
SECURING WEB 2.0 APPLICATIONS

THROUGH REPLICATED EXECUTION

Ben Livshits

Microsoft Research

K. Vikram

Cornell University

Abhishek Prateek

IIT Delhi

Web 2.0 is Upon Us

2

JavaScript
+ DHTML

Client-side
computation

Server-side
computation

Client-side
rendering

Static HTML

Web 1.0 → Web 2.0

3

Advantage of the AJAX model:

greater application responsiveness

Motivation

Motivation

AJAX-based Shopping Cart (Fantasy)

5

client server

1 final RPC

Motivation

Shopping Cart (Reality)

6

client server

Motivation

Web Developer’s Mantra

Thou shall not trust the client

No data integrity

No code integrity

7

Motivation

Tension Headaches

8

Move code
to the server
for security

Move code
to client for

performance

Motivation

Security vs. Performance

9

responsiveness

se
cu

ri
ty Web 1.0:

• ASP.NET
• PHP

Web 2.0:
• AJAX
• Silverlight

Ripley

With Ripley, placing

computation on the client

does not reduce

the computational integrity

Focus on integrity, not
confidentiality

Doesn't not protect against other
issues like SQL injection attacks

Architecture

Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

ServerServer

ReplicaReplica ClientClient

events = {key: ‘a’, id=‘name’; click: id=‘name’}

m'

m

e

11

Algorithms

Zero-latency RPCs

12

Replica Server DatabaseClient

.NET .NETJavaScript

Algorithms

Seems Too Much Like Magic. Is this Feasible?

• Create deterministic replay system
– How to we replicate JavaScript code?

– Cross-browser differences?

– Non-determinism?

• How do we scale it?
– Replica overhead on server

– Hundreds of concurrent replicas

13

Algorithms

The Volta Distributing Compiler Illustrated

14

IL-to-ILIL-to-IL

IL-to-JSIL-to-JS JS

.NET
bytecode

Volta

ReplicaReplica

Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

events = {key: ‘a’, id=‘name’; click: id=‘name’}

m'

m

e
ClientClient

ServerServer

ReplicaReplica

15

• Client-side code instrumented
– Rewrite event handlers

– Capture “default” events

• Network overhead
– Buffer events for performance

– Piggy-back on existing RPCs

Algorithms

Ripley Architecture

1. Keep a replica of the client code

2. Capture user events & transmit to server for replay

3. Compare server and client results

ClientClient

events = {key: ‘a’, id=‘name’; click: id=‘name’}

m'

m

e

ServerServer

ReplicaReplica

• Run replica in a Ripley emulator
• In .NET, not in JavaScript, 10-100x speed increase

0 10 20 30 40 50 60 70 80

Ripley emulator

Internet Explorer

Firefox

Memory footprint, in MB

16

Experiments

Experiments

Ripley Applications

 Shopping cart

 Sudoku

 Blog

 Speed typing

 Online Quiz

 Distributed online game

18

Experiments

Performance Overhead: Volta Benchmarks

Network:

• 2-3 bytes per user event (key press, mouse, etc.)

• Event stream compresses extremely well

Memory:

• About 1 MB per connected client

• Can scale to 1,000’s of clients per server

CPU:

• Client: Several ms of overhead added for event capture

• Server: Several ms for server-side checking

19

Experiments

Replicating Hotmail

• Hotmail size
– 793 KB download
– 703 KB JavaScript
– 31,000+ lines of code

20

• 10 minutes of normal use

• Requests: 617 KB

• Responses: 3,045 KB

Experiments

Replicating Hotmail

21

Ripley traffic:

• 491 keyboard & mouse events

• 1.4% without compression (8.6 KB)

• 0.4% otherwise (2.8 KB)

Memory:

• DOM state in memory: 350 -- 450 KB

• JavaScript heap state: 1.3 MB

• < 1.75 MB in total

• Can scale up to hundreds of clients

CPU overhead small:

• Most: < 15 ms

• Email message processing: 125 ms

• Most time spent in HTML rendering and data marshaling code

Ripley: Vision for the Future

• Secure-by-construction Software + Services

23

Ripley server farm

Web 2.0
App

Contact us

Ben Livshits (livshits@microsoft.com)

Microsoft Research Ripley project

24

mailto:livshits@microsoft.com

Algorithms

Malicious Event Stream

ServerServer

ReplicaReplica ClientClient

events = {key: ‘$’, id=‘$%$^&’; click: id=‘name’}

m'

m

e

25

‘$%$^&’

Every attack against integrity of the

Ripley-protected application was

possible against the standalone app

