative 50, 237, 867 gas, 0.5
ETH). We show in Section 5.1 that the adversarial parameters were not opti-
mal, and that the adversary could have earned a profit exceeding 829.5k USD.
Attack intuition: The core of PA&A is that the adversary pumps the price
of ETH/WBTC on a constant product AMM DEX (Uniswap) with the lever-
aged funds of ETH in a margin trade. The adversary then purchases ETH at
a “cheaper” price on the distorted DEX market (Uniswap) with the borrowed
WBTC from a lending platform (Compound). As shown in Figure 3, this attack
mainly consists of two parts. For simplicity, we omit the conversion between
ETH and WETH (the 1:1 convertible ERC20 version of ETH).
Flash Loan (single transaction): The first part of the attack (cf. Figure 3)
consists of 5 steps within a single transaction. In step 1 , the adversary bor-
rows a flash loan of 10, 000.00 ETH from a flash loan provider (dYdX). In step
2 , the adversarial trader collateralizes 5, 500.00 ETH into a lending platform
(Compound) to borrow 112.00 WBTC. Note that the adversarial trader does
not return the 112.00 WBTC within the flash loan. This means the adver-
sarial trader takes the risk of a forced liquidation against the 5, 500.00 ETH
collateral if the price fluctuates. In steps 3 , the trader provides 1, 300 ETH
to open a short position for ETH against WBTC (on bZx) with a 5× lever-
age. Upon receiving this request, bZx transacts 5, 637.62 ETH on an exchange
(Uniswap) for only 51.35 WBTC (at 109.79 ETH/WBTC). Note that at the
start of block 9484688, Uniswap has a total supply of 2, 817.77 ETH and 77.09
WBTC (at 36.55 ETH/WBTC). The slippage of this transaction is significant
with 109.79−36.55

36.55 = 200.38%. In step 4 , the trader converts 112.00 WBTC
borrowed from lending platform (Compound) to 6, 871.41 ETH on the DEX
(Uniswap) (at 61.35 ETH/WBTC). We remark that the equity of the adversar-
ial margin account is negative after the margin trading because of the significant
price movement. The pump attack could have been avoided if bZx checked the
negative equity and reverted the transaction. At the time of the attack, this
logic existed in the bZx contracts but was not invoked properly. In step 5 , the
trader pays back the flash loan plus an interest of 10−7 ETH. After the flash loan
transaction (i.e., the first part of PA&A), the trader gains 71.41 ETH, and has
a debt of 112 WBTC over-collateralized by 5, 500 ETH (49.10 ETH/WBTC). If

https://etherscan.io/block/9484688
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the ETH/WBTC market price is below this loan exchange rate, the adversary
can redeem the loan’s collateral as follows.
Loan redemption: The second part of the trade consists of two recurring steps,
(step a - b ), between Ethereum block 9484917 and 9496602. Those transactions
aim to redeem ETH by repaying the WBTC borrowed earlier (on Compound).
To avoid slippage when purchasing WBTC, the trader executes the second part
in small amounts over a period of two days on the DEX (Kyber, Uniswap). In
total, the adversarial trader exchanged 4, 377.72 ETH for 112 WBTC (at 39.08
ETH/WBTC) to redeem 5, 500.00 ETH.
Identifying the victim: We investigate who of the participating entities is
losing money. Note that in step 3 of Figure 3, the short position (on bZx)
borrows 5, 637.62 − 1, 300 = 4, 337.62 ETH from the lending provider (bZx),
with 1, 300 ETH collateral. Step 3 requires to purchase WBTC at a price
of 109.79 ETH/WBTC, with both, the adversary’s collateral and the pool funds
of the liquidity provider. 109.79 ETH/WBTC does not correspond to the mar-
ket price of 36.55 ETH/WBTC prior to the attack, hence the liquidity provider
overpays by nearly 3× of the WBTC price.
How much are the victims losing: We now quantify the losses of the liquidity
providers. The loan provider lose 4, 337.62 (ETH from loan providers) - 51.35
(WBTC left in short position) × 39.08 (market exchange rate ETH/WBTC) =
2, 330.86 ETH. The adversary gains 5, 500.00 (ETH loan collateral in Compound)
- 4, 377.72 (ETH spent to purchase WBTC) + 71.41 (part 1) = 1, 193.69 ETH.
More money is left on the table: Due to the attack, Uniswap’s price of ETH
was reduced from 36.55 to 11.50 ETH/WBTC. This creates an arbitrage oppor-
tunity, where a trader can sell ETH against WBTC on Uniswap to synchronize
the price. 1, 233.79 ETH would yield 60.65 WBTC, instead of 33.76 WBTC,
realizing an arbitrage profit of 26.89 WBTC (286, 035.04 USD).

3.2 Oracle Manipulation Attack

We proceed to detail a second flash loan attack, which yields a profit of 2, 381.41
ETH (c. 634.9k USD) within a single transaction (cf. 0x762881b07feb63c436de
e38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15, on the 18th of February, 2020,
at an ETH price of 282.91 USD/ETH) given a transaction fee of 118.79 USD.
Before diving into the details, we cover additional background knowledge. We
again show how the chosen attack parameters were sub-optimal and optimal
parameters would yield a profit of 1.1M USD instead (cf. Section 5.2).
Price oracle: One of the goals of the DeFi ecosystem is to not rely on trusted
third parties. This premise holds both for asset custody as well as additional
information, such as asset pricing. One common method to determine an asset
price is hence to rely on the pricing information of an on-chain DEX (e.g.,
Uniswap). DEX prices, however, can be manipulated with flash loans.
Attack intuition: The core of this attack is an oracle manipulation using a
flash loan, which lowers the price of sUSD/ETH. In a second step, the adversary
benefits from this decreased sUSD/ETH price by borrowing ETH with sUSD as
collateral.

https://etherscan.io/block/9484917
https://etherscan.io/block/9496602
https://etherscan.io/tx/0x762881b07feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15
https://etherscan.io/tx/0x762881b07feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15
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1)	Flash	Loan	Provider	(bZx)
borrow	7,500.00	ETH

2)	Exchange	(sUSD	Uniswap)
convert	540.00	ETH	to	92,419.70	sUSD

3)	Exchange	(Kyber)
convert	360.00	ETH	to	63,584.09	sUSD

4)	Exchange	(Synthetix)
deposit	3,517.86	ETH	for	943,837.59	sUSD

5)	Lending	(bZx)
collateralize	1,099,841.39	sUSD	and	borrow	6,799.27	ETH

6)	Flash	Loan	Provider	(bZx)
repay	7,500.00	ETH

3,082.14	ETH

1,099,841.39	sUSD

9,881.41	ETH

2,381.41	ETH ETH	Flow sUSD	Flow

Uniswap	Pool	Size
879.76	ETH		243,441.12	sUSD

1,419.76	ETH	151,021.42	sUSD

Kyber	Reserve	Pool	Size
0.91	ETH	107,901.90	sUSD

360.91	ETH	44,317.80	sUSD

Fig. 4: The oracle manipulation attack.

