
Specification Inference for Explicit Information Flow Problems

Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani
Microsoft Research

Anindya Banerjee
IMDEA Software

• Problem: Can we automatically infer which routines in a program
are sources, sinks and sanitizers?

• Technology: Static analysis + Probabilistic inference

• Applications:

– Lowers false errors from tools

– Enables more complete flow checking

• Results:

– Over 300 new vulnerabilities discovered in 10 deployed
ASP.NET applications

 Web application
vulnerabilities are a
serious threat!

CAT.NET

$username = $_REQUEST['username'];

$sql = "SELECT * FROM Students WHERE username = '$username';

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Propagation graph
m1→ m2 iff information flows “explicitly”
from m1 to m2

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}

 Source

 returns tainted data

 Sink

 error to pass tainted
data

 Sanitizer

 cleanse or untaint the
input

 Regular nodes

 propagate input to
output

 Every path from a
source to a sink should
go through a sanitizer

 Any source to sink path
without a sanitizer is
an information flow
vulnerability

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Vulnerabilities?

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source

sink

source

sanitizer

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source

sanitizer

sink

source

Assumption
Most flow paths in the propagation graph are secure

Given a propagation graph, can we infer a specification
or ‘complete’ a partial specification?

Initial
specification

Program

Final
specificationProp. graph

construction
Factor graph
construction

Probabilistic
inference

Merlin

Vulnerabilities

CAT.NET

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

CAT.NET

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 =

ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source

sanitizer

sink

?
ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source

?

sink

source

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source source

sanitizer

?

 For every acyclic path m1 m2 … mn the probability
that m1 is a source, mn is a sink, and m2, …, mn-1 are
not sanitizers is very low

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Exponential number of path constraints: O(2|V|)!

ReadData1 Prop1 Cleanse WriteData

source sink

• For every triple <m1, mi, mn> such that mi is on a
path from m1 to mn, the probability that m1 is a
source, mn is a sink, and mi is not a sanitizer is very
low ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Cubic number of triple constraints: O(|V|3)!

ReadData1 Prop1 WriteData

ReadData1 WriteDataCleanse

source sink

source sink

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

source source

sink

For every pair of nodes m1, m2 such that m1 and
m2 lie on the same path from a potential source
to a potential sink, the probability that both m1
and m2 are sanitizers is low

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

ReadData1 Prop1 Cleanse WriteData

source sink

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

a

b

c

d

Triple constraints

 ¬(a ∧ ¬b ∧ d)

 ¬(a ∧ ¬c ∧ d)

Avoid double sanitizers

 ¬(b ∧ c)

 a ∧ d ⇒ b

 a ∧ d ⇒ c

 ¬(b ∧ c)

(x1∨ x2) ∧ (x1∨ ¬x3)

C1 C2

f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3)

fC1(x1, x2) =

fC2(x1, x3) =

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise

f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3)

fC1(x1, x2) =

fC2(x1, x3) =

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise

(x1∨ x2) ∧ (x1∨ ¬x3)

C1 C2

p(x1, x2, x3) = fC1(x1, x2) × fC2(x1, x3)/Z

Z = ∑x1, x2, x3 (fC1(x1, x2) × fC2(x1, x3))

0.9

0.1

0.9

0.1

• Step 1: choose xi with highest pi(xi) and set xi = true if pi(xi)
is greater than a threshold, false otherwise
• Step 2: recompute marginals and repeat Step 1 until all
variables have been assigned

marginal

pi(xi) = ∑x1 … ∑x(i-1) ∑x(i+1) … ∑xN p(x1, … , xN)

fC1(x1, x2) =

fC2(x1, x3) =

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Source Sanitizer Sink

ReadData1 .95 .001 .001

ReadData2 .5 .5 .5

Cleanse .5 .5 .5

WriteData .5 .5 .85

…

Source Sanitizer Sink

ReadData1 .95 .001 .001

ReadData2 .5 .5 .5

Cleanse .01 .997 .03

WriteData .5 .5 .85

…

Probabilistic
Inference

Theorem
Path refines Triple

 Merlin is implemented in C#

 Uses CAT.NET for building the propagation
graph

 Uses Infer.NET for probabilistic inference

▪ http://research.microsoft.com/infernet

http://research.microsoft.com/infernet

10 line-of-business applications written in C# using ASP.NET

27

7

77

94

32

152

0

20

40

60

80

100

120

140

160

Sources Sanitizers Sinks

Original With Merlin

89

342

13

-100 0 100 200 300 400

Original

With
Merlin

False
positives

eliminated

 10 large Web apps in .NET
 Time taken per app < 4 minutes
 New specs: 167
 New vulnerabilities: 322
 False positives removed: 13
 Final false positive rate for CAT.NET after

Merlin < 1%

 Merlin is first practical approach to infer
explicit information flow specifications

 Design based on a formal characterization
of an approximate probabilistic constraint
system

 Able to successfully and efficiently infer
explicit information flow specifications in
large applications which result in detection
of new vulnerabilities

http://research.microsoft.com/merlin

http://research.microsoft.com/merlin

