
Merlin: Specification Inference for
Explicit Information Flow Problems

Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani
Microsoft Research

Anindya Banerjee ∗

IMDEA Software, Madrid, Spain

Abstract
The last several years have seen a proliferation of static and run-
time analysis tools for finding security violations that are caused
by explicit information flow in programs. Much of this interest has
been caused by the increase in the number of vulnerabilities such as
cross-site scripting and SQL injection. In fact, these explicit infor-
mation flow vulnerabilities commonly found in Web applications
now outnumber vulnerabilities such as buffer overruns common in
type-unsafe languages such as C and C++. Tools checking for these
vulnerabilities require a specification to operate. In most cases the
task of providing such a specification is delegated to the user. More-
over, the efficacy of these tools is only as good as the specifica-
tion. Unfortunately, writing a comprehensive specification presents
a major challenge: parts of the specification are easy to miss, lead-
ing to missed vulnerabilities; similarly, incorrect specifications may
lead to false positives.

This paper proposes MERLIN, a new approach for automati-
cally inferring explicit information flow specifications from pro-
gram code. Such specifications greatly reduce manual labor, and
enhance the quality of results, while using tools that check for secu-
rity violations caused by explicit information flow. Beginning with
a data propagation graph, which represents interprocedural flow
of information in the program, MERLIN aims to automatically in-
fer an information flow specification. MERLIN models information
flow paths in the propagation graph using probabilistic constraints.
A naı̈ve modeling requires an exponential number of constraints,
one per path in the propagation graph. For scalability, we approx-
imate these path constraints using constraints on chosen triples of
nodes, resulting in a cubic number of constraints. We characterize
this approximation as a probabilistic abstraction, using the theory
of probabilistic refinement developed by McIver and Morgan. We
solve the resulting system of probabilistic constraints using factor
graphs, which are a well-known structure for performing proba-
bilistic inference.

We experimentally validate the MERLIN approach by applying
it to 10 large business-critical Web applications that have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

∗Partially supported at Kansas State University by NSF grants ITR-
0326577 and CNS-0627748 and by Microsoft Research, Redmond, by way
of a sabbatical visit.

analyzed with CAT.NET, a state-of-the-art static analysis tool for
.NET. We find a total of 167 new confirmed specifications, which
result in a total of 322 additional vulnerabilities across the 10
benchmarks. More accurate specifications also reduce the false
positive rate: in our experiments, MERLIN-inferred specifications
result in 13 false positives being removed; this constitutes a 15%
reduction in the CAT.NET false positive rate on these 10 programs.
The final false positive rate for CAT.NET after applying MERLIN
in our experiments drops to under 1%.

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers; D.4.6 [Operating Systems]: Security and Protection—
Information flow controls; D.2.4 [Software/Program Verification]:
Statistical methods
General Terms Languages, Security, Verification
Keywords Security analysis tools, Specification inference

1. Introduction
Constraining information flow is fundamental to security: we do
not want secret information to reach untrusted principals (confiden-
tiality), and we do not want untrusted principals to corrupt trusted
information (integrity). If we take confidentiality and integrity to
the extreme, then principals from different levels of trust can never
interact, and the resulting system becomes unusable. For instance,
such a draconian system would never allow a trusted user to view
untrusted content from the Internet.

Thus, practical systems compromise on such extremes, and al-
low flow of sanitized information across trust boundaries. For in-
stance, it is unacceptable to take a string from untrusted user input,
and use it as part of a SQL query, since it leads to SQL injection
attacks. However, it is acceptable to first pass the untrusted user
input through a trusted sanitization function, and then use the san-
itized input to construct a SQL query. Similarly, confidential data
needs to be cleansed to avoid information leaks. Practical checking
tools that have emerged in recent years [4, 21, 24] typically aim to
ensure that all explicit flows of information across trust boundaries
are sanitized.

The fundamental program abstraction used in the sequel (as well
as by existing tools) is what we term the propagation graph — a
directed graph that models all interprocedural explicit information
flow in a program.1 The nodes of a propagation graph are methods,
and edges represent explicit information flow between methods.
There is an edge from node m1 → m2 whenever there is a flow
of information from method m1 to method m2, through a method

1We do not focus on implicit information flows [27] in this paper: dis-
cussions with CAT.NET [21] developers reveal that detecting explicit infor-
mation flow vulnerabilities is a more urgent concern. Existing commercial
tools in this space exclusively focus on explicit information flow.

1. void ProcessRequest(HttpRequest request,
2. HttpResponse response)
3. {
4. string s1 = request.GetParameter("name");
5. string s2 = request.GetHeader("encoding");
6.
7. response.WriteLine("Parameter " + s1);
8. response.WriteLine("Header " + s2);
9. }

Figure 1. Simple cross-site scripting example

parameter, or through a return value, or by way of an indirect update
through a pointer.

Following the widely accepted Perl taint terminology conven-
tions [30] — more precisely defined in [14] — nodes of the prop-
agation graph are classified as sources, sinks, and sanitizers; nodes
not falling in the above categories are termed regular nodes. A
source node returns tainted data whereas it is an error to pass tainted
data to a sink node. Sanitizer nodes cleanse or untaint or endorse in-
formation to mediate across different levels of trust. Regular nodes
do not taint data, and it is not an error to pass tainted data to reg-
ular nodes. If tainted data is passed to regular nodes, they merely
propagate it to their successors without any mediation.

A classification of nodes in a propagation graph into sources,
sinks and sanitizers is called an information flow specification or,
just specification for brevity. Given a propagation graph and a
specification, one can easily run a reachability algorithm to check
if all paths from sources to sinks pass through a sanitizer. In fact,
this is precisely what many commercial analysis tools in everyday
use do [4, 24].

User-provided specifications, however, lead to both false posi-
tives and false negatives in practice. False positives arise because a
flow from source to sink classified as offending by the tool could
have a sanitizer that the tool was unaware of. False negatives arise
because of incomplete information about sources and sinks.

This paper presents MERLIN, a tool that automatically infers
information flow specifications for programs. Our inference algo-
rithm uses the intuition that most paths in a propagation graph are
secure. That is, most paths in the propagation graph that start from
a source and end in a sink pass through some sanitizer.
Example 1 Consider a Web application code snippet written
in C# shown in Figure 1. While method GetParameter, the
method returning arguments of an HTTP request, is highly likely
to be part of the default specification that comes with a sta-
tic analysis tool and classified as a source, the method retriev-
ing an HTTP header GetHeader may easily be missed. Be-
cause response.WriteLine sends information to the browser,
there are two possibilities of cross-site scripting vulnerabilities on
line 7 and line 8. The vulnerability in line 7 (namely, passing a
tainted value returned by GetParameter into WriteLine with-
out saniziting it first) will be reported, but the similar vulnerabil-
ity on line 8 may be missed due to an incomplete specification. In
fact, in both .NET and J2EE there exist a number of source meth-
ods that return various parts of an HTTP request. When we run
MERLIN on larger bodies of code, even within the HttpRequest
class alone, MERLIN correctly determines that getQueryString,
getMethod, getEncoding, and others are sources missing from
the default specification that already contains 111 elements. While
this example is small, it is meant to convey the challenge involved
in identifying appropriate APIs for an arbitrary application. �

Our approach. MERLIN infers information flow specifications us-
ing probabilistic inference. By using a random variable for each
node in the propagation graph to denote whether the node is a
source, sink or sanitizer, the intuition that most paths in a prop-

agation graph are secure can be modeled using one probabilistic
constraint for each path in the propagation graph.

A probabilistic constraint is a path constraint parameterized by
the probability that the constraint is true. By solving these con-
straints, we can get assignments to values of these random vari-
ables, which yields an information flow specification. In other
words, we use probabilistic reasoning and the intuition we have
about the outcome of the constraints (i.e, the probability of each
constraint being true) to calculate values for the inputs to the con-
straints. Since there can be an exponential number of paths, us-
ing one constraint per path does not scale. In order to scale, we
approximate the constraints using a different set of constraints on
chosen triples of nodes in the graph. We show that the constraints
on triples are a probabilistic abstraction of the constraints on paths
(see Section 5) according to the theory developed by McIver and
Morgan [19, 20].

As a consequence, we can show that approximation using con-
straints on triples does not introduce false positives when compared
with the constraints on paths. After studying large applications, we
found that we need additional constraints to reduce false positives,
such as constraints to minimize the number of inferred sanitizers,
and constraints to avoid inferring wrappers as sources or sinks. Sec-
tion 2 describes these observations and constraints in detail. We
show how to model these observations as additional probabilistic
constraints. Once we have modeled the problem as a set of proba-
bilistic constraints, specification inference reduces to probabilistic
inference. To perform probabilistic inference in a scalable manner,
MERLIN uses factor graphs, which have been used in a variety of
applications [12, 35].