Adversarial oracle manipulation: We identify a total of 6 steps within
this transaction (cf. Figure 4). In step 1 , the adversary borrows a flash loan
of 7, 500.00 ETH (on bZx). In the next three steps ( 2 , 3 , 4 ), the adversary
converts a total of 4, 417.86 ETH to 943, 837.59 sUSD (at an average of 213.64
sUSD/ETH). The exchange rates in step 2 and 3 are 171.15 and 111.23 sUS-
D/ETH respectively. These two steps decrease the sUSD/ETH price to 106.05
sUSD/ETH on Uniswap and 108.44 sUSD/ETH on Kyber Reserve, which are col-
lectively used as a price oracle of the lending platform (bZx). Note that Uniswap
is a constant product AMM, while Kyber Reserve is an AMM following a dif-
ferent formula (cf. Appendix C). The trade on the third market (Synthetix) in
step 4 is yet unaffected by the previous trades. The adversarial trader then
collateralizes all the purchased sUSD (1, 099, 841.39) to borrow 6, 799.27 ETH
(at exchange rate

collateral factor = max(106.05, 108.44) × 1.5 = 162.66 sUSD/ETH on bZx).
Now the adversary possesses 6, 799.27+3, 082.14 ETH and in the last step repays
the flash loan amounting to 7, 500.00 ETH. The adversary, therefore, generates a
revenue of 2, 381.41 ETH while only paying 0.42 ETH (118.79 USD) transaction
fees.
Identifying the victim: The adversary distorted the price oracle (Uniswap
and Kyber) from 268.30 sUSD/ETH to 108.44 sUSD/ETH, while other DeFi
platforms remain unaffected at 268.30 sUSD/ETH. Similar to the pump attack
and arbitrage, the lenders on bZx are the victims losing assets as a result of the
distorted price oracle. The lender lost 6, 799.27 ETH - 1, 099, 841 sUSD, which
is estimated to be 2, 699.97 ETH (at 268.30 sUSD/ETH). The adversary gains
6, 799.27 (ETH from borrowing) - 3, 517.86 (ETH to purchase sUSD) - 360 (ETH
to purchase sUSD) - 540 (ETH to purchase sUSD) = 2, 381.41 ETH.

4 Optimizing DeFi Attacks

The atomicity of blockchain transactions guarantees the continuity of the action
executions. When the initial state is deterministically known, this trait allows an
adversary to predict the intermediate results precisely after each action execution
and then to optimize the attacking outcome by adjusting action parameters.
In light of the complexity of optimizing DeFi attacks manually, we propose
a constrained optimization framework that is capable of optimizing the action
parameters. We show, given a blockchain state and an attack vector composed
of a series of DeFi actions, how an adversary can efficiently discover the optimal
action parameters that maximize the resulting expected revenue.
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4.1 System and Threat Model

The system considered is limited to one decentralized ledger which supports
pseudo-Turing complete smart contracts (e.g., similar to the Ethereum Virtual
Machine; state transitions can be reversed given certain conditions).

We assume the presence of one computationally bounded and economically
rational adversary A. A attempts to exploit the availability of flash loans for
financial gain. While A is not required to provide its own collateral to perform the
presented attacks, the adversary must be financially capable to pay transaction
fees. The adversary may amass more capital which possibly could increase its
impact and ROI.

4.2 Parametrized Optimization Framework

We start by modeling different components that may engage in a DeFi attack. To
facilitate optimal parameter solving, we quantitatively formalize every endpoint
provided by DeFi platforms as a state transition function S′ = T (S; p) with the
constraints C(S; p), where S is the given state, p are the parameters chosen by
the adversary and S′ is the output state. The state can represent, for example,
the adversarial balance or any internal status of the DeFi platform, while the
constraints are set by the execution requirements of the EVM (e.g., the Ether
balance of an entity should never be a negative number) or the rules defined
by the respective DeFi platform (e.g., a flash loan must be repaid before the
transaction termination plus loan fees). When quantifying profits, we ignore
the loan interest/fee payments and transaction fees, which are negligible in the
present DeFi attacks. The constraints are enforced on the input parameters and
output states to ensure that the optimizer yields valid parameters.

We define the balance state function B(E; X; S) to denote the balance of
currency X held by entity E at a given state S and require Equation 1 to hold.

∀(E, X, S), B(E; X; S) ≥ 0 (1)

The mathematical DeFi models applied in this work are detailed in Appendix C.
Our parametrized optimizer is designed to solve the optimal parameters that

maximizes the revenue given an on-chain state, DeFi models and attack vector.
An attack vector specifies the execution order of different endpoints across var-
ious DeFi platforms, depending on which we formalize a unidirectional chain of
transition functions (cf. Equation 2).

Si = Ti(Si−1; pi) (2)

By nesting transition functions, we can obtain the cumulative state transition
functions ACCi(S0; p1:i) that satisfies Equation 3, where p1:i = (p1, ..., pi).

Si = Ti(Si−1; pi) = Ti(Ti−1(Si−2; pi−1); pi)
= Ti(Ti−1(...T1(S0, p1)...; pi−1); pi) = ACCi(S0; p1:i)

(3)
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Therefore the constraints generated in each step can be expressed as Equation 4.

Ci(Si; pi)⇐⇒ Ci(ACCi(S0; p1:i); pi) (4)

We assume an attack vector composed of N transition functions. The objective
function can be calculated from the initial state S0 and the final state SN (e.g.,
the increase of the adversarial balance).

O(S0; SN )⇐⇒ O(S0;ACC(S0; p1:N )) (5)

Given the initial state S0, we formulate an attack vector into a constrained
optimization problem with respect to all the parameters p1:N (cf. Equation 6).

maximize O(S0;ACC(S0; p1:N ))
s.t. Ci(ACCi(S0; p1:i); pi) ∀i ∈ [1, N ]

(6)

5 Evaluation

In the following, we evaluate our parametrized optimization framework on the
existing attacks described in Section 3. We adopt the Sequential Least Squares
Programming (SLSQP) algorithm from SciPy2 to solve the constructed opti-
mization problems. Our framework is evaluated on a Ubuntu 18.04.2 machine
with 16 CPU cores and 32 GB RAM.

