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Architecting Internet Services

• Difficult challenges and requirements

– 24x7 availability

– Over 1000 request/sec

• CNN on election day:  276M page views

• Akamai on election day: 12M req/sec

– Manage many terabytes or petabytes of data

– Latency requirements <100ms
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Common Architectural Patterns

(In no particular order)

• Tiering: simplifies through separation

• Partitioning: aids scale-out

• Replication:  redundancy and fail-over

• Data duplication & de-normalization: improve 
locality and perf for common-case queries

• Queue or batch long-running tasks



Everyone does it differently!

• Many caching schemes
– Client-side, front-end, backend, step-aside, CDN

• Many partitioning techniques
– Partition based on range, hash, lookup

• Data de-normalization and duplication
– Secondary indices, materialized view, or multiple 

copies 

• Tiering
– 3-tier (presentation/app-logic/database)
– 3-tier (app-layer / cache / db)
– 2-tier (app-layer / db)
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Differences for good reason

• Choices depend on many things

• Component performance and resource 
requirements

• Workload distribution

• Persistent data distribution

• Read/write rates

• Intermediate data sizes

• Consistency requirements
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FLUXO

• Goal:  Separate service’s logical programming from 
necessary architectural choices
• E.g., Caching, partitioning, replication, …

Techniques:
1. Restricted programming model
• Coarse-grained dataflow with annotations

2. Runtime request tracing
• Resource usage, performance and workload distributions

3. Analyze runtime behavior -> determine best choice
• Simulations, numerical or queuing models, heuristics…
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Dataflow Program
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Restrictions
• All components are 

idempotent
• No internal state
• State update restrictions



What do We Annotate?
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Annotate Semantics
• Consistency requirements
• (No strong consistency)
• Side-effects



What do We Measure?
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On every edge
• Data content/hash
• Data size
• Component performance 

and resource profiles
• Queue info



How do we transform? Caching
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So, where do we put a cache?

CloudDB::
Messages

CloudDB::
Friends

CloudDB::
Messages

UserID

Merge
message

lists

List<Msg>

List<Msg>

List<UserID>

html

Volatile<5hr>

Volatile<0>

Volatile<3min>

1. Analyze Dataflow:
Identify subgraphs with single input, single 
output

2. Check Annotations:
Subgraphs should not contain nodes with 
side-effects; or volatile<0> 

3. Analyze measurements
Data size -> what fits in cache size?
Content hash -> expected hit rate
Subgraph perf -> expected benefit 



Related Work

• MapReduce/Dryad – separates app from 
scalability/reliability architecture but only for 
batch

• WaveScope – uses dataflow and profiling for 
partitioning computation in sensor network

• J2EE – provides implementation of common 
patterns but developer still requires detailed 
knowledge

• SEDA – event driven system separates app from 
resource controllers 



Conclusion

• Q: Can we automate architectural decisions?

• Open Challenges:
– Ensuring correctness of transformations

– Improving analysis techniques

• Current Status: In implementation
– Experimenting with programming model 

restrictions and transformations

• If successful would enable easier development 
and improve agility



Extra Slides



Utility Computing Infrastructure

• On-demand compute and storage

– Machines no longer bottleneck to scalability

• Spectrum of APIs and choices

– Amazon EC2, Microsoft Azure, Google AppEngine

• Developer figures out how to use resources 
effectively

– Though, AppEngine and Azure restrict 
programming model to reduce potential problems
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Fault Model

• Best-effort execution layer provides machines

– On failure, new machine is allocated

• Deployed program must have redundancy to 
work through failures

• Responsibility of Fluxo compiler



Storage Model

• Store data in an “external” store

– S3, Azure, Sql Data Services

– may be persistent, session, soft, etc.

• Data written as delta-update

– Try to make reconciliation after partition easier

• Writes have deterministic ID for idempotency



Getting our feet wet…

• Built toy application: Weather service
– Read-only service operating on volatile data

• Run application on workload traces from Popfly
– Capture performance and intermediate workload distributions

• Built cache placement optimizer
– Replays traces in simulator to test a cache placement
– Simulated annealing to explore the space of choices
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Caching choices vary by workload
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Example #2: Pre/post compute


