Web Application
Vulnerabilities on the Rise
Compared to several years ago vulnerabilities

like SQL injections and cross-site scripting
attacks dominate the charts

Buffer overrun

HTML Injection

Information
disclosure

Code execution

Cross-site
scripting

Other input
validation
Path traversal
Format string
Integer overlow

HTTP response
splitting

SQL Injection

A study of 500 vulnerability
reports in Nov.—Dec. 2005

Griffin Application Security Project
http://suif.stanford.edu/~livshits/work/griffin/

We propose a hybrid
static/runtime solution
to Web application
vulnerabilities. Our
focus is on Java

J2EE applications

Goes after the most prominent
vulnerability types:

* SQL injections

* Cross-site scripting
* Path traversal

* HTTP splitting

* etc.

An extensible definition language PQL is
used for specifying vulnerabilities

April 27, 2006

Static and Runtime Solutions for Web Application Vulnerabilities

Benjamin Livshits, Stanford University

Static Error Detection

Analyze applications as they are being developed

Runtime Prevention & Recovery

Protect existing applications

Advantages:

¢ Finds vulnerabilities early in development cycle
* Sounds, so finds all vuln. of a particular type
* Can run after every build ensuring continuous security

Advantages:

*Prevents vulnerabilities from doing harm
*Safe mode for Web application execution
*Can quarantine suspicious actions, application
continues to run

*No false positives

Described in Finding Security Vulnerabilities in Java
Applications with Static Analysis, Benjamin Livshits
and Monica S. Lam, In Proceedings of the Usenix Security
Symposium, Baltimore, Maryland, August 2005.

query simpleSQLInjection
returns
object String param, derived;
uses
object HttpServletRequest req;
object Connection con;
object StringBuffer temp;
matches {
param

= req.getParameter(_);

temp.append(param);
derived = temp.toString();

con.executeQuery(derived);

b

Static analysis is based on a state-of-the-art fully context-
sensitive pointer analysis with extensions

Many practical issues needed to be addressed:

* Handle containers without a loss of precision

¢ Construct the application call graph in the presence of
reflective constructs of Java (see “Reflection Analysis for
Java”, Livshits, Whaley, and Lam, Nov. 2005)

Result summary:

* Analyzed 9 large open-source Web applications in Java
*Thousands of users combined

*29 vulnerabilities found, most confirmed and fixed

- &
. ooQo
l &
$

Described in Finding Application Errors and Security Flaws Using PQL:
a Program Query Language, Michael Martin, Benjamin Livshits, and
Monica S. Lam, Presented at the 20th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, San Diego,

California, October 2005.
e =
&

Static analysis q M

Runtime analysis works by instrumenting an existing application to look
for matches of a specified pattern. A recovery policy can be specified also

Some issues to address:

* Overhead can be high (usually 35-55%)

* Have a static optimization technique that brings the overhead down to
several percent

Result summary:

*Detected and prevented exploits in all our experiments
*Unoptimized overhead: 57% average

*Optimized overhead: 14% average

*Static privation removes 82-99% of instr. points



