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Abstract	
Web	browsers	are	 some	of	 the	most	widely	used	software	 in	 the	world.	Security	vulnerabilities	 in	
browsers	open	risks	for	billions	of	users	around	the	world;	quickly	discovering	these	vulnerabilities	
and	uncovering	their	source	is	not	only	a	crucial,	but	also	a	time	sensitive	issue	if	developers	are	to	
effectively	combat	those	who	would	exploit	them.	
	
In	this	paper,	we	present	a	visualization	tool	for	a	high-level	overview	of	bug	statistics	in	the	Chromium	
browser	which	may	help	developers	to	understand	past	causes	of	vulnerabilities,	and	so	may	aid	in	
building	secure	software	in	the	future.		
	
We	also	present	our	attempt	to	build	a	predictive	model	for	commits	to	the	Chromium	repository	with	
the	ability	to	classify	insecure	code	before	it	is	pushed	to	the	codebase.	This	attempt	failed	due	to	the	
very	limited	availability	of	data	linking	vulnerabilities	to	their	occurrences	in	source	code;	for	future	
studies	to	find	more	success,	collection	and	maintenance	of	such	a	dataset	is	required.	
	

1. Introduction		
	
Browsers	are	not	only	among	the	world’s	most	important	online	software	systems,	but	are	also	host	
to	multitudes	of	security	sensitive	operations	which	involve	relaying	critical,	private	information;	these	
two	 factors	 combined	 give	 rise	 to	 huge	 amounts	 of	 potential	 risks	 for	 the	 public	 if	 browser	
vulnerabilities	can	be	exploited.	Tools	which	can	help	us	to	understand	or	discover	vulnerabilities	are	
therefore	extremely	important	for	browser	developers	in	the	hunt	for	software	that	users	can	rely	on	
as	being	safe	to	use.	
		
With	the	above	in	mind,	the	aim	for	this	research	has	been	focused	on	two	goals:	
	

1. To	collect,	analyze,	and	effectively	display	vulnerability	data	for	the	Chromium	browser.	
2. To	build	a	classifier	which	can	identify	insecure	code	in	the	Chromium	browser.	

	
Our	first	goal	is	based	on	the	lack	of	easily	accessible,	intuitive	information	regarding	vulnerabilities	
found	 in	 Chromium.	 We	 hope	 that	 displaying	 vulnerability	 data	 in	 a	 clear	 way	 may	 help	 us	 to	
understand	where	 vulnerabilities	 come	 from	 in	 Chromium,	 and	may	 lead	 to	 interesting	 questions	
which	may	have	not	been	asked	before.	
	
Our	second	goal	is	focused	on	directly	aiding	Chromium	and	other	open-source	developers	in	writing	
more	secure	code.	Due	to	the	sheer	size	of	the	codebase	along	with	its	open	source	nature	and	mass	
of	developers,	it	is	common	for	bugs	to	slip	through	code	review,	leading	to	one	of	the	world’s	largest	
public	bug	databases	for	a	single	project	[1].	We	believe	that	using	a	predictive	model	in	conjunction	
with	code	review	may	help	to	narrow	down	areas	of	code	which	are	likely	to	be	vulnerable,	and	may	
help	to	reduce	the	number	of	developer	hours	spent	finding	vulnerabilities.	
	
We	hope	that	finding	success	with	Chromium	may	prompt	similar	work	for	other	browsers.	
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2. Related	Work	
	
In	this	section,	we	look	at	significant	pieces	of	literature	relating	to	our	work.	
	

Browser	Vulnerabilities	
	
As	 this	project	 revolves	around	security,	 it	 is	worthy	 to	mention	how	the	 insecurity	of	a	project	 is	
measured;	 both	 Kaur	 and	 Okereke	 et	 al.	 have	 shown	 that	 insecurity	 status	 is	 proportional	 to	
vulnerability	density	and	highly	influential	vulnerable	instances	[2][3].	
	