5.1 Optimizing the Pump Attack and Arbitrage

We first optimize the pump attack and arbitrage. Figure 5 summarizes the no-
tations and the on-chain state when the attack was executed (i.e., S0). We use
these blockchain records as the initial state in our evaluation. X and Y denote
ETH and WBTC respectively. In the PA&A attack vector, we intend to tune
the following two parameters, (i) p1: the amount of X collateralized to borrow Y
(cf. step 2 and 3 in Figure 3) and (ii) p2: the amount of X collateralized to short
Y (cf. step 4 in Figure 3). Following the methodology specified in Section 4.2,
we derive the optimization problem and the corresponding constraints, which
are presented in Figure 6. We detail the deriving procedure in Appendix D. We
remark that there are five linear constraints and only one nonlinear constraint,
which implies that the optimization can be solved efficiently.

We repeated our experiment for 1, 000 times, the optimizer spent 6.1ms
on average converging to the optimum. The optimizer provides a maximum
revenue of 2, 778.94 ETH when setting the parameters (p1; p2) to (2, 470.08;
1, 456.23), while in the original attack the parameters (5, 500; 1, 300) only yield
1, 171.70 ETH. Due to the ignorance of trading fees and precision differences,
there is a minor discrepancy between the original attack revenue calculated with
our model and the real revenue which is 1, 193.69 ETH (cf. Section 3). This is
2 https://www.scipy.org/. We use the minimize function in the optimize package.

https://www.scipy.org/
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Description Variable Value

Maximum Amount of ETH to flash loan vX 10, 000
Collateral Factor cf 0.75
Collateralized Borrowing Exchange Rate er 36.48
Maximum Amount of WBTC to Borrow zY 155.70
Uniswap Reserved ETH uX(S0) 2, 817.77
Uniswap Reserved WBTC uY(S0) 77.08
Over Collateral Ratio ocr 1.153
Leverage ` 5
Maximum Amount of ETH to leverage wX 4, 858.74
Market Price of WBTC pm 39.08

Fig. 5: Initial on-chain states of the
PA&A.

Objective
uX(S0) + p2×`

ocr − uX(S4)− p2 − p1×cf×pm
erfunction

Constraints

p1 ≥ 0, p2 ≥ 0
vX − p0 − p1 ≥ 0

zY − p1×cf
er ≥ 0

wX + p2 − p2×`
ocr ≥ 0

B0 + uX(S0) + p2×`
ocr − uX(S4)− p1 − p2 ≥ 0

Fig. 6: Generated PA&A constraints.
uX(S4) is nonlinear with respect to p1
and p2.

a 829.5k USD gain over the attack that took place, using the price of ETH at
that time. We experimentally validate the optimal PA&A parameters by fork-
ing the Ethereum blockchain with Ganache [6] at block 9484687 (one block
prior to the original attack transaction). We then implement the pump attack
and arbitrage in solidity v0.6.3. The revenue of the attack is divided into two
parts: part one from the flash loan transaction, and part two which is a follow-
up operation in later blocks (cf. Section 3) to repay the loan. For simplicity,
we chose to only validate the first part, abiding by the following methodol-
ogy: (i) We apply the parameter output of the parametrized optimizer, i.e.,
(p1; p2) = (2, 470.08; 1, 456.23) to the adversarial validation smart contract. (ii)
Note that our model is an approximation of the real blockchain transition func-
tions. Hence, due to the inaccuracy of our model, we cannot directly use the
precise model output, but instead use the model output as a guide for a manual,
trial, and error search. We find 1, 344 is the maximum value of p2 that allows
the successful adversarial trade. (iii) Given the new p2 constraint, our optimizer
outputs the new optimal parameters (2, 404; 1, 344). (iv) Our optimal adversar-
ial trade yields a profit of 1, 958.01 ETH on part one (as opposed to 71.41 ETH)
and consumes a total of 3.3M gas.

5.2 Optimizing the Oracle Manipulation Attack

In the oracle manipulation attack, we denote X as ETH and Y as sUSD, while
the initial state variables are presented in Figure 7. We assume that A owns zero
balance of X or Y. There are three parameters to optimize in this attack, (i) p1:
the amount of X used to swap for Y in step 2); (ii) p2: the amount of X used
to swap for Y in step 3); (iii) p3: the amount of X used to exchange for Y in
step 4). We summarize the produced optimization problem and its constraints
in Figure 8, of which five constraints are linear and the other two are nonlinear.
We present the details in Appendix E.

We execute our optimizer 1, 000 times, resulting in an average convergence
time of 12.9ms. The optimizer discovers that setting (p1; p2; p3) to (898.58;546.80;
3, 517.86) results in 6, 323.93 ETH in profit for the adversary. This results in a
gain of 1.1M USD instead of 634.9k USD. We fork the Ethereum blockchain with
Ganache at block 9504626 (one block prior to the original adversarial transac-

https://etherscan.io/block/9484687
https://etherscan.io/block/9504626
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Description Variable Value

Maximum ETH to flash loan vX 7, 500
Uniswap Reserved ETH uX(S0) 879.757
Uniswap Reserved sUSD uY(S0) 243, 441.12
Liquidity Rate lr 0.00252
Min. sUSD Price of Kyber Reserve minP 0.0037
Max. sUSD Price of Kyber Reserve maxP 0.0148
Inventory of ETH in Kyber Reserve kX(S0) 0.90658
Market Price of sUSD pm 0.00372719
Max. sUSD to Buy maxY 943, 837.59
Collateral Factor cf 0.667
Max. ETH to Borrow zY 11, 086.29

Fig. 7: Initial on-chain states of the or-
acle manipulation attack.

Objective
B(A; Y; S4)× cf × PY(M; S2)− p1 − p2 − p3function

Constraints

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0
vX − p1 − p2 − p3 ≥ 0

maxP−minP× elr×(kX(S0)+p2) ≥ 0
maxY − p3

pm
≥ 0

zY − B(A; Y; S4)× cf × PY(M; S2) ≥ 0

Fig. 8: Constraints generated for
the oracle manipulation attack.
B(A; Y; S4), PY(M; S2) are nonlinear
components with respect to p1, p2,
p3.

tion) and again implement the attack in solidity v0.6.3. We validate that ex-
ecuting the adversarial smart contract with parameters (p1; p2; p3) = (898.58;
546.8; 3, 517.86) renders a profit of 6, 262.28 ETH, while the original attack pa-
rameters yield 2, 381.41 ETH. The attack consumes 11.3M gas (which fits within
the current block gas limit of 12.5M gas, but wouldn’t have fit in the block gas
limit of February 2020). By analyzing the adversarial validation contract, we find
that 460 is the maximum value of p2 which reduces the gas consumption below
10M gas. Similar to Section 5.1, we add the new constraint to the optimizer,
which then gives the optimal parameters (714.3; 460; 3, 517.86). The augmented
validation contract renders a profit of 4, 167.01 ETH and consumes 9.6M gas.

