
AjaxScope: Remotely Monitoring 
Client-side Web-App Behavior

Emre Kıcıman
emrek@microsoft.com

Internet Services Research Center
Microsoft Research

Ben Livshits
livshits@microsoft.com

Runtime Analysis & Design
Microsoft Research



A Web Application



A Web Application

70k lines of 
JavaScript code 
downloaded to 

the client.

2855 Functions

~ 1 MB code

Talks to >14 
backend services
(traffic, images,

search, directions, 
ads, …)



Web 1.0 → Web 2.0

Server-side
computation

Client-side
rendering

Static HTML



Web 1.0 → Web 2.0

Server-side
computation

Client-side
rendering

Static HTML

JavaScript

+ DHTML

Client-side
computation



Web App Challenges

• Code complexity: more client-side code
– Ex. Maps.live.com: 1MB of code, 70k LoC
– Bugs, race conditions, memory leaks, …

• Non-standard execution environments
– Many APIs differ across browsers
– Perf of simple ops vary 10x-100x across impl.

• Third-party dependencies (e.g., mash-ups)

Missing: Visibility into behavior on clients



Outline

1. Motivation

2. AjaxScope Platform

3. Expt: Adaptive instrumentation

4. Expt: Distributed instrumentation

5. Conclusions



AjaxScope Approach

Goal: Detailed visibility into app behavior in the client

Approach: On-the-fly rewriting to add instrumentation

Key Enabler: Instant re-deployability of web apps



• Performance Optimization
• Performance profiling
• String optimization; cache placement; …
• Code splitting and joining

• Debugging
• Report function arguments, app state, errors 
• Memory leak checking
• Statistical debugging

• Test
• Code coverage
• A/B tests

• Operations
• Measure RPC network latencies

• User interaction feedback
• What features are being used / discovered?

Monitoring Goals



Approach: JavaScript Rewriting

• Simple but powerful monitoring

– Inspect application state

– Observe control flow

– Limited only by JS sandbox

• Easy deployability

– No changes required to original web app

– No changes to client-side browsers



Example: Record Function Args

function foo(a,b) {

// do something

}

function foo(a,b) {

sendLog(“value of a=“+a);

sendLog(“value of b=“+b);

// do something

}

1. Search JavaScript AST for function definitions

2. For each function definition, add a statement to 
report every argument.

sendLog() queues up messages for bulk reporting to AjaxScope



Deploying AjaxScope…



Server-side Deployment

Users



Our Prototype (Client-side)

LogsResearcher



AjaxScope Proxy

Rewriting 
Engine

JS
Parser

Web
Page

Rewritten
Web Page

Log
Collector

Logs

Instrumentation #2

Instrumentation #1

• Pluggable policies

• Controls rewriting based 
on incoming logs

• Platform support for 
adaptive and distributed 
instrumentation 



Rewrite “On-the-fly”

• Service has tight control over code running at client
– Clients always download new version
– Cache-ability controlled by service

• Enables dynamic instrumentation

• Use to reduce performance overhead
1. Adaptive instrumentation
2. Distributed Instrumentation

• Also enables A/B tests to compare versions



Outline

1. Motivation

2. AjaxScope Platform

3. Expt: Adaptive instrumentation

4. Expt: Distributed instrumentation

5. Conclusions



Experimental Setup

• Profile 90 web sites’ “startup”
– Client-side AjaxScope

+ 6 more JS-heavy news & game sites

+ 78 sites randomly chosen, weighted by 
popularity

Site Code Size (kB) # of Functions Exec Time (ms)

M
ap

s maps.google.com 295 1935 530

maps.live.com 924 2855 190

Po
rt

al
s

msn.com 124 592 300

yahoo.com 278 1097 670

google.com/ig 135 960 190

protopages.com 599 1862 13780



Adaptation: Drill-down Perf Profiling

• Naïve: Add timestamps everywhere

– Too expensive! (both CPU and logging BW)

• Instead, auto-drill-down based on user 
experience

<script>
LogTime();
FastFunc1();
FastFunc2();
SlowFunc();
LogTime();

</script>

<script>
LogTime();
FastFunc1();
LogTime();
FastFunc2();
LogTime();
SlowFunc();
LogTime();

</script>

If it’s 
slow

<script>
FastFunc1();
FastFunc2();
SlowFunc();

</script>
…
function SlowFunc() {

// drill-down continues
}

Found 
it!