While we can use the above approach to infer specifications
without any prior specification, we find that the quality of infer-
ence is significantly higher if we use the default specification that
comes with the static analysis tool as the initial specification, us-
ing MERLIN to “complete” this partial specification. Our empirical
results in Section 6 demonstrate that our tool provides significant
value in both situations. In our experiments, we use CAT.NET [21],
a state-of-the-art static analysis tool for finding Web application se-
curity flaws that works on .NET bytecode. The initial specification
provided by CAT.NET is modeled as extra probabilistic constraints
on the random variables associated with nodes of the propagation
graph. To show the efficacy of MERLIN, we show empirical results
for 10 large Web applications.

Contributions. Our paper makes the following contributions:

• MERLIN is the first practical approach to inferring specifica-
tions for explicit information flow analysis tools, a problem
made important in recent years by the proliferation of infor-
mation flow vulnerabilities in Web applications.

• A salient feature of our method is that our approximation (us-
ing triples instead of paths) can be characterized formally — we
make a connection between probabilistic constraints and proba-
bilistic programs, and use the theory of probabilistic refinement
developed by McIver and Morgan [19, 20] to show refinement
relationships between sets of probabilistic constraints. As a re-
sult, our approximation does not introduce false positives.

• MERLIN is able to successfully and efficiently infer information
flow specifications in large code bases. We provide a compre-
hensive evaluation of the efficacy and practicality of MERLIN
using 10 Web application benchmarks. We find a total of 167
new confirmed specifications, which result in a total of 322 vul-
nerabilities across the 10 benchmarks that were previously un-
detected. MERLIN-inferred specifications also result in 13 false
positives being removed.

STATIC
ANALYSIS

INITIAL
SPECIFICATION

FINAL

SPECIFICATION

refine the specification

PROGRAM
FG

Specification Inference

FACTOR GRAPH
CONSTRUCTION

PROBABILISTIC

INFERENCE

Figure 2. MERLIN system architecture.

Outline. The rest of the paper is organized as follows. Section 2
gives motivation for the specification inference techniques MERLIN
uses. Section 3 provides background on factor graphs. Section 4
describes our algorithm in detail. Section 5 proves that the system
of triple constraints is a probabilistic abstraction over the system of
path constraints. Section 6 describes our experimental evaluation.
Finally, Sections 7 and 8 describe related work and conclude.

2. Overview
Figure 2 shows an architectural diagram of MERLIN. MERLIN
starts with an initial, potentially incomplete specification of the ap-
plication to produce a more complete specification. Returning to
Example 1, suppose we start MERLIN with an initial specification
that classifies GetParameter as a source and WriteLine as a sink.
Then, the specification output by MERLIN would additionally con-
tain GetHeader as a source. In addition to the initial specification,
MERLIN also consumes a propagation graph, a representation of
the interprocedural data flow. Nodes of the propagation graph are
methods in the program, and edges represent explicit flow of data.

Definition 1. A propagation graph is a directed graph G =
〈NG, EG〉, where nodes NG are methods and an edge (n1 →
n2) ∈ Eg indicates that there is a flow of information from method
n1 to method n2 through method arguments, or return values, or
indirectly through pointers.

The propagation graph is a representation of the interprocedural
data flow produced by static analysis of the program. Due to the
presence of virtual functions, and information flow through refer-
ences, a pointer analysis is needed to produce a propagation graph.
Since pointer analyses are imprecise, edges of a propagation graph
approximate information flows. Improving the accuracy of prop-
agation graph involves improving the precision of pointer analy-
sis, and is beyond the scope of this paper. In our implementation,
CAT.NET uses an unsound pointer analysis, so there could be flows
of data that our propagation graph does not represent. Even though
propagation graphs can have cycles, MERLIN performs a breadth-
first search and deletes the edges that close cycles, resulting in
an acyclic propagation graph. Removing cycles greatly simplifies
the subsequent phases of MERLIN. As our empirical results show,
even with such approximations in the propagation graph, MERLIN
is able to infer useful specifications.
Example 2 We illustrate propagation graphs with an example.

public void TestMethod1() {
string a = ReadData1();
string b = Prop1(a);
string c = Cleanse(b);
WriteData(c);

}

public void TestMethod2() {
string d = ReadData2();
string e = Prop2(d);
string f = Cleanse(e);
WriteData(f);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

In addition to two top-level “driver” methods, TestMethod1
and TestMethod2, this code uses six methods: ReadData1,
ReadData2, Prop1, Prop2, Cleanse, and WriteData. This pro-
gram gives rise to the propagation graph shown on the right. An
edge in the propagation graph represents explicit flow of data; i.g.,
the value returned by Prop1 is passed into Cleanse as an argu-
ment. The edge from Prop1 to Cleanse represents this flow. �

2.1 Assumptions and Probabilistic Inference
The crux of our approach is probabilistic inference: we first use
the propagation graph to generate a set of probabilistic constraints
and then use probabilistic inference to solve them. MERLIN uses
factor graphs (see Section 3) to perform probabilistic inference
efficiently. As shown in Figure 2, MERLIN performs the following
steps: 1) construct a factor graph based on the propagation graph;
2) perform probabilistic inference on the factor graph to derive the
likely specification.

MERLIN relies on the assumption that most paths in the propa-
gation graph are secure. That is, most paths that go from a source
to a sink pass through a sanitizer. The assumption that errors are
rare has been used before in other specification inference tech-
niques [3, 10]. Further, we assume that the number of sanitizers
is small, relative to the number of regular nodes. Indeed, develop-
ers typically define a small number of sanitization functions or use
ones supplied in libraries, and call them extensively. For instance,
the out-of-box specification that comes with CAT.NET summarized
in Figure 12 contains only 7 sanitizers.

However, as we show later in this section, applying these as-
sumptions along various paths individually can lead to inconsis-
tencies, since the constraints inferred from different paths can be
mutually contradictory. Thus, we need to represent and analyze
each path within a constraint system that tolerates uncertainty and
contradictions. Therefore, we parameterize each constraint with the
probability of its satisfaction. These probabilistic constraints model
the relative positions of sources, sinks, and sanitizers in the prop-
agation graph. Our goal is to classify each node as a source, sink,

A1 For every acyclic path m1, m2, . . . , mk−1, mk, where
m1 is a potential source and mk is a potential sink, the
joint probability of classifying m1 as a source, mk as a
sink and all of m2, . . . , mk−1 as regular nodes is low.

B1 For every triple of nodes 〈m1, m2, m3〉, where m1 is a
potential source, m3 is a potential sink, and m1 and m3

are connected by a path through m2 in the propagation
graph, the joint probability that m1 is a source, m2 is
not a sanitizer, and m3 is a sink is low.

B2 For every pair of nodes 〈m1, m2〉 such that both m1

and m2 lie on the same path from a potential source
to a potential sink, the probability of both m1 and m2

being sanitizers is low.
B3 Each node m is classified as a sanitizer with probability

s(m) (see Definition 3 for definition of s).
B4 For every pair of nodes 〈m1, m2〉 such that both m1

and m2 are potential sources, and there is a path from
m1 to m2 the probability that m1 is a source and m2 is
not a source is high.

B5 For every pair of nodes 〈m1, m2〉 such that both m1

and m2 are potential sinks, and there is a path from m1

to m2 the probability that m2 is a sink and m1 is not a
sink is high.

Figure 3. Constraint formulation. Probabilities in italics are para-
meters of the constraints.

sanitizer, or a regular node, so as to optimize satisfaction of these
probabilistic constraints.

2.2 Potential Sources, Sinks and Sanitizers
The goal of specification inference is to classify nodes of the prop-
agation graph into sources, sinks, sanitizers, and regular nodes.
Since we are interested in string-related vulnerabilities, we first
generate a set of potential sources, potential sanitizers, and poten-
tial sinks based on method signatures, as defined below:

• Methods that produce strings as output are classified as poten-
tial sources.

• Methods that take a string as input, and produce a string as
output are classified as potential sanitizers.

• Methods that take a string as input, and do not produce a string
as output are classified as potential sinks.

Next, we perform probabilistic inference to infer a subset of poten-
tial sources, potential sanitizers, and potential sinks that form the
inferred specification.

2.3 Core Constraints
Figure 3 summarizes the constraints that MERLIN uses for proba-
bilistic inference. We describe each of the constraints below refer-
ring to Example 2 where appropriate. We also express the number
of constraints of each type as a function of N , the number of nodes
in the propagation graph.