Woo	et	al.	suggest	that	the	AML	model	for	projecting	the	number	of	vulnerabilities	found	over	time	
for	a	certain	project	fits	well	for	browsers	[4],	largely	leading	to	an	S-shaped	cumulative	vulnerability	
curve	over	time.	They	reason	that	as	code	size	and	age	increases,	so	to	does	the	complexity	in	finding	
vulnerabilities,	but	also	that	the	popularity	of	the	project	increases	incentive	for	finding	vulnerabilities.	
Browsers	 score	 highly	 in	 both	 these	 categories,	 meaning	 that	 there	 is	 massive	 incentive	 to	 find	
vulnerabilities	(exemplified	by	bounties	on	vulnerability	discovery,	such	as	that	used	by	Google	for	the	
Chromium	 browser	 [5])	 but	 that	 they	 are	 also	 difficult	 to	 identify.	 Similar	 findings	 are	 shown	 by	
Alzhami	et	al.	[6].	
	
These	 findings	 lead	 to	 an	 interesting	 case	 where	 the	 use	 of	 automated	 vulnerability	 detection	 is	
exceptionally	 desirable	 for	 browsers.	 This	 is	 not	 only	 because	 there	 is	 a	 high	 incentive	 to	 find	
vulnerabilities,	but	also	because	it	requires	a	huge	number	of	man	hours	to	identify	them	manually	by	
developers;	in	theory,	this	time	could	be	drastically	reduced	by	automation.	
Di	Biase	et	al.	explored	the	effectiveness	of	code	review	for	the	Chromium	project	[7].	Being	extremely	
relevant	to	our	work,	this	study	provided	us	with	several	key	pieces	of	information:	
	

- Just	1%	of	code	review	comments	addressed	potential	security	issues	
- Code	reviews	which	miss	security	issues	mostly	miss	language	specific	issues	(e.g.	C++	buffer	

overflow)	and	domain	specific	issues	(e.g.	XSS)	
- Code	reviews	which	address	security	specific	issues	are	more	likely	to	address	domain	specific	

issues	than	language	specific	ones	
- Reviews	in	which	more	than	2	reviewers	are	involved	tend	to	raise	more	security	concerns	

	
This	information	implies	some	useful	insights:	
	

- Code	reviews	involving	1	or	2	people	don’t	tend	to	raise	security	issues,	directly	implying	that	
more	 man	 hours	 are	 needed	 for	 code	 reviews	 involving	 <3	 people	 to	 effectively	 address	
security	issues	

- A	large	proportion	of	language	specific	issues	are	missed,	and	a	small	amount	are	addressed,	
implying	that	language	specific	issues	are	hardest	to	pick	up	during	code	review	

	

Vulnerability	Prediction	
	
Finding	vulnerabilities	in	any	software,	let	alone	the	huge	codebases	of	browsers,	is	a	difficult	task;	
there	have	been	numerous	different	studies	which	attempt	to	understand	and	predict	vulnerabilities	
automatically.	Static	analysis	techniques	fall	short	for	predicting	vulnerabilities	 in	codebases	of	this	
size	and	complexity,	and	so	current	research	projects	focused	on	creating	tools	to	predict	vulnerable	
code	are	 largely	based	on	statistical	models.	Classifiers	built	by	 these	studies	vary	by	 feature	sets,	



3	
	

learners	and	granularity;	we	explore	numerous	approaches	to	take	into	consideration	when	deciding	
on	a	strategy	of	our	own.	
	
A	comprehensive	overview	of	quantative	analyses	of	software	vulnerabilities	is	given	by	Hyunchul,	in	
which	he	covers	the	lack	of	available	vulnerability	data	statistical	models	can	be	applied	to.	He	states	
that	 although	 statistical	 modelling	 to	 find	 vulnerabilities	 is	 in	 its	 infancy,	 datasets	 have	 begun	 to	
become	large	enough	to	be	used	by	statistical	models	[8].	
	
Several	 approaches	 to	 vulnerability	 prediction	 focus	 on	 code	 metrics,	 none	 of	 which	 have	 been	
particularly	successful.	Morrison	et	al.	explore	the	scarcity	of	vulnerability	predictive	models,	and	try	
to	create	one	using	code	metrics	[9].	They	find	that	predictive	models	at	source	level	perform	poorly	
when	 code	metrics	 alone	 are	 used	 as	 features.	 Shin	 et	 al.	 find	 that	 code	metrics	 such	 as	 churn,	
complexity	and	developer	activity	can	be	indicative	of	vulnerabilities,	but	that	the	precision	of	solely	
metric-based	models	are	extremely	poor	at	below	0.05	[10].	Zimmerman	et	al.	looked	at	the	potential	
for	code	metrics	to	be	able	to	predict	vulnerabilities	in	Windows	Vista;	their	model	precision	was	fair	
at	roughly	0.6,	whereas	their	recall	was	very	low	at	just	0.1-.02	[11].	
	