Adaptation Results

0%

50%

100%

150%

200%

250%

300%

P
e

rf
O

ve
rh

e
ad

Web sites

Full Profiling Drill-down Profiling

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

Lo
gg

in
g 

B
W

 O
ve

rh
e

ad
 

(b
yt

e
s)

Web Sites

Full Profiling Drill-down Profiling

Avg 30% reduction in
CPU Overhead

95% Avg Reduction in
Logging Bandwidth 



Outline

1. Motivation

2. AjaxScope Platform

3. Expt: Adaptive instrumentation

4. Expt: Distributed instrumentation

5. Conclusions



Monitoring for JS Memory Leaks

• Mem leaks major problem in older browsers
– Web apps can work-around

• E.g., Circular reference across DOM + 
JavaScript memory heaps

• Instrumentation looks for runtime patterns 
indicative of leak

• Expensive! Use distribution to reduce per-user 
overhead



Example: CNN.com

var pipelineContainers = 

document.getElementById("cnnPipelineModule").

getElementsByTagName("div");

...

for (var i=0; i<pipelineContainers.length; i++){

var pipelineContainer = pipelineContainers[i];

if(pipelineContainer.id.substr(0,9) == "plineCntr") {

pipelineContainer.onmouseover = function () 

{CNN_changeBackground(this,1); return false;}

}

}

First, get DOM 
elements

Then, set their event 
handlers to a new 
function



Example: CNN.com

var pipelineContainers = 

document.getElementById("cnnPipelineModule").

getElementsByTagName("div");

...

for (var i=0; i<pipelineContainers.length; i++){

var pipelineContainer = pipelineContainers[i];

if(pipelineContainer.id.substr(0,9) == "plineCntr") {

pipelineContainer.onmouseover = function () 

{CNN_changeBackground(this,1); return false;}

}

}

function closure references pipelineContainer

DOM
object

JavaScript
Object



Checking for Memory Leaks

a.b = c;

a.b = c

TraverseHeapAndCheckForCycles(c, a);

Check all object assignments for potential cycles

• Distribute expensive traversals across users 
• Each user gets random N% of checks
• Controls per-user overhead



Distribution Gives Fine Control
of Per-User Overhead

Trade-off per-user overhead vs. detection speed

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0% 20% 40% 60% 80% 100%

C
n

n
.c

o
m

 S
ta

rt
u

p
 (

m
s)

% of cycle checks distributed to single user

Baseline



Outline

1. Motivation

2. AjaxScope Platform

3. Expt: Adaptive instrumentation

4. Expt: Distributed instrumentation

5. Conclusions



Related Work

• JavaScript rewriting for safety & security

– BrowserShield and CoreScript

• Monitoring and tracing systems

– E.g., Magpie, Project5

• Dynamic and adaptive instrumentation

– In parallel computing cluster: ParaDyn

• Runtime program analysis for bug finding

– Statistical debugging, taint analysis, …



Future Work

• Platform improvements:
– Integrate caching considerations into rewriting

– Limit risk of bad rewriting with meta-monitoring

– Improved information protection

• Collecting data and analysis:
– Compare executions across users to find outliers

– Collect dynamic call graphs to inform smart 
prefetching



Conclusions

• End-to-end visibility into client-side web app
– Requires no client-side / server-side changes

• Distribution and adaptation controls overhead
– While maintaining high coverage & detail

• Demonstrated variety of instrumentation policies
– Performance profiler, memory leak checker, cache 

placement, …

• Download and extend the prototype
– http://research.microsoft.com/projects/ajaxview/
– Supports plug-ins for new instrumentation policies

http://research.microsoft.com/projects/ajaxview/


(this page intentionally left blank)


