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Web 2.0 is Upon Us
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JavaScript
+ DHTML

Client-side
computation

Server-side
computation

Client-side
rendering

Static HTML

Web 1.0 → Web 2.0
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Advantage of the AJAX model:

greater application responsiveness



Motivation



Motivation

AJAX-based Shopping Cart (Fantasy)
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client server

1 final RPC



Motivation

Shopping Cart (Reality)
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client server



Motivation

Web Developer’s Mantra

Thou shall not trust the client

No data integrity

No code integrity
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Motivation

Tension Headaches
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Move code 
to the server 
for security

Move code 
to client for 

performance



Motivation

Security vs. Performance
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responsiveness

se
cu

ri
ty Web 1.0:

• ASP.NET
• PHP

Web 2.0:  
• AJAX
• Silverlight

Ripley

With Ripley, placing 

computation on the client 

does not reduce 

the computational integrity

Focus on integrity, not 
confidentiality

Doesn't not protect against other 
issues like SQL injection attacks
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Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

ServerServer

ReplicaReplica ClientClient

events = {key: ‘a’, id=‘name’; click: id=‘name’}
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Algorithms

Zero-latency RPCs
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Replica Server DatabaseClient

.NET .NETJavaScript



Algorithms

Seems Too Much Like Magic. Is this Feasible?

• Create deterministic replay system
– How to we replicate JavaScript code?

– Cross-browser differences?

– Non-determinism?

• How do we scale it?
– Replica overhead on server

– Hundreds of concurrent replicas
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Algorithms

The Volta Distributing Compiler Illustrated

14

IL-to-ILIL-to-IL

IL-to-JSIL-to-JS JS

.NET 
bytecode

Volta

ReplicaReplica



Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

events = {key: ‘a’, id=‘name’; click: id=‘name’}
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ClientClient

ServerServer

ReplicaReplica
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• Client-side code instrumented
– Rewrite event handlers

– Capture “default” events

• Network overhead
– Buffer events for performance

– Piggy-back on existing RPCs



Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

ClientClient

events = {key: ‘a’, id=‘name’; click: id=‘name’}
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ServerServer

ReplicaReplica

• Run replica in a Ripley emulator
• In .NET, not in JavaScript, 10-100x speed increase

0 10 20 30 40 50 60 70 80

Ripley emulator

Internet Explorer

Firefox

Memory footprint, in MB
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Experiments



Experiments

Ripley Applications

 Shopping cart 

 Sudoku 

 Blog

 Speed typing

 Online Quiz

 Distributed online game

18



Experiments

Performance Overhead: Volta Benchmarks

Network:

• 2-3 bytes per user event (key press, mouse, etc.)

• Event stream compresses extremely well

Memory:

• About 1 MB per connected client

• Can scale to 1,000’s of clients per server

CPU:

• Client: Several ms of overhead added for event capture

• Server: Several ms for server-side checking
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Experiments

Replicating Hotmail

• Hotmail size
– 793 KB download
– 703 KB JavaScript
– 31,000+ lines of code
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• 10 minutes of normal use

• Requests: 617 KB

• Responses: 3,045 KB



Experiments

Replicating Hotmail
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Ripley traffic:

• 491 keyboard & mouse events

• 1.4% without compression (8.6 KB)

• 0.4% otherwise (2.8 KB)

Memory:

• DOM state in memory: 350 -- 450 KB

• JavaScript heap state: 1.3 MB

• < 1.75 MB  in total

• Can scale up to hundreds of clients

CPU overhead small:

• Most: < 15 ms

• Email message processing: 125 ms

• Most time spent in HTML rendering and data marshaling code



Ripley: Vision for the Future

• Secure-by-construction  Software + Services
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Ripley server farm

Web 2.0 
App



Contact us

Ben Livshits (livshits@microsoft.com)

Microsoft Research Ripley project 
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mailto:livshits@microsoft.com


Algorithms

Malicious Event Stream

ServerServer

ReplicaReplica ClientClient

events = {key: ‘$’, id=‘$%$^&’; click: id=‘name’}

m'
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e
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‘$%$^&’

Every attack against integrity of the 

Ripley-protected application was 

possible against the standalone app