A	 technique	which	has	 found	more	success	has	been	to	extract	 features	 for	 learning	directly	 from	
source	code.	Scandariato	et	al.	find	success	at	file	level	classification	by	using	bag	of	word	features	of	
source	code	 in	two	separate	studies	[12],	 [13];	they	obtain	 impressive	average	precision	and	recall	
values,	both	over	0.8,	over	20	Java	applications.	Another	similar	approach	by	Perl	et	al.	is	to	classify	
individual	git	commits,	using	both	commit	code	and	commit	metadata	(e.g.	author	commits	to	project,	
number	 of	 commit	 hunks,	 file	 future	 changes,	 etc.)	 [14].	 They	 analyzed	 66	 C	 and	 C++	 projects,	
classifying	commits	as	vulnerable	based	on	official	CVE	reports.	Their	model	obtained	precision	and	
recall	values	of	0.6	and	0.24	respectively.	It	is	worth	noting	that	they	reported	that	their	dataset	should	
work	out	of	the	box	for	training	classifiers	for	other	C	and	C++	projects.	

	

3. Data	Visualization	
	
As	discussed	in	the	introduction	of	this	paper,	the	first	goal	of	this	study	is	to	effectively	and	clearly	
present	vulnerability	data	 for	Chromium.	As	of	September	2017,	 the	Chromium	codebase	contains	
over	16	million	 lines	of	code,	200,000	files,	and	is	 linked	to	a	bug	database	containing	over	56,000	
reports.	Being	open	source,	this	information	is	all	publicly	available;	source	can	be	found	at	[15],	bug	
report	database	at	[1],	officially	reported	CVEs	at	[16],	and	stable	release	information,	which	maps	
CVEs	to	bug	reports	and	details	vulnerability	fixes,	at	[17].	
	
Despite	this	wealth	of	information	being	publicly	available,	our	immediate	observation	was	that	there	
is	 no	 direct	way	 to	map	bugs	 or	 vulnerabilities	 to	 the	 specific	 sections	 of	 code	which	 they	 affect,	
meaning	there	is	no	high-level	overview	of	vulnerability	statistics	for	Chromium.	We	believe	a	high-
level,	intuitive,	dynamic	overview	of	vulnerabilities	and	how	they	relate	to	the	Chromium	source	code	
directly	 could	 raise	 questions	 which	 have	 not	 yet	 been	 considered	 about	 high-level	 vulnerability	
patterns.	The	answers	to	these	questions	may	provide	new	insights	as	to	how	and	why	vulnerabilities	
are	introduced,	and	how	to	prevent	common	patterns	in	the	future.	
	
We	considered	what	the	most	effective	way	of	communicating	this	data	from	a	high-level	perspective	
would	be,	and	settled	upon	building	an	online	visualization	tool	alongside	a	JSON	API	for	those	who	
wish	to	access	our	raw	data.	This	visualization	must	be	able	to	represent	the	entire	repository	tree	at	
the	topmost	level,	and	so	scalability	was	a	large	factor	in	deciding	which	visualization	format	to	use.	
We	took	inspiration	from	Figure	2	in	paper	[18],	and	decided	that	a	colour-coded	treemap	suited	our	
needs	well.	
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Requirements		
	
We	considered	the	requirements	necessary	 for	 this	 tool	 to	be	effective,	and	decided	the	following	
were	necessary.	
	
Scalability	
Chromium	is	one	of	the	largest	open	source	projects	 in	the	world,	and	so	to	efficiently	and	quickly	
display	the	top-level	view	 in	a	web	browser	the	system	must	serve	data	dynamically	based	on	the	
user’s	current	view.	
	