6 Implications of Transaction Atomicity

In an atomic blockchain transaction, actions can be executed collectively in
sequence, or fail collectively. Technically, operating DeFi actions in an atomic
transaction is equivalent to acquiring a lock on all involved financial markets
to ensure no other market agent can modify market states intermediately, and
releasing the lock after executing all actions in their sequence.

To quantify objectively the impact of transaction atomicity (specifically, how
the transaction atomicity impacts arbitrage profit), we proceed with the follow-
ing methodology. We consider the arbitrages that involve two trades TA and TB

to empirically compare the atomic and non-atomic arbitrages (cf. Figure 9). We
define the atomic and non-atomic arbitrage profit as follows.
Atomic arbitrage profit (aarb): is defined as the gain of two atomically exe-
cuted arbitrage trades TA and TB on exchange A and B.
Non-atomic arbitrage profit (naarb): is defined as the arbitrage gain, if TA

executes first, and TB ’s execution follows after i intermediary transactions.
Conceptually, a non-atomic arbitrage requires the arbitrageur to lock assets

for a short time (order of seconds/minutes). Those assets are exposed to price
volatility. The arbitrageur can at times realize a gain, if the asset increases in
value, but equally has the risk of losing value. A trader engaging in atomic
arbitrage is not exposed to this volatility risk, which we denote as holding value.
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Fig. 10: Simulated impact of inter-
mediary transactions on arbitrage
revenue. The average reward de-
creases by 123.49 ± 1375.32 USD
and 1.77 ± 10.59 USD for the
DAI/ETH and MKR/ETH markets
respectively, at 350 USD/ETH,
for 5, 000 intermediary transactions.
Note that we present the 95% boot-
strap confidence interval of mean [23]
for readability.

Holding value (hv): is defined as the change in the averaged price of the given
asset pair on the two exchanges, which represents the asset value change during
the non-atomic execution period.

We introduce holding value to neutralize the price volatility and can hence
objectively quantify the financial advantage of atomic arbitrage. Given these
variables, we define the profit difference in Equation 7.

profit difference = aarb - (naarb - hv) (7)

We simulate atomic and non-atomic based on 6, 398, 992 transactions we
collect from the Ethereum mainnet (from block 10276783 onwards). We insert 0
- 5, 000 blockchain transactions following the trade transaction TA. Note that 0
intermediary transaction is equivalent to the atomic arbitrage. The insertion
order follows the original execution order of these transactions, some of which
may be irrelevant to the arbitrage. We present the simulated profit difference
in Figure 10. We observe that the average profit difference reaches 123.49 ±
1375.32 USD and 1.77± 10.59 USD for the DAI/ETH and MKR/ETH markets
respectively when the number of intermediary transactions increases to 5, 000.

7 Discussion

The current generation of DeFi had developed organically, without much scrutiny
when it comes to financial security; it, therefore, presents an interesting secu-
rity challenge to confront. DeFi, on the one hand, welcomes innovation and the

https://etherscan.io/block/10276783
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advent of new protocols, such as MakerDAO, Compound, and Uniswap. On
the other hand, despite a great deal of effort spent on trying to secure smart
contacts [38,31,21,50,48], and to avoid various forms of market manipulation,
etc. [41,42,15], there has been little-to-no effort to secure entire protocols.

As such, DeFi protocols join the ecosystem, which leads to both exploits
against protocols themselves as well as multi-step attacks that utilize several
protocols such as the two attacks in Section 3. In a certain poignant way, this
highlights the fact the DeFi, lacking a central authority that would enforce a
strong security posture, is ultimately vulnerable to a multitude of attacks by
design. Flash loans are merely a mechanism that accelerates these attacks. It
does so by requiring no collateral (except for the minor gas costs), which is
impossible in the traditional fiance due to regulations. In a certain way, flash
loans democratize the attack, opening this strategy to the masses. As we an-
ticipate in the earlier version of this paper, following the two analyzed attacks,
economic attacks facilitated by flash loans become increasingly frequent, which
have incurred a total loss of over 100M USD [7].
Determining what is malicious: An interesting question remains whether
we can qualify the use of flash loans, as clearly malicious (or clearly benign).
We believe this is a difficult question to answer and prefer to withhold the value
judgment. The two attacks in Section 3 are clearly malicious: the PA&A involves
manipulating the WBTC/ETH price on Uniswap; the oracle manipulation attack
involves price oracle by manipulatively lowering the price of ETH against sUSD
on Kyber. However, the arbitrage mechanism, in general, is not malicious — it is
merely a consequence of the decentralized nature of the DeFi ecosystem, where
many exchanges and DEXs are allowed to exist without much coordination with
each other. As such, arbitrage will continue to exist as a phenomenon, with
good and bad consequences. Despite the lack of absolute distinction between
flash loan attacks and legitimate applications of flash loans, we attempt to sum-
marize two characteristics that appear to apply to malicious flash loan attacks:
(i) the attacker benefits from a distorted state created artificially in the flash
loan transaction (e.g., the pumped market in the PA&A and the manipulated
oracle price); (ii) the attacker’s profit causes the loss of other market participants
(e.g., the liquidity providers in the two analyzed attacks in Section 3).

We extend our discussion in Appendix F.

8 Conclusion
This paper presents an exploration of the impact of transaction atomicity and
the flash loan mechanism on the Ethereum network. While proposed as a clever
mechanism within DeFi, flash loans are starting to be used as financial attack
vectors to effectively pull money in the form of cryptocurrency out of DeFi.
In this paper, we analyze existing flash loan-based attacks in detail and then
proceed to propose optimizations that significantly improve the ROI of these
attacks. Specifically, we are able to show how two previously executed attacks can
be “boosted” to result in a revenue of 829.5k USD and 1.1M USD, respectively,
which is a boost of 2.37× and 1.73×, respectively.
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A Classifying Flash Loan Use Cases

In Figure 11, we present the DeFi platforms that use a total of 5, 615 Aave
flash loan transactions3 between the 8th of January, 2020 and the 20th of
September, 2020. We find that more than 30% of the flash loans are interacting
with Kyber, MakerDAO, and Uniswap. Compound and MakerDAO accumu-
late 433.81M USD flash loans which occupy 90% of the total flash loan amount.
On average, a flash transaction uses 1.43M gas, while the most complex one
consumes 6.3M gas.