A1: Path safety. We assume that most paths from a source to a
sink pass through at least one sanitizer. For example, we believe
that if ReadData1 is a source, and WriteData is a sink, at least
one of Prop1 or Cleanse is a sanitizer. This is stated using the set
of constraints A1 shown in Figure 3. While constraints A1 model
our core beliefs accurately, they are inefficient if used directly: A1
requires one constraint per path, and the number of acyclic paths
could be exponential in the number of propagation graph nodes.

B1: Triple safety. In order to abstract the constraint set A1 with a
polynomial number of constraints, we add a safety constraint B1
for each triple of nodes as shown in Figure 3. The number of B1
constraints is O(N3). In Section 5 we prove that the constraints
B1 are a probabilistic abstraction of constraints A1 under suitable
choices of parameters.

2.4 Auxiliary Constraints
In practice, the set of constraints B1 does not limit the solution
space enough. We have found empirically that just using this set
of constraints allows too many possibilities, several of which are
incorrect classifications. By looking at results over several large
benchmarks we have come up with four sets of auxiliary constraints
B2, B3, B4, and B5, which greatly enhance the precision.

B2: Pairwise Minimization. The set of constraints B1 allows the
solver flexibility to consider multiple sanitizers along a path. In
general, we want to minimize the number of sanitizers we infer.
Thus, if there are several solutions to the set of constraints B1, we
want to favor solutions that infer fewer sanitizers, while satisfy-
ing B1, with higher probability.

For instance, consider the path ReadData1, Prop1, Cleanse,
WriteData in Example 2. Suppose ReadData1 is a source and
WriteData is a sink. B1 constrains the triple

〈ReadData1, Prop1, WriteData〉
so that the probability of Prop1 not being a sanitizer is low; B1
also constrains the triple

〈ReadData1, Cleanse, WriteData〉
such that the probability of Cleanse not being a sanitizer is low.
One solution to these constraints is to infer that both Prop1 and
Cleanse are sanitizers. In reality, programmers do not add multiple
sanitizers on a path and we believe that only one of Prop1 or
Cleanse is a sanitizer. Thus, we add a constraint B2 that for each
pair of potential sanitizers it is unlikely that both are sanitizers, as
shown in Figure 3. The number of B2 constraints is O(N2).

Need for probabilistic constraints. Note that constraints B1
and B2 can be mutually contradictory, if they are modeled
as non-probabilistic boolean constraints. For example, consider
the propagation graph of Example 2. With each of the nodes
ReadData1, WriteData, Prop1, Cleanse let us associate boolean
variables r1, w, p1 and c respectively. The interpretation is that
r1 is true iff ReadData1 is source, w is true iff WriteData
is a sink, p1 is true iff Prop1 is a sanitizer, and c is true
iff Cleanse is a sanitizer. Then, constraint B1 for the triple
〈ReadData1, Prop1, WriteData〉 is given by the boolean for-
mula r1 ∧ w =⇒ p1, and the constraint B1 for the triple
〈ReadData1, Cleanse, WriteData〉 is given by the formula r1 ∧
w =⇒ c. Constraint B2 for the pair 〈Prop1, Cleanse〉 states
that both Prop1 and Cleanse cannot be sanitizers, and is given by
the formula ¬(p1 ∧ c). In addition, suppose we have additional in-
formation (say, from a partial specification given by the user) that
ReadData1 is indeed a source, and WriteData is a sink. We can
conjoin all the above constraints to get the boolean formula:

(r1 ∧ w =⇒ p1) ∧ (r1 ∧ w =⇒ c) ∧ ¬(p1 ∧ c) ∧ r1 ∧ w

This formula is unsatisfiable and these constraints are mutually
contradictory. Viewing them as probabilistic constraints gives us
the flexibility to add such conflicting constraints; the probabilistic
inference resolves such conflicts by favoring satisfaction of those
constraints with higher probabilities attached to them.

B3: Sanitizer Prioritization. We wish to bias the selection of
sanitizers to favor those nodes that have a lot of source-to-sink
paths going through them. We formalize this below.

Definition 2. For each node m define weight W (m) to be the total
number of paths from sources to sinks that pass through m.

Suppose we know that ReadData1 is a source, ReadData2 is
not a source, and WriteData is a sink. Then W (Prop1) =
W (Cleanse) = 1, since there is only one source-to-sink path that
goes through each of them. However, in this case, we believe that
Prop1 is more likely to be a sanitizer than Cleanse since all paths
going through Prop1 are source-to-sink paths and only some paths
going through Cleanse are source-to-sink paths.

Definition 3. For each node m define Wtotal(m) to be the total
number of paths in the propagation graph that pass through the
node m (this includes both source-to-sink paths, as well as other
paths). Let us define s(m) for each node m as follows:

s(m) =
W (m)

Wtotal(m)

We add a constraint B3 that prioritizes each potential sanitizer n
based on its s(n) value, as shown in Figure 3. The number of B3
constraints is O(N).

B4: Source Wrapper Avoidance. Similar to avoiding inference of
multiple sanitizers on a path, we also wish to avoid inferring mul-
tiple sources on a path. A prominent issue with inferring sources
is the issue of having wrappers, i.e. functions that return the result
produced by the source. For instance, if an application defines their
own series of wrappers around system APIs, which is not uncom-
mon, there is no need to flag those as sources because that will
actually not affect the set of detected vulnerabilities.

In such cases, we want MERLIN to infer the actual source rather
than the wrapper function around it. We add a constraint B4 for
each pair of potential sources as shown in Figure 3. The number
of B4 constraints is O(N2).

B5: Sink Wrapper Avoidance. Wrappers on sinks can be handled
similarly, with the variation that in the case of sinks the data ac-
tually flows from the wrapper to the sink. We add a constraint B5
for each pair of potential sinks as shown in Figure 3. The number
of B5 constraints is O(N2).

Given a propagation graph with N nodes, we can generate the
constraints B1 through B5 in O(N3) time. Next, we present some
background on factor graphs, an approach to efficiently solving
probabilistic constraints.

3. Factor Graph Primer
In the previous section, we have described a set of probabilistic
constraints that are generated from an input propagation graph.
The conjunction of these constraints can be looked upon as a joint
probability distribution over random variables that measure the
odds of propagation graph nodes being sources, sanitizers, or sinks.

Let p(x1, . . . , xN) be a joint probability distribution over
boolean variables x1, . . . , xN . We are interested in computing the
marginal probabilities pi(xi) defined as:

pi(xi) =
X
x1

· · ·
X
xi−1

X
xi+1

· · ·
X
xN

p(x1, . . . , xN) (1)

where xi ∈ {true, false} for i ∈ [1, . . . , N]. Since there are
an exponential number of terms in Equation 1, a naı̈ve algorithm
for computing pi(xi) will not work in practice. An abbreviated
notation for Equation 1 is

pi(xi) =
X
∼{xi}

p(x1, . . . , xN) (2)

where the sum is over all variables except xi. The marginal prob-
ability for each variable defines the solution that we are interested
in computing. Intuitively, these marginals correspond to the likeli-
hood of each boolean variable being equal to true or false .

fC1 fC2

x1 x2 x3

Figure 4. Factor graph for (3).

Factor graphs [35]
are graphical models that
are used for computing
marginal probabilities
efficiently. These graphs
take advantage of their
structure in order to speed
up the marginal probability
computation (known as probabilistic inference). There are a wide
variety of techniques for performing probabilistic inference on
a factor graph and the sum-product algorithm [35] is the most
practical algorithm among these.

Let the joint probability distribution p(x1, . . . , xN) be a product
of factors as follows:

p(x1, . . . , xN) =
Y

s

fs(xs) (3)

where xs is the set of variables involved in the factor fs. A factor
graph is a bipartite graph that represents this factorization. A factor
graph has two types of nodes:

• Variable nodes: one node for every variable xi.
• Function nodes: one node for every function fs.

Example 3 As an example, consider the following formula

(x1 ∨ x2)| {z }
C1

∧ (x1 ∨ ¬x3)| {z }
C2

(4)

Equation 4 can be rewritten as:

f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3) (5)

where

fC1 =

�
1 if x1 ∨ x2 = true
0 otherwise (6)

fC2 =

�
1 if x1 ∨ ¬x3 = true
0 otherwise (7)

The factor graph for this formula is shown in Fig. 4. There are three
variable nodes for each variable xi, 1≤ i≤ 3 and a function node
fCj for each clause Cj , j ∈ {1, 2}.