Full	Source	Tree	Traversal	
The	visualization	must	be	able	to	display	statistics	at	any	node	in	the	source	tree	to	be	fully	explorable	
and	complete.	This	implies	the	ability	to	be	able	to	traverse	through	the	tree	to	any	folder	or	file	in	
the	Chromium	source,	thus	giving	the	user	the	ability	to	“zoom	in”	to	individual	sections	of	the	code	
for	a	clear	view.	
	
Intuitive	Presentation	and	Ability	to	Find	Defects	Visually	
To	 be	 able	 to	 convey	 information	 effectively,	 users	must	 be	 able	 to	 look	 at	 the	 visualization	 and	
immediately	spot	areas	of	interest	for	the	given	view.	
	
Multiple	Statistics	
To	 be	 able	 to	 represent	 all	 our	 collected	 data	 effectively,	 users	 should	 be	 able	 to	 view	 different	
statistics,	i.e.	select	from	a	number	different	views	for	the	same	codebase.		

	

A	Functionality	Walk-Through	
Below	is	a	brief	outline	of	the	basic	functionality	of	the	visualization	app.	The	app’s	landing	page	is	
shown	below	in	Figure	1,	along	with	the	dropdown	menu	for	selecting	the	various	visualizations	in	
Figure	2.	The	definitions	of	the	various	visualization	options	in	Figure	2	are	detailed	below	in	Table	1.	
	
	

KEY	 DEFINITION	
P:	 Pdfium	codebase	
C:	 Chromium	codebase	
All	 View	all	bugs	in	codebase	
Security	 View	security	bugs	in	codebase	
Security	:	All	 View	ratio	of	security	bugs	to	all	bugs	in	codebase	

Table	1:	Visualization	Options	

The	other	customization	options	which	can	be	seen	in	Figure	1	are:	
	
Normalize	by	file	size	
Bug	 numbers	 for	 selected	 visualization	will	 be	 normalized	 by	 file	 size	 for	 every	 file	 if	 this	 value	 is	
selected.	Value	shown	by	colour	scheme	for	each	file	will	be	proportional	to	!"#$%&	()	$"*+

),-%	+,.%
	rather	than	

just	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑏𝑢𝑔𝑠.	
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Tree	depth	
Depth	of	tree	to	be	loaded	at	each	view,	with	0	referring	to	full	directory	tree	within	the	source	code	
database.	 The	 higher	 the	 depth,	 the	 more	 accurate	 but	 less	 responsive	 the	 view	 will	 be.	 It	 is	
recommended	that	a	limit	of	3-5	is	set	for	the	Chromium	codebase.	
	

	
Figure	1:	Visualization	App	Landing	Page	

	

		
Figure	2:	Visualization	App	View	Menu	

Once	 the	desired	options	have	been	 selected,	 the	 view	 can	be	 rendered	 via	 the	Render	 Treemap	
button.	After	querying	the	API,	 the	treemap	will	be	rendered	to	specifications;	 for	example,	Error!	
Reference	 source	 not	 found.	 shows	 the	 visualization	 for	 P:	 Security	 with	 unspecified	 depth,	 not	
normalized	by	 file	 size.	 Folders	 and	 files	 in	 the	 source	 tree	 can	be	navigated	 to	by	 clicking	on	 the	
desired	folder	or	folder	header;	to	return	up	the	tree,	users	may	simply	click	the	“Go	Up”	button.	Data	
about	each	folder	is	displayed	via	a	popup	by	hovering	over	the	desired	file	or	folder.	
	
To	render	a	different	treemap,	users	may	simply	select	new	options	and	click	the	Render	Treemap	
button	once	more.	
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Figure	3:	Visualization	of	P:	Security	at	source	root	

Case	Studies	
	
We	 believe	 this	 visualization	 tool	 has	multiple	 potential	 uses;	 this	 section	will	 attempt	 to	 provide	
information	as	to	how	this	tool	may	be	used,	and	will	detail	some	hypothetical	practical	use	cases.	
	