B Flash Loan Use Cases

B.1 Wash Trading

The trading volume of an asset is a metric indicating its popularity. The most
popular assets therefore are supposed to be traded the most — e.g., Bitcoin to
date enjoys the highest trading volume (reported up to 50T USD per day) of all
cryptocurrencies.

Malicious exchanges or traders can mislead other traders by artificially inflat-
ing the trading volume of an asset. In September 2019, 73 out of the top 100 ex-
changes on Coinmarketcap [20] were wash trading over 90% of their volumes [2].
In centralized exchanges, operators can easily and freely create fake trades in
3 We collect in total 5, 616 flash loans with one transaction performing two flash loans.
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DeFi Platforms Transactions Amount (USD) Mean gas

Kyber, MakerDAO, Uniswap 1826 6.91M 1.64M±465.69k
Kyber, MakerDAO, OasisDEX, Uniswap 817 6.75M 1.38M±324.09k
Compound, MakerDAO 320 433.81M 1.49M±333.16k
0x, Kyber, MakerDAO, Uniswap 231 888.17k 1.76M±595.93k
Compound 228 5.98M 1.22M±501.97k
0x, Compound, Curve, MakerDAO 168 115.82k 1.31M±603.77k
0x, Kyber, MakerDAO, OasisDEX, Uniswap 153 2.12M 1.80M±432.11k
Compound, Curve 143 1.75M 2.06M±281.84k
MakerDAO 122 8.86M 934.39k±230.73k
0x, Compound, Curve 103 103.00k 1.27M±249.15k
Compound, MakerDAO, Uniswap 93 120.18k 1.31M±314.83k
Kyber, Uniswap 92 80.54k 985.68k±711.43k
0x, MakerDAO 87 1.70M 1.18M±120.70k
Bancor, Compound, Kyber, MakerDAO, Uniswap 77 8.45k 2.14M±705.27k
0x, Uniswap 68 32.97k 694.76k±129.58k
MakerDAO, Uniswap 68 40.83k 1.01M±254.51k
0x, OasisDEX 57 23.79k 716.40k±132.51k
Kyber, MakerDAO 53 437.65k 2.06M±641.44k
0x, Kyber, MakerDAO 42 639.36k 1.78M±352.44k
Compound, Kyber, MakerDAO, Uniswap 37 185.30k 2.72M±740.48k
0x, Kyber, Uniswap 30 23.81k 1.30M±285.27k
Bancor, Compound, Kyber, MakerDAO, OasisDEX, Uniswap 30 13.46k 2.05M±666.87k
Compound, Uniswap 29 45.58k 1.14M±293.59k
MakerDAO, OasisDEX 27 114.31k 823.62k±139.90k
Uniswap 25 56.34k 672.12k±404.84k
0x, Compound, MakerDAO 22 88.57k 1.81M±274.23k
Kyber 21 41.73k 803.54k±207.92k
Compound, Curve, MakerDAO 20 3.10M 1.93M±665.87k
Compound, Kyber, Uniswap 13 18.04k 1.82M±430.46k
0x, Kyber, OasisDEX, Uniswap 13 11.99k 1.42M±291.46k
0x, OasisDEX, Uniswap 12 15.68k 789.94k±193.06k
Compound, Kyber, MakerDAO, OasisDEX, Uniswap 11 63.12k 3.20M±893.03k
0x 9 8.48k 590.03k±111.78k
Kyber, OasisDEX, Uniswap 8 42.55k 858.12k±255.44k
0x, Compound, Curve, Kyber, MakerDAO, Uniswap 7 6.98k 1.87M±301.64k
Kyber, MakerDAO, OasisDEX 6 130.31k 1.84M±512.57k
0x, Compound, MakerDAO, Uniswap 5 2.64k 2.02M±149.59k
Bancor, Compound, Kyber, Uniswap 5 564.52 3.83M±1.50M
Others 537 6.87M 670.22k± 568.05k
Total 5, 615 481.20M 1.43M± 605.97k

Fig. 11: Classifying the usage of flash loans in the wild, based on an analysis of
transactions between the 8th of January, 2020 and the 20th of September, 2020
on Aave [13]. Others include the platform combinations that appear less than
five times and the ones of which the owner platforms are unknown to us. The
total amount is calculated at the price – DAI ($1); ETH ($350); USDC ($1);
BAT ($0.2); WBTC ($10, 000); ZRX ($0.3); MKR ($500); LINK ($10); USDT
($1); REP ($15), KNC ($1.5), LEND ($0.5), sUSD ($1).

the backend, while decentralized exchanges settle trades on-chain. Wash trad-
ing on DEX thus requires wash traders to hold and use real assets. Flash loans
can remove this “obstacle” and wash trading costs are then reduced to the flash
loan interest, trading fees, and (blockchain) transaction fees, e.g., gas. A wash
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trading endeavor to increase the 24-hour volume by 50% on the ETH/DAI mar-
ket of Uniswap would for instance cost about 1, 298 USD (cf. Figure 12). We
visualize in Figure 12 the required cost to create fake volumes in two Uniswap
markets. At the time of writing, the transaction fee amounts to 0.01 USD, the
flash loan interests range from a constant 1 Wei (on dYdX) to 0.09% (on Aave),
and exchange fees are about 0.3% (on Uniswap).
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Fig. 12: Wash trading cost on two Uniswap markets with flash loans cost-
ing 0.09% (Aave) and a constant of 1 Wei (dYdX) respectively. The 24-hour
volumes of ETH/DAI and ETH/WBTC market were 963, 786 USD and 67, 690
USD respectively (1st of March, 2020).

Wash trading example: On March 2nd, 2020, a flash loan of 0.01 ETH bor-
rowed from dYdX performed two back-and-forth trades (first converted 0.01 ETH
to 122.1898 LOOM and then converted 122.1898 LOOM back to 0.0099 ETH) on
Uniswap ETH/LOOM market (cf. 0xf65b384ebe2b7bf1e7bd06adf0daac0413defe
ed42fd2cc72a75385a200e1544). The 24-hour trading volume of the ETH/LOOM
market increased by 25.8% (from 17.71 USD to 22.28 USD) as a result of the
two trades.

