
Fluxo: Simple Service Compiler

Emre Kıcıman, Ben Livshits, Madanlal Musuvathi

{emrek, livshits, madanm}@microsoft.com

Architecting Internet Services

• Difficult challenges and requirements

– 24x7 availability

– Over 1000 request/sec

• CNN on election day: 276M page views

• Akamai on election day: 12M req/sec

– Manage many terabytes or petabytes of data

– Latency requirements <100ms

Flickr: Photo Sharing

App Servers

Databases

Cal Henderson, “Scalable Web Architectures: Common Patterns
and Approaches,” Web 2.0 Expo NYC

$

Cache Images

$

Cache

Page
Request

Image
Request

Common Architectural Patterns

(In no particular order)

• Tiering: simplifies through separation

• Partitioning: aids scale-out

• Replication: redundancy and fail-over

• Data duplication & de-normalization: improve
locality and perf for common-case queries

• Queue or batch long-running tasks

Everyone does it differently!

• Many caching schemes
– Client-side, front-end, backend, step-aside, CDN

• Many partitioning techniques
– Partition based on range, hash, lookup

• Data de-normalization and duplication
– Secondary indices, materialized view, or multiple

copies

• Tiering
– 3-tier (presentation/app-logic/database)
– 3-tier (app-layer / cache / db)
– 2-tier (app-layer / db)

Flickr: Photo Sharing

App Servers

Databases

Cal Henderson, “Scalable Web Architectures: Common Patterns
and Approaches,” Web 2.0 Expo NYC

$

Cache Images

$

Cache

Page
Request

Image
Request

Different caching
schemes!

Flickr: Photo Sharing

App Servers

Databases

Cal Henderson, “Scalable Web Architectures: Common Patterns
and Approaches,” Web 2.0 Expo NYC

$

Cache Images

$

Cache

Page
Request

Image
Request

Different
partitioning and

replication
schemes!

Differences for good reason

• Choices depend on many things

• Component performance and resource
requirements

• Workload distribution

• Persistent data distribution

• Read/write rates

• Intermediate data sizes

• Consistency requirements

Differences for good reason

• Choices depend on many things

• Component performance and resource
requirements

• Workload distribution

• Persistent data distribution

• Read/write rates

• Intermediate data sizes

• Consistency requirements

These are all
measurable in
real systems!

Differences for good reason

• Choices depend on many things

• Component performance and resource
requirements

• Workload distribution

• Persistent data distribution

• Read/write rates

• Intermediate data sizes

• Consistency requirements

These are all
measurable in
real systems!

Except this one!

FLUXO

• Goal: Separate service’s logical programming from
necessary architectural choices
• E.g., Caching, partitioning, replication, …

Techniques:
1. Restricted programming model
• Coarse-grained dataflow with annotations

2. Runtime request tracing
• Resource usage, performance and workload distributions

3. Analyze runtime behavior -> determine best choice
• Simulations, numerical or queuing models, heuristics…

Architecture

Dataflow
Program

+
Annotations

FLUXO Compiler

Environment
Info

Runtime
Profile

Analysis
Module

Analysis
Module

Analysis
Module

Program
Transform

Thin Execution
Layer

Deployable
Program

Dataflow Program

CloudDB::
Messages

CloudDB::
Friends

CloudDB::
Messages

UserID

Merge
message

lists

List<Msg>

List<Msg>

List<UserID>

html

Restrictions
• All components are

idempotent
• No internal state
• State update restrictions

What do We Annotate?

CloudDB::
Messages

CloudDB::
Friends

CloudDB::
Messages

UserID

Merge
message

lists

List<Msg>

List<Msg>

List<UserID>

html

Volatile<5hr>

Volatile<0>

Volatile<3min>

Annotate Semantics
• Consistency requirements
• (No strong consistency)
• Side-effects

What do We Measure?