Equations 6 and 7 can also be defined probabilistically thus al-
lowing for solutions that do not satisfy formula 4; but such solu-
tions are usually set up such that they occur with low probability as
shown below:

fC1 =

�
0.9 if x1 ∨ x2 = true
0.1 otherwise (8)

fC2 =

�
0.9 if x1 ∨ ¬x3 = true
0.1 otherwise (9)

If we use this interpretation of fC1 and fC2 , then we can interpret
formula 5 as a probabilistic constraint.

p(x1, x2, x3) =
fC1(x1, x2)× fC2(x1, x3)

Z
(10)

where
Z =

X
x1,x2,x3

(fC1(x1, x2)× fC2(x1, x3)) (11)

is the normalization constant. The marginal probabilities are de-
fined as

pi(xi) =
X
∼{xi}

p(~x), 1 ≤ i ≤ 3 (12)

GenFactorGraph
Inputs:
(G = 〈V, E〉 : PropagationGraph),
parameters low1, low2, high1, high2, high3, high4 ∈ [0..1]
Returns:
a factor graph F for the propagation graph G

1: G′ = MakeAcyclic(G)
2: 〈Xsrc , Xsan , Xsnk 〉=ComputePotentialSrcSanSnk(G)
3: 〈Triples, Pairssrc , Pairssan , Pairssnk 〉=

ComputePairsAndTriples(G′, Xsrc , Xsan , Xsnk)
4: s = ComputeWAndSValues(G′)
5: for each triple 〈a, b, c〉 ∈ Triples do
6: Create a factor fB1(xa, xb, xc) in the factor graph
7: Let fB1(xa, xb, xc) = xa ∧ ¬xb ∧ xc

8: Let probability Pr(fB1(xa, xb, xc) = true) = low1
9: end for

10: for each pair 〈b1, b2〉 ∈ Pairssan do
11: Create a factor fB2(xb1 , xb2) in the factor graph
12: Let fB2(xb1 , xb2) = xb1 ∧ xb2
13: Let probability Pr(fB2(xb1 , xb2) = true) = low2

14: end for
15: for each n ∈ Xsan do
16: Create a factor fB3(xn) in the factor graph
17: Let fB3(xn) = xn

18: Let Pr(fB3(xn) = true) = s(n)
19: end for
20: for each pair 〈xa1 , xa2 〉 ∈ Pairssrc do

21: Create a factor fB4(xa1 , xa2) in the factor graph
22: Let fB4(xa1 , xa2) = xa1 ∧ ¬xa2
23: Let probability Pr(fB4(xa1 , xa2) = true) = high3

24: end for
25: for each pair 〈xc1 , xc2 〉 ∈ Pairssnk do

26: Create a factor fB5(xc1 , xc2) in the factor graph
27: Let fB5(xc1 , xc2) = ¬xc1 ∧ xc2
28: Let probability Pr(fB5(xc1 , xc2) = true) = high4

29: end for

Figure 5. Generating a factor graph from a propagation graph.

Here, pi(xi = true) denotes the fraction of solutions where the
variable xi has value true. These marginal probabilities can be
used to compute a solution to the SAT instance in Equation 4 as fol-
lows: (1) choose a variable xi with the highest marginal probability
pi(xi) and set xi = true, if pi(xi) is greater than a threshold value,
otherwise, set xi = false. (2) recompute the marginal probabili-
ties and repeat Step (1) until all variables have been assigned (this
is a satisfying assignment with high probability). Iterative message
passing algorithms [12, 35] on factor graphs perform Steps (1) and
(2) as well as compute marginal probabilities efficiently. �

4. Constructing the Factor Graph
Given a propagation graph G, we describe how to build a fac-
tor graph F to represent the constraints B1 through B5 associ-
ated with G. Figure 5 shows the algorithm GenFactorGraph that
we use to generate the factor graph from the propagation graph.
The construction of the factor graph proceeds as follows. First,
in line 1, the procedure MakeAcyclic converts the input prop-
agation graph into a DAG G′, by doing a breadth first search,
and deleting edges that close cycles. Next, in line 2, the proce-
dure ComputePotentialSrcSanSnk computes the sets of potential
sources, potential sanitizers, and potential sinks, and stores the re-
sults in Xsrc , Xsan , and Xsnk , respectively. On line 3, procedure
ComputePairsAndTriples computes four sets defined in Figure 7.

These sets can be computed by first doing a topological sort of
G′ (the acyclic graph), making one pass over the graph in topo-
logical order, and recording for each potential sanitizer the set of
potential sources and potential sinks that can be reached from that
node. Potential sources, sanitizers, and sinks are determined by an-
alyzing type signatures of each method, as described in Section 2.2.

ComputeWAndSValues(G:Propagation Graph, Xsrc , Xsan , Xsnk : Set of Nodes)
Precondition:
Inputs:
Acyclic propagation graph G, sets of nodes Xsrc , Xsan , Xsnk representing potential
sources, potential sanitizers and potential sinks respectively
Returns:
W (n) and s(n) for each potential sanitizer n in G

1: for each potential source n ∈ Xsrc do
2: F (n) := initial probability of n being a source node
3: Ftotal (n) := 1
4: end for
5: for each potential sanitizer n ∈ Xsan in topological order do
6: F (n) := 0
7: Ftotal (n) := 0
8: for each m ∈ V such that (m, n) ∈ E do
9: F (n) := F (n) + F (m)

10: Ftotal (n) := Ftotal (n) + Ftotal (m)
11: end for
12: end for
13: for each potential sink n ∈ Xsnk do
14: B(n) := initial probability of n being a sink node
15: Btotal (n) := 1
16: end for
17: for each potential sanitizer n ∈ Xsan in reverse topological order do
18: B(n) := 0
19: Btotal (n) := 0
20: for each m ∈ V such that (n, m) ∈ E do
21: B(n) := B(n) + B(m)
22: Btotal (n) := Btotal (n) + Btotal (m)
23: end for
24: end for
25: for each potential sanitizer n ∈ Xsan do
26: W (n) := F (n) ∗ B(n)

27: s(n) := W (n)
Ftotal (n)∗Btotal (n)

28: end for
29: return s

Figure 6. Computing W (n) and s(n).

These sets can be computed in O(N3) time, where N is the number
of nodes in the propagation graph.

Next in line 4, the function ComputeWAndSValues is in-
voked to compute W (n) and s(n) for every potential sanitizer n.
The function ComputeWAndSValues is described in Figure 6. In
lines 5–9, the algorithm creates a factor node for the constraints
B1. In lines 10–14, the algorithm iterates through all pairs 〈b1, b2〉
of potential sanitizers (that is, actual sanitizers as well as regular
nodes) such that there is a path in the propagation graph from b1 to
b2 and adds factors for constraints B2. In lines 15–19, the algorithm
iterates through all potential sanitizers and adds factors for con-
straints B3. In lines 20–24, the algorithm iterates through all pairs
〈a1, a2〉 of potential sources such that there is a path in the prop-
agation graph from a1 to a2 and adds factors for constraints B4.
Similarly, in lines 25–29, the algorithm iterates through all pairs
〈c1, c2〉 of potential sinks such that there is a path from c1 to c2

and adds factors for constraints B5.

4.1 Computing s() and W ()

Recall values s() and W () defined in Section 2.4. Figure 6 de-
scribes ComputeWAndSValues, which computes s(n) for each
potential sanitizer node, given input probabilities for each poten-
tial source and each potential sink.

The value s(n) for each potential sanitizer n is the ratio of the
sum of weighted source-sink paths that go through n and the total
number of paths that go through n. The algorithm computes W (n)
and s(n) by computing four numbers F (n), Ftotal(n), B(n), and
Btotal(n).

F (n) denotes the total number of sources that can reach n,
and Ftotal(n) denotes the total number of paths that can reach n.
B(n) denotes the total number of sinks that can be reached from

SET DEFINITION

Triples
[

p∈paths(G′)

{〈xsrc , xsan , xsnk 〉 | xsrc ∈ Xsrc , xsan ∈ Xsan , xsnk ∈ Xsnk , xsrc is connected to xsnk via xsan in p}

Pairssrc
[

p∈paths(G′)

{〈xsrc , x′src〉 | xsrc ∈ Xsrc , x′src ∈ Xsrc , xsrc is connected to x′src in p}

Pairssan
[

p∈paths(G′)

{〈xsan , x′san 〉 | xsan ∈ Xsan , x′san ∈ Xsan , xsan is connected to x′san in p}

Pairssnk

[

p∈paths(G′)

{〈xsnk , x′snk 〉 | xsnk ∈ Xsnk , x′snk ∈ Xsnk , xsnk is connected to x′snk in p}

Figure 7. Set definitions for algorithm in Figure 5.