High-Level	Overview	
	
Error!	Reference	source	not	 found.,	which	we	have	already	seen	above,	gives	us	useful	high-level	
information	at	a	quick	glance.	A	user	can	immediately	see	from	this	top-level	view	which	parts	of	the	
Pdfium	codebase	tend	to	give	rise	to	security	bugs,	and	can	easily	traverse	to	the	offending	parts	to	
investigate	further.	
In	the	case	of	our	Error!	Reference	source	not	found.	example,	the	user	in	question	may	question	why	
security	issues	have	only	occurred	in	half	of	the	subdirectories	of	the	~/core/fdpfapi	directory,	
located	 at	 the	 top	 left	 corner	 of	 Error!	 Reference	 source	 not	 found..	 Upon	 navigating	 to	
~/core/fdpfapi,	they	would	be	able	to	view	the	offending	directory	and	files,	shown	in	Figure	4	
below,	and	see	that	they	occur	in	all	subdirectories	but	cmaps.	
	
This	sort	of	high-level	overview	could	be	useful	for	several	reasons,	most	notably:	
	
Targeting	of	an	Analysis	Tool	or	Manual	Code	Review	
Developers	may	believe	this	data	to	be	applicable	to	current	vulnerabilities	or	bugs,	and	may	choose	
to	 focus	 an	 automated	 or	 manual	 review	 on	 sections	 of	 code	 which	 were	 prone	 to	 bugs	 or	
vulnerabilities	in	the	past	(or	alternatively	on	those	which	weren't	and	may	have	slipped	past	review)	

	
Intuitive	Discovery	of	High-Level	Patterns	
Quickly	discovering	high	level	patterns	may	help	to	combat	insecure	coding.	In	our	example	detailed	
above,	questions	could	be	raised	as	to	why	no	security	issues	appear	in	cmaps,	but	appear	in	other	
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subfolders.	 These	questions	may	not	have	otherwise	been	asked	due	 to	 the	 lack	of	available	data	
which	makes	these	patterns	obvious	
	
	

	
Figure	4:	Visualization	of	P:	Security	at	~/core/fpdfapi	

 
Practical	Functionality	Examples	
	
Each	available	view	provides	different	information	about	the	same	codebase,	meaning	these	different	
views	may	be	useful	for	completely	different	purposes.	As	an	example	of	the	versatility	of	this	tool,	
we	will	consider	a	hypothetical	situation	involving	two	separate	development	teams	who	wish	to	solve	
two	different	problems:	
	
	
	
Team	1:	Identify	Areas	of	Pdfium	to	Target	for	Static	Analysis	
After	 consideration	 of	 their	 problem,	 Team	 1	 decides	 that	 their	 solution	 should	 be	 one	 of	 the	
following:	
• Target	areas	of	code	which	have	been	problematic	in	the	past	and	so	may	be	likely	to	cause	issues	

in	future	
• Target	areas	which	have	not	undergone	analysis	recently	and	so	may	need	to	be	checked	
• Combine	both	above	approaches	to	find	areas	to	target	
They	decide	the	latter	strategy	is	best.	To	identify	areas	of	code	which	have	been	buggy	in	the	past,	
they	can	either	use	the	visualization	tool	to	quickly	 identify	problematic	areas	by	viewing	P:	All,	or	
alternatively	retrieve	raw	data	for	each	file	directly	from	our	API.	Once	they	have	this	data,	they	can	
combine	it	with	their	own	analysis	history	to	come	to	a	solution.	
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Team	2:	Identify	Areas	of	Chromium	which	should	be	Reviewed	by	a	Security	Team	
Team	2	decides	that	areas	which	the	security	team	would	be	most	valuable	reviewing	are	those	where	
historically	security	bugs	have	been	most	dense.	They	simply	view	C:	Security,	normalized	by	file	size,	
and	direct	the	team	to	areas	of	code	which	stand	out	on	the	visualization.	
	
These	are	two	simple	examples	which	demonstrate	the	possible	versatility	of	the	app,	and	that	each	
view	may	have	various	functionality		
	

Implementation	Details	
	
Our	 goal	was	 to	 build	 an	 interactive	 treemap	 visualization	 of	 the	 codebase	which	 could	 be	 easily	
traversed	and	could	also	accurately	represent	both	high	level	(e.g.	root	directory)	and	low-level	views	
(e.g.	deep	subfolder	or	file	level).	Our	aim	was	to	not	only	provide	a	good	amount	of	data	at	every	
level	of	the	source,	but	also	an	intuitive	colour	coded	view	which	could	allow	users	to	identify	at	a	
glance	which	areas	of	the	codebase	have	historically	been	most	problematic.	
	