B.2 Collateral Swapping

We classify DeFi platforms that rely on users providing cryptocurrencies [24,13,39]
as follows: (i) a DeFi system where a new asset is minted and backed-up with
user-provided collateral (e.g., MakerDAO’s DAI or SAI [39]) and (ii) a DeFi
system where long-term loans are offered and assets are aggregated within liq-
uidity pools (e.g., margin trading [3] or long term loans [13]). Once a collateral
position is opened, DeFi platforms store the collateral assets in a vault until
the new/borrowed asset are destroyed/returned. Because cryptocurrency prices
fluctuate, this asset lock-in bears a currency risk. With flash loans, it is possible
to replace the collateral asset with another asset, even if a user does not possess

https://etherscan.io/tx/0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
https://etherscan.io/tx/0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
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sufficient funds to destroy/return the new/borrowed asset. A user can close an
existing collateral position with borrowed funds, and then immediately open a
new collateral position using a different asset.
Collateral swapping example: On February 20th, 2020, a flash loan bor-
rowed 20.00 DAI (from Aave) to perform a collateral swap (on MakerDAO),
cf. 0x5d5bbfe0b666631916adb8a56821b204d97e75e2a852945ac7396a82e207e0ca.
Before this transaction, the transaction sender used 0.18 WETH as collateral
for instantiating 20.00 DAI (on MakerDAO). The transaction sender first with-
draws all WETH using the 20.00 DAI flash loan, then converts 0.18 WETH
for 178.08 BAT (using Uniswap). Finally the user creates 20.03 DAI using BAT
as collateral, and pays back 20.02 DAI (with a fee to Aave). This transaction
converts the collateral from WETH to BAT and the user gained 0.01 DAI, with
an estimated gas fee of 0.86 USD.

B.3 Flash Minting

Cryptocurrency assets are commonly known as either inflationary (further units
of an asset can be mined) or deflationary (the total number of units of an asset
are finite). Flash minting is an idea to allow an instantaneous minting of an
arbitrary amount of an asset — the newly-mined units exist only during one
transaction. It is yet unclear where this idea might be applicable to, the minted
assets could momentarily increase liquidity.

cont rac t FlashMintableCoin i s ERC20 { [ . . . ]
function f l a shMint ( uint256 amount ) {

// mint coins and transfer them
mint (msg . sender , amount ) ;
// borrower uses the loan
Borrower (msg . sender ) . execute ( amount ) ;
// reverts if not have enough to burn
burn (msg . sender , amount ) ;

}}

Fig. 13: Flash mint example.

Flash minting example: A flash mint function (cf. Figure 13) can be integrated
into an ERC20 token, to mint an arbitrary number of coins within a transaction
only. Before the transaction terminates, the minted coins will be burned. If the
available amount of coins to be burned by the end of the transaction is less
than those that were minted, the transaction is reverted (i.e., not executed). An
example ERC20 flash minting code could take the following form (cf. 0x09b4c8
200f0cb51e6d44a1974a1bc07336b9f47f):

https://etherscan.io/tx/0x5d5bbfe0b666631916adb8a56821b204d97e75e2a852945ac7396a82e207e0ca
https://etherscan.io/address/0x09b4c8200f0cb51e6d44a1974a1bc07336b9f47f
https://etherscan.io/address/0x09b4c8200f0cb51e6d44a1974a1bc07336b9f47f
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C DeFi Models

In the following, we detail the quantitative DeFi models applied in this work.
Note that we do not include all the states involved in the DeFi attacks but only
those relevant to the constrained optimization.
Flash loan: We assume a flash loan platform F with zX amount of asset X,
which the adversary A can borrow. The required interest to borrow b of X is
represented by interest(b).
State: In a flash loan, the state is represented by the balance of A, i.e., B(A; X; S).
Transitions: We define the transition functions of Loan in Equation 8 and Repay
in Equation 9, where the parameter bX denotes the loaned amount.

B(A; X; S′) = B(A; X; S) + bX

s.t. zX − bX ≥ 0
(8)

B(A; X; S′) = B(A; X; S)− bX − interest(bX)
s.t. B(A; X; S)− bX − interest(bX) ≥ 0

(9)

Fixed price trading: We define the endpoint SellXforY that allows the adver-
sary A to trade qX amount of X for Y at a fixed price pm. maxY is the maximum
amount of Y available for trading.
State: We consider the following state variables:

– Balance of asset X held by A: B(A; X; S)
– Balance of asset Y held by A: B(A; Y; S)

Transitions: Transition functions of SellXforY are defined in Equation 10.

B(A; X; S′) = B(A; X; S)− qX

B(A; Y; S′) = B(A; Y; S) + qX
pm

s.t. B(A; X; S)− qX ≥ 0

maxY − qX
pm
≥ 0

(10)

Constant product automated market maker: The constant product AMM
is with a market share of 77% among the AMM DEX, the most common AMM
model in the current DeFi ecosystem [11]. We denote by M an AMM instance
with trading pair X/Y and exchange fee rate f.

State: We consider the following states variables that can be modified in an
AMM state transition.

– Amount of X in AMM liquidity pool: uX(S), which equals to B(M; X; S)
– Amount of Y in AMM liquidity pool: uY(S), which equals to B(M; Y; S)
– Balance of X held by A: B(A; X; S)
– Balance of Y held by A: B(A; Y; S)
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Transitions: Among the endpoints of M, we focus on SwapXforY and SwapYforX,
which are the relevant endpoints for the DeFi attacks discussed within this work.
pX is a parameter that represents the amount of X the adversary intends to trade.
A inputs pX amount of X in AMM liquidity pool and receives oY amount of Y
as output. The constant product rule [11] requires that Equation 11 holds.

uX(S)× uY(S) = (uX(S) + (1− f)pX)× (uY(S)− oY) (11)

We define the transition functions and constraints of SwapXforY in Equation 12
(analogously for SwapYforX ).

B(A; X; S′) = B(A; X; S)− pX

B(A; Y; S′) = B(A; Y; S) + oY

uX(S′) = uX(S) + pX

uY(S′) = uY(S)− oY

where oY = pX × (1− f)× uY(S)
uX(S) + pX × (1− f)

s.t. B(M; X; S)− pX ≥ 0

(12)

Because an AMM DEX M transparently exposes all price transitions on-
chain, it can be used as a price oracle by the other DeFi platforms. The price of
Y with respect to X given by M at state S is defined in Equation 13.

pY(M; S) = uX(S)
uY(S) (13)

Automated price reserve: The automated price reserve is another type of
AMM that automatically calculates the exchange price depending on the assets
held in inventory. We denote a reserve holding the asset pair X/Y with R. A
minimum price minP and a maximum price maxP is set when initiating R. R relies
on a liquidity ratio parameter lr to calculate the asset price. We assume that R
holds kX(S) amount of X at state S. We define the price of Y in Equation 14.