Path(G = 〈V, E〉)
Returns:
Mapping m from V to the set {0, 1}

1: for all paths p = s, . . . , n from potential sources to sinks in G do
2: assume(m(p) 6∈ 10∗1) ⊕cp assume(m(p) ∈ 10∗1)
3: end for

Post expectation: [∀ paths p in G, m(p) 6∈ 10∗1].

Figure 9. Algorithm Path

n. Finally, Btotal(n) denotes the total number of paths that can be
reached from n.

For each potential source n, we set F (n) to an initial value in
line 2 (in our implementation, we picked an initial value of 0.5),
and we set Ftotal(n) to 1 in line 3. For each potential sink, we set
B(n) to some initial value in line 14 (in our implementation, we
picked this initial value to be 0.5), and we set Btotal(n) to 1 in
line 15.

Since the graph G′ is a DAG, F (n) and Ftotal(n) can be
computed by traversing potential sanitizers in topological sorted
order, and B(n) and Btotal(n) can be computed by traversing
potential sanitizers in reverse topological order. The computation
of F (n) and Ftotal(n) in forward topological order is done in
lines 5–12 and the computation of B(n) and Btotal(n) in reverse
topological order is done in lines 17–24. Once F (n) and B(n) are
computed, W (n) is set to F (n)×B(n) and s(n) is set to

W (n)

Ftotal(n)×Btotal(n)
=

W (n)

Wtotal(n)

as shown in line 26.

Parameter tuning. The parameters low1, low2, high1, high2,
high3, and high4 all need to be instantiated with any values be-
tween 0.0 and 1.0. In Section 5 we show how to compute parameter
values for low1 associated with the constraints B1 from the para-
meter values for the constraints A1. We have experimented with
varying the values of high1, high2, high3 and high4 from 0.8
to 0.95, and the low1, low2, values from 0.05 to 0.2 in increments
as small as .01. Fortunately, our inference is quite robust: these pa-
rameter variations do not significantly affect the quality of results
produced by the inference in the applications we have tried.
Example 4 Figure 8 shows the factor graph obtained by applying
algorithm FactorGraph to the propagation graph in Figure 2. The
marginal probabilities for all variable nodes are computed by prob-
abilistic inference on the factor graph and these are used to classify
sources, sanitizers, and sinks in the propagation graph. �

5. Relationship between Triples and Paths
In this section, we give a formal relationship between the exponen-
tial number of constraints A1 and the cubic number of constraints

Triple(G = 〈V, E〉)
Returns:
Mapping m from V to the set {0, 1}

1: for all triples t = 〈s, w, n〉 such that s is a potential source, n is a potential sink
and w lies on some path from s to n in G do

2: assume(m(〈s, w, n〉) 6= 101) ⊕ct assume(m(〈s, w, n〉) = 101)
3: end for

Post expectation: [∀ paths p in G, m(p) 6∈ 10∗1].

Figure 10. Algorithm Triple

B1 in Section 2. We use the theory of probabilistic abstraction and
refinement developed by McIver and Morgan [19, 20] to derive ap-
propriate bounds on probabilities associated with constraints A1
and B1 so that B1 is a probabilistic abstraction of the specification
A1 (or, equivalently, A1 is a probabilistic refinement of B1). We
first introduce some terminology and basic concepts from [20].

Probabilistic refinement primer. Non-probabilistic programs can
be reasoned with assertions in the style of Floyd and Hoare [7]. The
following formula in Hoare logic:

{Pre} Prog {Post}
is valid if for every state σ satisfying the assertion Pre , if the
program Prog is started at σ, then the resulting state σ′ satisfies
the assertion Post . We assume Prog always terminates, and thus
we do not distinguish between partial and total correctness.

McIver and Morgan extend such reasoning to probabilistic pro-
grams [19, 20]. In order to reason about probabilistic programs,
they generalize assertions to expectations. An expectation is a func-
tion that maps each state to a positive real number. If Prog is a
probabilistic program, and PreE and PostE are expectations, then
the probabilistic Hoare-triple

{PreE} Prog {PostE}
is interpreted to mean the following: If the program Prog is started
with an initial expectation PreE , then it results in the expectation
PostE after execution.

Assertions are ordered by implication ordering. Expectations
are ordered by the partial order V. Given two expectations AE

and BE , we say that AE V BE holds if for all states σ, we have
that AE (σ) ≤ BE (σ). Given an assertion A the expectation [A] is
defined to map every state σ to 1 if σ satisfies A and to 0 otherwise.

Suppose AE V BE . Consider a sampler that samples states
using the expectations as a probability measure. Then, for any
threshold t and state σ, if AE (σ) > t, then it is the case that
BE (σ) > t. In other words, for any sampler with any threshold t,
sampling over AE results in a subset of states than those obtained
by sampling over BE .

Traditional axiomatic proofs are done using weakest precondi-
tions. The weakest precondition operator is denoted by WP. By

fB3(xProp1) fB2(xProp1,xCleanse) fB3(xProp2) fB2(xProp2,xCleanse) fB3(xCleanse)

xReadData1 xReadData2 xProp1 xProp2 xCleanse xWriteData

fB1(xReadData1,xProp1, xWriteData) fB1(xReadData1,xProp1, xWriteData) fB1(xReadData2,xProp2, xWriteData) fB1(xReadData1,xProp1, xWriteData)

Figure 8. Factor graph for the propagation graph in Example 2.

definition, for any program Prog and assertion A, we have that
WP(Prog, A) to be the weakest assertion B (weakest is defined
with respect to the implication ordering between assertions) such
that the Hoare triple {B}Prog{A} holds.

McIver and Morgan extend weakest preconditions to expecta-
tions, and define for an expectation AE , and a probabilistic pro-
gram Prog, WP(Prog,AE) is the weakest expectation BE (weak-
est is defined with respect to the ordering V between expecta-
tions) such that the probabilistic Hoare triple {BE}Prog{AE}
holds. Given two probabilistic programs Spec and Impl with re-
spect to a post expectation PostE , we say that Impl refines Spec if
WP(Spec,PostE) V WP(Impl,PostE).

Refinement between constraint systems. We now model con-
straints A1 and B1 from Section 2 as probabilistic programs with
an appropriate post expectation, and derive relationships between
the parameters of A1 and B1 such that A1 refines B1.

Consider any directed acyclic graph G = 〈V, E〉, where E ⊆
V × V . In this simple setting, nodes with in-degree 0 are potential
sources, nodes with out-degree 0 are potential sinks, and other
nodes (internal nodes with both in-degree and out-degree greater
than 0) are potential sanitizers. We want to classify every node
in V with a boolean value 0 or 1. That is, we want a mapping
m : V → {0, 1}, with the interpretation that for a potential source
s ∈ V , m(s) = 1 means that s is classified as a source, and that
for a potential sink n ∈ V , m(n) = 1 means that n is classified
as a sink, and that for a potential sanitizer w ∈ V , m(w) = 1
means that w is classified as a sanitizer. We extend the mapping m
to operate on paths (triples) over G by applying m to every vertex
along the path (triple).

We want mappings m that satisfy the constraint that for any path
p = s, w1, w2, . . . , wm, n that starts at a potential source s and
ends in a potential sink, the string m(p) 6∈ 10∗1, where 10∗1 is the
language of strings that begin and end with 1 and have a sequence
of 0’s of arbitrary length in between.

The constraint set A1 from Section 2 is equivalent in this set-
ting to the probabilistic program Path given in Figure 9, and the
constraint set B1 from Section 2 is equivalent in this setting to
the probabilistic program Triple given in Figure 10. The statement
assume(e) is a no-op if e holds and silently stops execution if e does
not hold. The probabilistic statement S1 ⊕q S2 executes statement
S1 with probability q and statement S2 with probability 1−q. Note
that both programs Path and Triple have the same post expectation
[∀ paths p in G, m(p) 6∈ 10∗1]. Further, note that both programs
are parameterized. The Path program has a parameter cp associ-
ated with each path p in G, and the Triple program has a parameter
ct associated with each triple t in G.

The following theorem states that the probabilistic program
Path refines program Triple under appropriate choices of proba-
bilities as parameters. Furthermore, given a program Path with ar-
bitrary values for the parameters cp for each path p, it is possible to

choose parameter values ct for each triple t in the program Triple
such that Path refines Triple.

