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• Problem:  Can we automatically infer which routines in a program 
are sources, sinks and sanitizers?

• Technology: Static analysis + Probabilistic inference 

• Applications:

– Lowers false errors from tools

– Enables more complete flow checking

• Results:

– Over 300 new vulnerabilities discovered in 10 deployed 
ASP.NET applications





 Web application 
vulnerabilities are a 
serious threat!

CAT.NET



$username = $_REQUEST['username'];

$sql = "SELECT * FROM Students WHERE username = '$username';
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Propagation graph
m1→ m2 iff information flows “explicitly” 
from m1 to m2

void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}



 Source

 returns tainted data

 Sink

 error to pass tainted 
data

 Sanitizer

 cleanse or untaint the 
input

 Regular nodes

 propagate input  to 
output

 Every path from a 
source to a sink should 
go through  a sanitizer

 Any source to sink path 
without  a sanitizer is 
an information flow 
vulnerability
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Assumption
Most flow paths in the propagation graph are secure

Given a propagation graph, can we infer a specification  
or  ‘complete’ a  partial specification?
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void ProcessRequest()
{

string s1 = ReadData1("name");
string s2 = 

ReadData2("encoding");

string s11 = Prop1(s1);
string s22 = Prop2(s2);

string s111 = Cleanse(s11);
string s222 = Cleanse(s22);

WriteData("Parameter " + s111);
WriteData("Header " + s222);

}
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 For every acyclic path m1 m2 … mn the probability 
that m1 is a source, mn is a sink, and m2, …, mn-1 are 
not sanitizers is very low
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Exponential number of path constraints: O(2|V|)!

ReadData1 Prop1 Cleanse WriteData

source sink



• For every triple <m1, mi, mn> such that mi is on a 
path from m1 to mn, the probability that m1 is a 
source, mn is a sink, and mi is not a sanitizer is very 
low ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Cubic number of triple constraints: O(|V|3)!
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source sink
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For every pair of nodes m1, m2 such that m1 and 
m2 lie on the same path from a potential source 
to a potential sink, the probability that both m1
and m2 are sanitizers is low 
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Triple constraints

 ¬(a ∧ ¬b ∧ d) 

 ¬(a ∧ ¬c ∧ d)

Avoid double sanitizers

 ¬(b ∧ c) 

 a ∧ d ⇒ b

 a ∧ d ⇒ c

 ¬(b ∧ c) 



(x1∨ x2) ∧ (x1∨ ¬x3)  

C1 C2

f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3)   

fC1(x1, x2) = 

fC2(x1, x3) =   

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise



f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3)   

fC1(x1, x2) = 

fC2(x1, x3) =   

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise

(x1∨ x2) ∧ (x1∨ ¬x3)  

C1 C2

p(x1, x2, x3) = fC1(x1, x2) × fC2(x1, x3)/Z   

Z = ∑x1, x2, x3 (fC1(x1, x2) × fC2(x1, x3)) 
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• Step 1: choose xi with highest pi(xi) and set xi = true if pi(xi) 
is greater than a threshold, false otherwise
• Step 2: recompute marginals and repeat Step 1 until all 
variables have  been assigned

marginal

pi(xi) = ∑x1 … ∑x(i-1) ∑x(i+1) … ∑xN p(x1, … , xN)   



fC1(x1, x2) = 

fC2(x1, x3) =   

1 if x1∨ x2 = true
0 otherwise

1 if x1∨ ¬x3 = true
0 otherwise
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Source Sanitizer Sink

ReadData1 .95 .001 .001

ReadData2 .5 .5 .5

Cleanse .5 .5 .5

WriteData .5 .5 .85

…

Source Sanitizer Sink

ReadData1 .95 .001 .001

ReadData2 .5 .5 .5

Cleanse .01 .997 .03

WriteData .5 .5 .85

…

Probabilistic
Inference



Theorem
Path refines Triple





 Merlin is implemented in C#

 Uses CAT.NET for building the propagation 
graph

 Uses Infer.NET for probabilistic inference

▪ http://research.microsoft.com/infernet

http://research.microsoft.com/infernet


10 line-of-business applications written in C# using ASP.NET
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 10 large Web apps in .NET
 Time taken per app < 4 minutes
 New specs: 167
 New vulnerabilities: 322
 False positives removed: 13
 Final false positive rate for CAT.NET after 

Merlin < 1%



 Merlin is first practical approach to infer 
explicit information flow specifications

 Design based on a formal characterization 
of an approximate probabilistic constraint 
system

 Able to successfully and efficiently infer 
explicit information flow specifications in 
large applications which result in detection 
of new vulnerabilities



http://research.microsoft.com/merlin

http://research.microsoft.com/merlin