Our	requirements	lead	to	a	surprisingly	difficult	task	simply	due	to	the	size	of	the	Chromium	codebase.	
Creating	 a	 static	 tree	 in	 a	 browser	 with	 this	 many	 leaves	 (i.e.	 files)	 and	 many	 more	 nodes	 (i.e.	
directories)	would	be	too	much	for	a	browser	to	handle,	so	data	retrieval	and	rendering	had	to	be	
dynamic	depending	on	the	user’s	current	view.	No	libraries	for	dynamically	rendering	treemaps	exist	
publicly	(to	the	best	of	our	knowledge),	so	we	created	a	wrapper	for	the	Google	Charts	Treemap	library	
[19]	which	allowed	for	dynamic	treemap	traversal.	
	
Our	frontend	[20]	was	built	with	ReactJS,	API	[21]	with	Express	and	database	with	MongoDB	[22].	All	
data	was	 scraped	 from	Google’s	 code	 review	 site	 [23]	 and	 bug	 report	 database	 [1],	 and	 is	 stored	
statically	and	queried	by	our	API	as	required.	
	
Below	is	a	summary	of	how	we	met	each	project	requirement:	
	

• Scalability:	Use	of	dynamic	rendering	of	treemaps	using	an	API	and	static	database	allowed	
us	to	display	large	source	trees	without	worrying	about	performance	

• Full	Tree	Traversal:	Dynamic	rendering	also	allows	us	to	make	API	calls	to	retrieve	data	for	
any	part	of	the	source	tree	for	any	depth,	and	so	allows	for	full	tree	traversal	by	the	user	

• Intuitive	Presentation:	We	used	a	colour	coding	scheme	to	allow	users	 to	visually	 identify	
interesting	areas	of	code	with	ease	

• Multiple	Statistics:	Incorporating	multiple	views	allowed	users	to	easily	study	various	sets	of	
data	using	the	same	tool	

	
	

4. Vulnerability	Prediction	
	
The	second	part	of	our	research	concerned	creating	a	vulnerability	prediction	model	for	Chromium.	
There	have	been	several	different	approaches	to	vulnerability	prediction,	discussed	in	related	work	
[11],	[6],	[9],	[10],	[12],	[13],	[18],	but	none	(to	our	knowledge)	for	the	Chromium	browser	specifically.	
Our	goal	was	to	create	a	model	which	would	not	only	allow	for	code	granularity	smaller	than	that	of	
files	to	allow	for	more	useful	information	for	developers,	but	also	one	which	gave	an	explanation	as	
to	why	a	certain	piece	of	code	was	marked	as	vulnerable.	Combining	these	two	goals,	we	decided	to	
follow	 the	 approach	 discussed	 by	 Perl	 et	 al.	 in	 the	 VCCFinder	 paper	 [14],	 which	 uses	 linear	 SVM	
learning	to	classify	individual	commits	as	vulnerable	or	not.	The	ability	to	classify	commits	rather	than	
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files	not	only	allows	for	a	finer	granularity,	making	results	more	useful	for	developers,	but	also	allows	
us	to	use	commit	metadata	which	was	shown	to	aid	in	classifying	commits	as	vulnerable	or	not.	
	

Feature	Selection	
	
Before	starting	with	data	collection,	we	collected	a	list	of	features	to	use	for	learning.	The	VCCFinder	
project	found	that	commit	metadata,	such	as	length	of	commit	or	number	of	other	commits	by	the	
commit	author,	was	useful	for	differentiating	between	vulnerable	and	non-vulnerable	commits	along	
with	code	content.	
	
Feature	Set	
	
Feature	Name	 Bucket	Size	 Description	
Tokenized	Code	 N/A	 Tokenized	C++	source	code	
Hunk	Count	 5	 Separate	 sections	 of	 code	

changed	in	commit	
Additions	 10	 Number	of	lines	added	
Deletions	 10	 Number	of	lines	deleted	

Table	2:	Feature	Set	

	
Feature	Representation	
	
We	decided	to	follow	the	VCCFinder	approach	of	using	a	bag	of	words	model	[24]	to	represent	both	
numeric	metadata	features	and	tokenized	code	content.		
	