Theorem. Consider any directed acyclic graph G = 〈V, E〉 and
probabilistic programs Path (Figure 9) and Triple (Figure 10)
with stated post expectations. Let the program Path have a pa-
rameter cp for each path p. For any such valuations to the cp’s
there exist parameter values for the Triple program, namely a pa-
rameter ct for each triple t such that the program Path refines
the program Triple with respect to the post expectation PostE =
[∀ paths p in G, m(p) 6∈ 10∗1].

Proof: Consider any triple t = 〈s, w, n〉. Choose the parameter ct

for the triple t to be equal to the product of the parameters cp of all
paths p in G that start at s, end at n and go through w. That is,

ct =
Y
p

cp (13)

such that t is a subsequence of p.
To show that Path refines Triple with respect to the post

expectation PostE stated in the theorem, we need to show
that WP(Triple,PostE) V WP(Path,PostE). That is, for
each state σ, we need to show that WP(Triple,PostE)(σ) ≤
WP(Path,PostE)(σ).

Note that WP(assume(e), [A]) = [e ∧ A], and WP(S1 ⊕q

S2, [A]) = q × WP(S1, [A]) + (1 − q) × WP(S2, [A]) [20].
Using these two rules, we can compute WP(Triple,PostE) and
WP(Path,PostE) as an expression tree which is a sum of product
of expressions, where each product corresponds to a combination
of probabilistic choices made in the program.

First, consider any state σ that does not satisfy PostE . For
this state, WP(Triple,PostE)(σ) = WP(Path,PostE)(σ) = 0,
and the theorem follows trivially. Next, consider a state ω that
satisfies PostE . In this case, WP(Path,PostE)(ω) is the product
of probabilities cp for each path p in G.

Also, in this case WP(Triple,PostE)(ω) is the product of
two quantities X(ω) and Y (ω), where X(ω) is equal to the
product of probabilities ct for each triple t = 〈s, w, n〉 such
that m(〈s, w, n〉) 6= 101, and Y (ω) is equal to the product of
probabilities (1 − ct′) for each triple t′ = 〈s′, w′, n′〉 such that
m(〈s′, w′, n′〉) = 101. Since ct’s have been carefully chosen
according to Equation 13 and Y (ω) ∈ [0, 1], it follows that X(ω)
is less than or equal to the product of the probabilities cp for
each path p. Therefore, it is indeed the case that for each state ω,
WP(Triple,PostE)(ω) ≤ WP(Path,PostE)(ω).

Any solver for a probabilistic constraint system C with post
expectation PostE chooses states σ such that WP(C,PostE)(σ)
is greater than some threshold t. Since we have proved that Path
refines Triple, we know that every solution state for the Triple
system, is also a solution state for the Path system. Thus, the set of
states that are chosen by solver for the Triple system is contained in

Benchmark DLLs DLL size LOC
(kilobytes)

Alias Management Tool 3 65 10,812
Chat Application 3 543 6,783
Bicycle Club App 3 62 14,529
Software Catalog 15 118 11,941
Sporting Field Management Tool 3 290 15,803
Commitment Management Tool 7 369 25,602
New Hire Tool 11 565 5,595
Expense Report Approval Tool 4 421 78,914
Relationship Management 5 3,345 1,810,585
Customer Support Portal 14 2,447 66,385

Figure 11. Benchmark application sizes.

Type Count Revisions

Sources 27 16
Sinks 77 8

Sanitizers 7 2

Figure 12. Statistics for the out-of-the box specification that
comes with CAT.NET.

the set of states that are chosen by the solver for the Path system.
This has the desirable property that the Triple system will not
introduce more false positives than the Path system.

Note that the Path system itself can result in false positives,
since it requires at least one sanitizer on each source-sink path, and
does not require minimization of sanitizers. In order to remove false
positives due to redundant sanitizers, we add the constraints B2 and
B3 to the Triple system. Further, the path system does not distin-
guish wrappers of sources or sinks, so we add additional constraints
B4 and B5 to avoid classifying these wrappers as sources or sinks.
Using all these extra constraints, we find that the Triple system
performs very well on several large benchmarks and infers specifi-
cations with very few false positives. We describe these results in
the next section.

6. Experimental Evaluation
CAT.NET, a publicly available state-of-the-art static analysis tool
for Web application is the platform for our experiments [21]. MER-
LIN is implemented as an add-on on top of CAT.NET, using IN-
FER.NET, a library [22] that provides an interface to probabilistic
inference algorithms. This section presents the results of evaluat-
ing MERLIN on 10 large .NET Web applications. All these bench-
marks are security-critical enterprise line-of-business applications
currently in production written in C# on top of ASP.NET. They are
also subject of periodic security audits.

G F

Benchmark Nodes Edges Vars Nodes

Alias Management Tool 59 1,209 3 3
Chat Application 156 187 25 33
Bicycle Club App 176 246 70 317
Software Catalog 190 455 73 484
Sporting Field Management Tool 268 320 50 50
Commitment Management Tool 356 563 107 1,781
New Hire Tool 502 1,101 116 1,917
Expense Report Approval Tool 811 1,753 252 2,592
Relationship Management 3,639 22,188 874 391,221
Customer Support Portal 3,881 11,196 942 181,943

Figure 13. Size statistics for the propagation graph G and factor
graph F used by MERLIN.

6.1 Experimental Setup
Figure 11 summarizes information about our benchmarks. As we
discovered, not all code contained within the application source
tree is actually deployed to the Web server. Most of the time, the
number and size of deployed DLLs primarily consisting of .NET
bytecode is a good measure of the application size, as shown in
columns 2–3. Note that in a several cases, libraries supplied in
the form of DLLs without the source code constitute the biggest
part of an application. Finally, to provide another measure of the
application size, column 4 shows the traditional line-of-code metric
for all the code within the application.

To put our results on specification discovery in perspective, Fig-
ure 12 provides information about the out-of-the box specification
for CAT.NET, the static analysis tool that we used for our experi-
ments [21]. The second column shows the number of specifications
for each specification type. The last column shows the number of
revisions each portion of the specification has gone through, as ex-
tracted from the code revision repository. We have manually exam-
ined the revisions to only count substantial ones (i.e. just adding
comments or changing whitespace was disregarded). It is clear
from the table that even arriving at the default specification for
CAT.NET, as incomplete as it is, took a pretty significant number
of source revisions. We found that most commonly revised spec-
ification correspond to most commonly found vulnerabilities. In
particular, specifications for SQL injection and cross-site scripting
attacks have been revised by far the most. Moreover, after all these
revisions, the ultimate initial specification is also fairly large, con-
sisting of a total of 111 methods.

To provide a metric for the scale of the benchmarks relevant
for CAT.NET and MERLIN analyses, Figure 13 provides statistics
on the sizes of the propagation graph G computed by MERLIN,
and the factor graph F constructed in the process of constraint
generation. We sort our benchmarks by the number of nodes in G.
With propagation graphs containing thousands of nodes, it is not
surprising that we had to develop a polynomial approximation in
order for MERLIN to scale, as Section 5 describes.

6.2 Merlin Findings
Figure 14 provides information about the specifications discov-
ered by MERLIN. Columns 2–16 provide information about how
many correct and false positive items in each specification cate-
gory has been found. Note that in addition to “good” and “bad”
specifications, as indicated by Xand 7, we also have a “maybe”
column denoted by ?. This is because often what constitutes a
good specification is open to interpretation. Even in consultations
with CAT.NET developers we found many cases where the classi-
fication of a particular piece of the specification is not clear-cut.
The column labeled Rate gives the false positive rate for MERLIN:
the percentage of “bad” specifications that were inferred. Overall,
MERLIN infers 381 specifications, out of which 167 are confirmed
and 127 more are potential specifications. The MERLIN false pos-
itive rate, looking at the discovered specifications is 22%, com-
puted as (7+31+49)/381. This is decidedly better than the aver-
age state of the art false positive rate of over 90% [5]. The area
in which MERLIN does the worst is identifying sanitizers (with
a 38% false positive rate). This is because despite the extra con-
straints described in Section 2.4, MERLIN still flags some poly-
morphic functions as sanitizers. An example of this is the method
NameValueCollection.get Item in the standard class library.
Depending on what is stored in the collection, either the return re-
sult will be tainted or not. However, this function clearly does not
untaint its argument and so is not a good sanitizer.