PY(R; S) = minP× elr×kX(S) (14)

The endpoint ConvertXtoY provided by R allows the adversary A to exchange
X for Y.
State: We consider the following state variables:

– The inventory of X in the reserve: kX(S), which equals to B(R; X; S)
– Balance of X held by A: B(A; X; S)
– Balance of Y held by A: B(A; Y; S)

Transitions: We denote as hX the amount of X that A inputs in the exchange to
trade against Y. The exchange output amount of Y is calculated by the following
formulation.

jY = e−lr×hX − 1
lr × PY(R; S)
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We define the transition functions within Equation 15.

kX(S′) = kX(S) + hX

B(A; X; S′) = B(A; X; S)− hX

B(A; Y; S′) = B(A; Y; S) + jY

where jY = e−lr×hX − 1
lr × PY(R; S)

s.t. B(A; X; S)− hX ≥ 0
PY(R; S′)−minP ≥ 0
maxP− PY(R; S′) ≥ 0

(15)

Collateralized lending & borrowing: We consider a collateralized lending
platform L, which provides the CollateralizedBorrow endpoint that requires
the user to collateralize an asset X with a collateral factor cf (s.t. 0 < cf < 1) and
borrows another asset Y at an exchange rate er. The collateral factor determines
the upper limit that a user can borrow. For example, if the collateral factor
is 0.75, a user is allowed to borrow up to 75% of the value of the collateral.
The exchange rate is for example determined by an outsourced price oracle. zY
denotes the maximum amount of Y available for borrowing.
State: We hence consider the following state variables and ignore the balance
changes of L for simplicity.

– Balance of asset X held by A: B(A; X; S)
– Balance of asset Y held by A: B(A; Y; S)

Transitions: The parameter cX represents the amount of asset X that A aims
to collateralize. Although A is allowed to borrow less than his collateral would
allow for, we assume that A makes use the entirety of his collateral. Equation 16
shows the transition functions of CollateralizedBorrow.

B(A; X; S′) = B(A; X; S)− cX

B(A; Y; S′) = B(A; Y; S) + bY

where bY = cX × cf
er

s.t. B(A; X; S′)− cX ≥ 0; zY − bY ≥ 0

(16)

A can retrieve its collateral by repaying the borrowed asset through the endpoint
CollateralizedRepay. We show the transition functions in Equation 17 and for
simplicity ignore the loan interest fee.

B(A; X; S′) = B(A; X; S) + cX

B(A; Y; S′) = B(A; Y; S)− bY

s.t. B(A; Y; S)− bY ≥ 0
(17)

Margin trading: A margin trading platform T allows the adversary A to short-
/long an asset Y by collateralizing asset X at a leverage `, where ` ≥ 1.
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We focus on the MarginShort endpoint which is relevant to the discussed
DeFi attack in this work. We assume A shorts Y with respect to X on F. The
parameter dX denotes the amount of X that A collateralizes upfront to open the
margin. wX represents the amount of X held by F that is available for the short
margin. A is required to over-collateralize at a rate of ocr in a margin trade. In
our model, when a short margin (short Y with respect to X) is opened, F performs
a trade on external X/Y markets (e.g., Uniswap) to convert the leveraged X to
Y. The traded Y is locked until the margin is closed or liquidated.
State: In a short margin trading, we consider the following state variables:
– Balance of X held by A: B(A; X; S)
– The locked amount of Y: L(A; Y; S)

Transitions: We assume F transacts from an external market at a price of emp.
The transition functions and constraints are specified in Equation 18.

B(A; X; S′) = B(A; X; S)− cX

L(A; Y; S′) = L(A; Y; S) + lY

where lY = dX × `

ocr × emp

s.t. B(A; X; S)− cX ≥ 0; wX + dX −
dX × `

ocr ≥ 0

(18)

D Optimizing the Pump Attack and Arbitrage

In the following, we detail the procedure of deriving the pump attack and arbi-
trage optimization problem. Figure 5 summarizes the on-chain state when the
attack was executed (i.e., S0). X and Y denote ETH and WBTC respectively. For
simplicity, we ignore the trading fees in the constant product AMM (i.e., f = 0
for M). The endpoints executed in the pump attack and arbitrage are listed in
the execution order as follows.

1. Loan (dYdX)
2. CollateralizedBorrow (Compound)
3. MarginShort(bZx) & SwapXforY (Uniswap)
4. SwapYforX (Uniswap)
5. Repay (dYdX)
6. SellXforY & CollateralizedRepay(Compound)

In the pump attack and arbitrage vector, we intend to tune the following two
parameters, (i) p1: the amount of X collateralized to borrow Y in the endpoint 2)
and (ii) p2: the amount of X collateralized to short Y in the endpoint 3). Following
the procedure of Section 4.2, we proceed with detailing the construction of the
constraint system.
0): We assume the initial balance of X owned by A is B0 (cf. Equation 19), and
we refer the reader to Figure 5 for the remaining initial state values.

B(A; X; S0) = B0 (19)
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1) Loan: A gets a flash loan of X amounts p1 + p2 in total

B(A; X; S1) = B0 + p1 + p2

with the constraints

p1 ≥ 0, p2 ≥ 0, vX − p1 − p2 ≥ 0

2) CollateralizedBorrow: A collateralizes p1 amount of X to borrow Y from
the lending platform L

B(A; X; S2) = B(A; X; S1)− p1 = B0 + p2

B(A; Y; S2) = p1 × cf
er

with the constraint zY −
p1 × cf

er ≥ 0

3) MarginShort & SwapXforY: A opens a short margin with p2 amount of X
at a leverage of ` on the margin trading platform T; T swaps the leveraged X for
Y at the constant product AMM M

B(A; X; S3) = B(A; X; S2)− p2 = B0

uX(S3) = uX(S0) + p2 × `

ocr

uY(S3) = uX(S0)× uY(S0)
uX(S3)

L(A; Y; S3) = uY(S0)− uY(S3)

with the constraint wX + p2 −
p2 × `

ocr ≥ 0

4) SwapYforX: A dumps all the borrowed Y at M

B(A; Y; S4) = 0
uY(S4) = uY(S3) + B(A; Y; S2)

uX(S4) = uX(S3)× uY(S3)
uY(S4)

B(A; X; S4) = B0 + uX(S3)− uX(S4)

5) Repay: A repays the flash loan

B(A; X; S5) = B(A; X; S4)− p1 − p2

with the constraint B(A; X; S4)− p1 − p2 ≥ 0
6) SellXforY & CollateralizedRepay: A buys Y from the market with the
market price pm and retrieves the collateral from L

B(A; X; S6) = B(A; X; S5) + p1 − B(A; Y; S2)× pm
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The objective function is the adversarial ETH revenue (cf. Equation 20).