CloudDB::
Messages

CloudDB::
Friends

CloudDB::
Messages

UserID

Merge
message

lists

List<Msg>

List<Msg>

List<UserID>

html

On every edge
• Data content/hash
• Data size
• Component performance

and resource profiles
• Queue info

How do we transform? Caching

CloudDB::
Friends

Messages
Cache

Messages
Cache

Pick First

How do we transform? Caching

Messages
Cache

Messages
Cache

Pick First

So, where do we put a cache?

CloudDB::
Messages

CloudDB::
Friends

CloudDB::
Messages

UserID

Merge
message

lists

List<Msg>

List<Msg>

List<UserID>

html

Volatile<5hr>

Volatile<0>

Volatile<3min>

1. Analyze Dataflow:
Identify subgraphs with single input, single
output

2. Check Annotations:
Subgraphs should not contain nodes with
side-effects; or volatile<0>

3. Analyze measurements
Data size -> what fits in cache size?
Content hash -> expected hit rate
Subgraph perf -> expected benefit

Related Work

• MapReduce/Dryad – separates app from
scalability/reliability architecture but only for
batch

• WaveScope – uses dataflow and profiling for
partitioning computation in sensor network

• J2EE – provides implementation of common
patterns but developer still requires detailed
knowledge

• SEDA – event driven system separates app from
resource controllers

Conclusion

• Q: Can we automate architectural decisions?

• Open Challenges:
– Ensuring correctness of transformations

– Improving analysis techniques

• Current Status: In implementation
– Experimenting with programming model

restrictions and transformations

• If successful would enable easier development
and improve agility

Extra Slides

Utility Computing Infrastructure

• On-demand compute and storage

– Machines no longer bottleneck to scalability

• Spectrum of APIs and choices

– Amazon EC2, Microsoft Azure, Google AppEngine

• Developer figures out how to use resources
effectively

– Though, AppEngine and Azure restrict
programming model to reduce potential problems

Flickr: Photo Sharing

App Server Database

Web Server Images

Cal Henderson, “Scalable Web Architectures: Common Patterns
and Approaches,” Web 2.0 Expo NYC

Fault Model

• Best-effort execution layer provides machines

– On failure, new machine is allocated

• Deployed program must have redundancy to
work through failures

• Responsibility of Fluxo compiler

Storage Model

• Store data in an “external” store

– S3, Azure, Sql Data Services

– may be persistent, session, soft, etc.

• Data written as delta-update

– Try to make reconciliation after partition easier

• Writes have deterministic ID for idempotency

Getting our feet wet…

• Built toy application: Weather service
– Read-only service operating on volatile data

• Run application on workload traces from Popfly
– Capture performance and intermediate workload distributions

• Built cache placement optimizer
– Replays traces in simulator to test a cache placement
– Simulated annealing to explore the space of choices

Source Input Splitter

Zip Code to
Weather

IP Address to
City/State

1/2 Sink

City/State to
Weather

Parse Report

<IP, Zip Code>

<IP,Zip Code>

<IP,Zip Code>

<Weather>

<City, State>

<Weather>

<Weather> <Report String>

Caching choices vary by workload

Source Input Splitter

Zip Code to
Weather

IP Address to
City/State

1/2 Sink

City/State to
Weather

Parse Report

<IP, Zip Code>

<IP,Zip Code>

<IP,Zip Code>

<Weather>

<City, State>

<Weather>

<Weather> <Report String>

31% 4% 65%
0

10

20

30

40

Source Input Splitter

Zip Code to
Weather

IP Address to
City/State

1/2 Sink

City/State to
Weather

Parse Report

<IP, Zip Code>

<IP,Zip Code>

<IP,Zip Code>

<Weather>

<City, State>

<Weather>

<Weather> <Report String>

13%52%

13%

13%0

5

10

15

Source Input Splitter

Zip Code to
Weather

IP Address to
City/State

1/2 Sink

City/State to
Weather

Parse Report

<IP, Zip Code>

<IP,Zip Code>

<IP,Zip Code>

<Weather>

<City, State>

<Weather>

<Weather> <Report String>62%

22% 9%
0

50

100

150

Example #2: Pre/post compute