Figure 15 summarizes information about the security vulner-
abilities we find based on both the initial and the post-MERLIN
specifications. For the purpose of finding vulnerabilities, the post-

SOURCES SANITIZERS SINKS

Benchmark All X ? 7 Rate All X ? 7 Rate All X ? 7 Rate

Alias Management Tool 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 N/A
Chat Application 1 1 0 0 0% 0 0 0 0 N/A 2 2 0 0 0%
Bicycle Club App 11 11 0 0 0% 3 2 0 1 33% 7 4 0 3 42%
Software Catalog 1 1 0 0 0% 8 3 0 5 62% 6 3 2 1 16%
Sporting Field Management Tool 0 0 0 0 N/A 0 0 0 0 N/A 1 0 1 0 0%
Commitment Management Tool 20 19 0 1 5% 9 1 2 6 66% 11 8 1 2 18%
New Hire Tool 3 3 0 0 0% 1 1 0 0 0% 17 14 0 3 17%
Expense Report Approval Tool 8 8 0 0 0% 20 2 13 5 25% 20 14 0 6 30%
Relationship Management 44 3 36 5 11% 1 0 0 1 100% 4 0 3 1 25%
Customer Support Portal 26 21 4 1 3% 39 16 10 13 33% 118 30 55 33 27%

Total 114 67 40 7 6% 81 25 25 31 38% 186 75 62 49 26%

Figure 14. New specifications discovered with MERLIN.

BEFORE AFTER

Benchmark All X ? 7 All X ? 7 -

Alias Management Tool 2 2 0 0 2 2 0 0 0
Chat Application 0 0 0 0 1 1 0 0 0
Bicycle Club App 0 0 0 0 4 3 1 0 0
Software Catalog 14 8 0 6 8 8 0 0 6
Sporting Field Management 0 0 0 0 0 0 0 0 0
Commitment Management Tool 1 1 0 0 22 16 3 3 0
New Hire Tool 4 4 0 0 3 3 0 0 1
Expense Report Approval Tool 0 0 0 0 2 2 0 0 0
Relationship Management 9 6 3 0 10 10 0 0 3
Customer Support Portal 59 19 3 37 290 277 13 0 3

Total 89 40 6 43 342 322 17 3 13

Figure 15. Vulnerabilities before and after MERLIN.

MERLIN specifications we used are the “good” specifications de-
noted by the Xcolumns in Figure 14. Columns 2–10 in Figure 15
show the number of vulnerabilities based on the original speci-
fication and the number of newly found vulnerabilities. Just like
with specifications, we break down vulnerabilities into “good”,
“maybe”, and “bad” categories denoted by X, ?, and 7. The very
last column reports 13 former false positives eliminated with the
MERLIN specification because of newly discovered sanitizers.

As with many other static analysis tools, false positives is one
of the primary complaints about CAT.NET in practice. As can be
seen from Figure 15 (the column marked with “−”), MERLIN helps
reduce the false positive rate from 48% to 33% (the latter computed
as (43-13)/89). Furthermore, if we take into account all the 322 new
(and confirmed) vulnerabilities into account, the false positive rate
drops to 1% (computed as 3/342).
Example 5 Function CreateQueryLink in Figure 16 is taken
from the Software Catalog benchmark2. The return result of this
function is passed into a known cross-site redirection sink not
shown here for brevity.

• The paths that go through request.Url.AbsolutePath and
request.QueryString on lines 6 and 15 are correctly identi-
fied as new, not previously flagged vulnerabilities.

• CAT.NET flags the path that passes through function
QueryStringParser.Parse on line 18 as a vulnerability.
However, with MERLIN, AntiXss.UrlEncode is correctly de-
termined to be a sanitizer, eliminating this false positive. With
MERLIN, we eliminate all 6 false positives in this benchmark.

2CAT.NET addresses explicit information flow only and does not flag
the fact that there is a control dependency on line 13 because tainted value
request.QueryString is used within a conditional.

1 public static string CreateQueryLink(
2 HttpRequest request, string key, string value,
3 List<string> keysToOmit, bool ignoreKey)
4 {
5 StringBuilder builder = new StringBuilder(
6 request.Url.AbsolutePath);
7 if (keysToOmit == null) {
8 keysToOmit = new List<string>();
9 }

10 builder.Append("?");
11 for (int i = 0; i < request.QueryString.Count; i++) {
12 if ((request.QueryString.GetKey(i) != key) &&
13 !keysToOmit.Contains(request.QueryString.GetKey(i)))
14 {
15 builder.Append(request.QueryString.GetKey(i));
16 builder.Append("=");
17 builder.Append(AntiXss.UrlEncode(
18 QueryStringParser.Parse(
19 request.QueryString.GetKey(i))));
20 builder.Append("&");
21 }
22 }
23 if (!ignoreKey) {
24 builder.Append(key);
25 builder.Append("=");
26 builder.Append(AntiXss.UrlEncode(value));
27 }
28 return builder.ToString().TrimEnd(new char[] { ’&’ });
29 }

Figure 16. Function CreateQueryLink for Example 5.

This short function illustrates many tricky issues with explicit in-
formation flow analyses as well as the danger of unrestricted ma-
nipulation of tainted data as strings. �

Note that while we start with the CAT.NET specification charac-
terized in Figure 12, MERLIN can even infer specification entirely
without an initial specification purely based on the structure of the
propagation graph.
Example 6 Consider a short program fragment written in C#
consisting of two event handlers shown in Figure 17. When run

1 protected void TextChanged(object sender, EventArgs e) {
2 string str = Request.QueryString["name"];
3 string str2 = HttpUtility.HtmlEncode(str);
4 Response.Write(str2);
5 }
6
7 protected void ButtonClicked(object sender, EventArgs e) {
8 string str = Request.UrlReferrer.AbsolutePath;
9 string str2 = HttpUtility.UrlEncode(str);

10 Response.Redirect(str2);
11 }

Figure 17. Program for Example 6.

Sources (1):
string System.Web.HttpUtility+UrlDecoder.Getstring()

Sanitizers (8):
string System.Web.HttpUtility.HtmlEncode(string)
string System.Web.HttpUtility.UrlEncodeSpaces(string)
string System.Web.HttpServerUtility.UrlDecode(string)
string System.Web.HttpUtility.UrlEncode(string, Encoding)
string System.Web.HttpUtility.UrlEncode(string)
string System.Web.HttpServerUtility.UrlEncode(string)
string System.Web.HttpUtility.UrlDecodestringFrom...
string System.Web.HttpUtility.UrlDecode(string, Encoding)

Sinks (4):
void System.Web.HttpResponse.WriteFile(string)
void System.Web.HttpRequest.set_QuerystringText(string)
void System.IO.TextWriter.Write(string)
void System.Web.HttpResponse.Redirect(string)

Figure 18. Specification inferred for Example 6.

CAT.NET MERLIN Total
Benchmark P G F time

Alias Management Tool 2.64 4.59 2.63 9.86
Chat Application 4.61 .81 2.67 8.09
Bicycle Club App 2.81 .53 2.72 6.06
Software Catalog 3.94 1.02 2.73 7.69
Sporting Field Management Tool 5.97 2.22 2.69 10.88
Commitment Management Tool 6.41 18.84 2.91 28.16
New Hire Tool 7.84 2.98 3.44 14.27
Expense Report Approval Tool 7.27 3.59 3.05 13.91
Relationship Management 55.38 87.63 66.45 209.45
Customer Support Portal 89.75 29.75 31.55 151.05

Figure 19. Static analysis and specification inference running
time, in seconds.

with no intial specification at all, MERLIN is able to infer a small,
but absolutely correct specification consisting of 13 elements, as
shown in Figure 18. Starting with even a small specification such
as the one above, MERLIN is able to succesfully infer increasingly
larger specifications that fill many gaps in the original CAT.NET
specification. �

6.3 Running Times
Finally, Figure 19 provides information about running time of the
various MERLIN components, measured in seconds. Columns 2–4
show the CAT.NET running time, the time to build the propagation
graph, and the inference time. The experiments were conducted on
a 3 GHz Pentium Dual Core Windows XP SP2 machine equipped
with 4 GB of memory. Overall, in part due to the approximation
described in Section 5, our analysis scales quite well, with none of
the benchmarks taking over four minutes to analyze. Given that
CAT.NET is generally run once a day or less frequently, these
running times are more than acceptable.

7. Related Work
Related work falls into the broad categories of securing Web appli-
cations and specification mining .

7.1 Securing Web Applications
There has been much interest in static and runtime protection tech-
niques to improve the security of Web applications. Static analysis
allows the developer to avoid issues such as cross-site scripting be-
fore the application goes into operation. Runtime analysis allows
exploit prevention and recovery during the operation of an applica-
tion. The WebSSARI project pioneered this line of research [8], by

combining static and dynamic analysis for PHP programs. Several
projects that came after WebSSARI improve on the quality of static
analysis for PHP [9, 33].