O(S0; p1; p2) = B(A; X; S6)− B0

= uX(S0) + p2 × `

ocr − uX(S4)− p2

− p1 × cf × pm

er

(20)

E Optimizing the Oracle Manipulation Attack

In the oracle manipulation attack, X denotes ETH and Y denotes sUSD. Again,
we ignore the trading fees in the constant product AMM (i.e., f = 0 for M). The
initial state variables are presented in Figure 7. We assume that A owns zero
balance of X or Y. We list the endpoints involved in the oracle manipulation
attack vector as follows.
1. Loan(bZx)
2. SwapXforY(Uniswap)
3. ConvertXtoY(Kyber reserve)
4. SellXforY(Synthetix)
5. CollateralizedBorrow(bZx)
6. Repay(bZx)

We construct the constrained optimization problem as follows.
1) Loan: A gets a flash loan of X amounts p1 + p2 + p3

B(A; X; S1) = p1 + p2 + p3

with the constraints

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, vX − p1 − p2 − p3 ≥ 0

2) SwapXforY: A swaps p1 amount of X for Y from the constant product AMM
M

B(A; X; S2) = B(A; X; S1)− p1 = p2 + p3

uX(S2) = uX(S0) + p1

uY(S2) = uX(S0)× uY(S0)
uX(S2)

B(A; Y; S2) = uY(S0)− uY(S2)
3) ConvertXtoY: A converts p2 amount of X to Y from the automated price
reserve R

B(A; X; S3) = B(A; X; S2)− p2 = p1

kX(S3) = kX(S0) + p2

PY(R; S3) = minP× elr×kX(S3)

B(A; Y; S3) = B(A; Y; S2) + e−lr×p2 − 1
lr × PY(R; S0)

s.t. maxP− PY(R; S3) ≥ 0
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4) SellXforY: A sells p3 amount of X for Y at the price of pm

B(A; X; S4) = B(A; X; S3)− p3 = 0

B(A; Y; S4) = B(A; Y; S3) + p3

pm

with the constraint maxY − p3

pm
≥ 0

5) CollateralizedBorrow: A collateralizes all owned Y to borrow X according
to the price given by the constant product AMM M (i.e., the exchange rate
er = 1

PY(M;S2) )
B(A; Y; S5) = 0

B(A; X; S5) = B(A; Y; S4)× cf × PY(M; S2)
with the constraint

zY − B(A; Y; S4)× cf × PY(M; S2) ≥ 0

6) Repay: A repays the flash loan

B(A; X; S6) = B(A; X; S5)− p1 − p2 − p3

with the constraint B(A; X; S5)− p1 − p2 − p3 ≥ 0
The objective function is the remaining balance of X after repaying the flash
loan (cf. Equation 21).

O(S0; p1; p2; p3) = B(A; X; S6)
= B(A; X; S5)− p1 − p2 − p3

= B(A; Y; S4)× cf × PY(M; S2)
− p1 − p2 − p3

(21)

F Extended Discussion

In the following, we extend our discussion in Section 7.
Responsible disclosure: It is somewhat unclear how to perform responsible
disclosure within DeFi, given that the underlying vulnerability and victim are
not always perfectly clear and that there is a lack of security standards to apply.
We plan to reach out to Aave, Kyber, and Uniswap to disclose the contents of
this paper.
Does extra capital help: The main attraction of flash loans stems from them
not requiring collateral that needs to be raised. One can, however, wonder
whether extra capital would make the attacks we focus on more potent and
the ROI greater. Based on our results, extra collateral for the two attacks of
Section 3 would not increase the ROI, as the liquidity constraints of the inter-
mediate protocols do not allow for a higher impact.
Potential defenses: Here we discuss several potential defenses. However, we
would be the first to admit that these are not foolproof and come with potential
downsides that would significantly hamper normal interactions.
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– Should DEX accept trades coming from flash loans?
– Should DEX accept coins from an address if the previous block did not show

those funds in the address?
– Would introducing a delay make sense, e.g., in governance voting, or price

oracles?
– When designing a DeFi protocol, a single transaction should be limited in its

abilities: a DEX should not allow a single transaction triggering a slippage
beyond 100%.

Forbidding atomicity: DeFi platforms may be able to forbid calls from ex-
ternal smart contracts. An adversary would then be forced to invoke different
platforms in different blockchain transactions, which destructs the atomicity of
the adversarial strategy and hence may prevent some attacks. However, we re-
mark that this solution is infeasible in Ethereum. The only way to distinguish
between a smart contract and an externally-owned account in the EVM is to
inspect whether an account has an empty code. An adversary can bypass this
inspection, by implementing the adversarial logic in the constructor, which is
executed at the creation of a contract that has empty code until the creation is
terminated.
Looking into the future: In the future, we anticipate DeFi protocols eventu-
ally starting to comply with a higher standard of security testing, both within
the protocol itself, as well as part of integration testing into the DeFi ecosystem.
We believe that eventually, this may lead to some form of DeFi standards where
it comes to financial security, similar to what is imposed on banks and other
financial institutions in traditional centralized (government-controlled) finance.
We anticipate that either whole-system penetration testing or an analytical ap-
proach to modeling the space of possibilities like in this paper are two ways to
improve future DeFi protocols.
Generality of the optimization framework: We show in Section 5 that our
optimization framework performs efficiently on a given attack vector. To discover
new attacks on a blockchain state with the framework, we may need to iterate
over all the combinations of DeFi actions. The search space thus explodes as
the number of DeFi actions increases. Our optimization framework requires to
model every DeFi action manually. This, however, makes the framework less
handy for users who are unfamiliar with the mathematical formulas of the DeFi
actions. To make the framework more accurate, we can build gas consumption
and block gas limit into the models, which requires to comprehend every DeFi
action explicitly. We leave the automation of modeling for future work.
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