The Griffin project proposes scalable and precise static and
runtime analysis techniques for finding security vulnerabilities in
large Java applications [15, 18]. Several other runtime systems for
taint tracking have been proposed as well, including Haldar et
al. [6] and Chandra et al. [1] for Java, Pietraszek et al. [25], and
Nguyen-Tuong et al.for PHP [23]. Several commercial tools have
been built to detect information flow vulnerabilities in programs [4,
24]. All these tools without exception require a specification of
information flow. Our work infers such specifications.

7.2 Mining Specifications
A number of projects have addressed inferring specifications out-
side the context of security. For a general overview of specification
mining techniques, the reader is referred to Perracotta [34], Dy-
naMine [16], and Weimer et al. [31]. In particular, Engler et al. [3]
infer specifications from code by seeking rules that involve action
pairs: malloc paired with free, lock paired with unlock, etc. Li
and Zhou [13] and Livshits and Zimmerman [16] look at more gen-
eral patterns involving action pairs by combining data mining tech-
niques as well as sophisticated pointer analyses. Whaley et al. [32]
considers inference of interface specifications for Java method calls
using static analysis. Jagannathan et al. [26] use data mining tech-
niques for inference of method preconditions in complex software
systems. The preconditions might incorporate data-flow as well as
control-flow properties.

Kremenek et al. [10] use probabilistic inference to classify func-
tions that allocate and deallocate resources in programs. While sim-
ilar in spirit to our work, inference of information flow specifica-
tions appears to be a more complex problem than inference of allo-
cation and deallocation routines in C code in part because there
are more classes classifications — sources, sinks, and sanitizers
at play. Furthermore, the wrapper avoidance and sanitizer mini-
mization constraints do not have direct analogs in the allocator-
deallocator inference. Unlike Kremenek et al. [10] we use the the-
ory of probabilistic refinement to formally characterize the triple
approximation we have implemented for the purposes of scaling.

8. Conclusions
The growing importance of explicit information flow is evidenced
by the abundance of analysis tools for information flow tracking
and violation detection at the level of the language, runtime, oper-
ating system, and hardware [1, 2, 6, 8–11, 15, 17, 18, 23, 28, 29, 33,
36]. Ultimately, all these approaches require specifications.

In this paper we have presented MERLIN, a novel algorithm
that infers explicit information flow specifications from programs.
MERLIN derives a system of probabilistic constraints based on in-
terprocedural data flow in the program, and computes specifications
using probabilistic inference.

In order to scale to large programs, we approximate an exponen-
tial number of probabilistic constraints by a cubic number of triple
constraints, showing that the path-based constraint system is a re-
finement of the triple-based constraint system. This ensures that,
for any given threshold, every solution admitted by the approxi-
mated triple system is also admitted by the path system (for the
same threshold). Though this connection gives formal grounding to
our approximation, it does not say anything about the precision of
the results that can be obtained; such an assessment is obtained em-
pirically by evaluating the quality of the specification inferred for
large applications, the number of new vulnerabilities discovered,
and the number of false positives removed. Based on our observa-
tions about large Web applications, we added extra constraints to

the triple system (constraints B2, B3, B4, and B5 in Figure 3) to
enhance the quality of the results.

With these extra constraints, our empirical results convincingly
demonstrate that our model indeed achieves good precision. In our
experiments with 10 large Web applications written in .NET, MER-
LIN finds a total of 167 new confirmed specifications, which re-
sult in a total of 322 newly discovered vulnerabilities across the 10
benchmarks. Equally importantly, MERLIN-inferred specifications
also result in 13 false positives being removed. As a result of new
findings and eliminating false positives, the final false positive rate
for CAT.NET after MERLIN in our experiments drops to about 1%.

Acknowledgments
We thank Carroll Morgan for explaining his insights about abstrac-
tion and refinement between probabilistic systems. We want to
thank Ted Kremenek, G. Ramalingam, Kapil Vaswani, and West-
ley Weimer for their insightful comments on earlier drafts. We are
indebted to Mark Curphey, Hassan Khan, Don Willits, and others
behind CAT.NET for their unwavering assistance throughout the
project. We also thank John Winn for help with using INFER.NET.

References

[1] D. Chandra and M. Franz. Fine-grained information flow analysis and
enforcement in a java virtual machine. In Annual Computer Security
Applications Conference, pages 463–475, 2007.

[2] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible
information flow architecture for software security. In Proceedings
of the International Symposium on Computer Architecture, pages
482–493, 2007.

[3] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in systems code. In
In Proceedings of ACM Symposium on Operating Systems Principles,
pages 57–72, 2001.

[4] Fortify. Fortify code analyzer. http://www.ouncelabs.com/, 2008.
[5] C. L. Goues and W. Weimer. Specification mining with few false

positives. In Tools and Algorithms for the Construction and Analysis
of Systems, 2009.

[6] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for
Java. In Proceedings of the Annual Computer Security Applications
Conference, pages 303–311, Dec. 2005.

[7] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576—583, October 1969.

[8] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo. Securing Web application code by static analysis and runtime
protection. In Proceedings of the Conference on World Wide Web,
pages 40–52, May 2004.

[9] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for
detecting Web application vulnerabilities (short paper). In Proceedings
of the Symposium on Security and Privacy, May 2006.

[10] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. R. Engler. From
uncertainty to belief: Inferring the specification within. In Symposium
on Operating Systems Design and Implementation, pages 161–176,
Nov. 2006.

[11] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard os abstractions.
In Proceedings of Symposium on Operating Systems Principles, pages
321–334, 2007.

[12] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519, 2001.

[13] Z. Li and Y. Zhou. Pr-miner: Automatically extracting implicit
programming rules and detecting violations in large software code. In
Proceedings of the European Software Engineering Conference, 2005.

[14] B. Livshits. Improving Software Security with Precise Static
and Runtime Analysis. PhD thesis, Stanford University, Stanford,

California, 2006.
[15] B. Livshits and M. S. Lam. Finding security errors in Java programs

with static analysis. In Proceedings of the Usenix Security Symposium,
pages 271–286, Aug. 2005.

[16] B. Livshits and T. Zimmermann. DynaMine: Finding common error
patterns by mining software revision histories. In Proceedings of the
International Symposium on the Foundations of Software Engineering,
pages 296–305, Sept. 2005.

[17] M. Martin, B. Livshits, and M. S. Lam. Finding application errors
and security vulnerabilities using PQL: a program query language.
In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Oct. 2005.

[18] M. Martin, B. Livshits, and M. S. Lam. SecuriFly: Runtime
vulnerability protection for Web applications. Technical report,
Stanford University, Oct. 2006.

[19] A. McIver and C. Morgan. Abstraction, Refinement and Proof of
Probabilistic Systems. Springer, 2004.

[20] A. McIver and C. Morgan. Abstraction and refinement in probabilistic
systems. SIGMETRICS Performance Evaluation Review, 32:41–47,
March 2005.

[21] Microsoft Corporation. Microsoft Code Analysis
Tool .NET (CAT.NET). http://www.microsoft.
com/downloads/details.aspx?FamilyId=
0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en,
3 2009.

[22] T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.2, 2009. Mi-
crosoft Research Cambridge. http://research.microsoft.com/infernet.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening Web applications using precise tainting.
In Proceedings of the IFIP International Information Security
Conference, June 2005.

[24] OunceLabs, Inc. Ounce. http://www.ouncelabs.com/, 2008.
[25] T. Pietraszek and C. V. Berghe. Defending against injection attacks

through context-sensitive string evaluation. In Proceedings of the
Recent Advances in Intrusion Detection, Sept. 2005.

[26] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification
inference using predicate mining. In PLDI, 2007.

[27] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–
19, January 2003.

[28] Z. Su and G. Wassermann. The essence of command injection attacks
in web applications. In Proceedings of POPL, 2006.

[29] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and event
processes in the Asbestos operating system. ACM Trans. Comput.
Syst., 25(4):11, 2007.

[30] L. Wall. Perl security. http://search.cpan.org/dist/perl/
pod/perlsec.pod.

[31] W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
461–476, 2005.

[32] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-
oriented component interfaces. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 218–228, 2002.

[33] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In Proceedings of the Usenix Security Symposium,
pages 271–286, Aug. 2006.

[34] J. Yang and D. Evans. Perracotta: mining temporal API rules from
imperfect traces. In Proceedings of the International Conference on
Software Engineering, pages 282–291, 2006.

[35] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief
propagation and its generalizations. Exploring Artificial Intelligence
in the New Millennium, pages 239–269, 2003.

[36] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazires. Making
information flow explicit in HiStar. In Proceedings of the Symposium
on Operating Systems Design and Implementation, pages 263–278,
2006.