For	a	bag	of	words	model	to	work,	commits	must	be	represented	in	the	context	of	a	feature	set	across	
our	entire	dataset	so	that	our	classifier	can	identify	the	same	features	across	different	commits.	This	
feature	set	takes	the	form	of	a	large	hash	map	of	all	tokens	in	our	dataset,	each	mapping	to	a	unique	
index.	Once	the	set	is	formed,	individual	tokenized	commits	may	be	represented	within	the	context	
of	 the	 feature	set	by	an	array	of	counts	of	each	 individual	 feature,	where	the	 index	of	each	count	
represents	the	index	this	feature	maps	to	in	our	feature	set.	As	this	array	will	consist	mainly	of	zeroes,	
we	can	efficiently	represent	it	as	a	sparse	feature	vector.	A	sparse	feature	vector	takes	the	form	of	a	
hash	map,	where	keys	are	 feature	 indexes	and	values	 represent	 the	number	of	 times	 that	 feature	
appears;	we	vastly	reduce	the	size	of	the	array	by	omitting	entries	which	do	not	appear	in	the	commit.	
	
We	also	followed	the	VCCFinder	technique	of	inserting	numeric	metadata	features	into	discrete	sized	
bins,	allowing	our	classifier	to	identify	values	that	are	close	in	value	rather	than	viewing,	for	example,	
“4.5”	and	“4.6”	as	entirely	different	strings.	Bin	sizes	were	chosen	for	each	feature,	and	are	detailed	
in	Table	1	above.	
	
We	 tokenize	 our	 commit	 code	 by	 all	 C++	 punctuation	 and	 whitespace	 rather	 than	 following	 the	
VCCFinder	approach	of	simply	tokenizing	by	whitespace	(i.e.	spaces,	tabs	and	newlines).	We	believe	
this	tokenizing	approach	to	be	better,	as	our	classifier	can	identify	function	calls	to	the	same	function	
with	different	arguments	as	calls	to	the	same	function.		
	
As	an	example,	consider	Table	3	below	which	details	two	calls	to	the	same	function	and	both	versions	
of	their	corresponding	tokenized	versions.	In	this	example,	a	classifier	would	be	able	to	identify	that	
the	same	function	is	called	by	both	pieces	of	code	if	using	our	tokens,	whereas	it	would	see	‘max(2,’	
and	‘max(4,’	as	two	separate	tokens	in	the	case	of	VCCFinder.	It	is	worthy	to	note	that	Scandariato	



10	
	

et	 al.	 found	 success	 in	 studies	 [12],	 [13]	 (precision	 and	 recall	 levels	 over	 0.8)	 by	 tokenizing	 by	 all	
punctuation	rather	than	simply	by	whitespace.	
	
Tokenized	commits	are	represented	by	a	map	of	feature_name : feature_count	
	
	
	
	
	

Function	Call	 VCCFinder	Tokens	 Our	Tokens	
 
 
 
int m = max(2, 3); 

 
{‘int’:1,  
‘m’:1,  
‘=’:1,  

‘max(2,’:1,  
‘3);’:1} 

 

 
{‘int’:1,  
‘m’:1,  

‘max’:1,  
‘2’:1,  
‘3’:1} 

 
 
 
 
int n = max(4, 5); 

 
{‘int’:1,  
‘n’:1,  
‘=’:1,  

‘max(4,’:1,  
‘5);’:1} 

 
 

 
{‘int’:1,  
‘n’:1,  

‘max’:1,  
‘4’:1,  
‘5’:1} 

 

Table	3:	Function	Calls	and	their	Corresponding	Tokens	

	
We	will	now	detail	a	brief	example	of	commit	representation.	Let	us	assume	our	feature	set	is	as	below	
	

feature_set = { 
‘2’   : 0,  
‘3’   : 1,  
‘4’   : 2,  
‘5’   : 3,  
‘int’  : 4,  
‘m’   : 5,  
‘max’  : 6, 
‘n’  : 7,  
‘foo’  : 8, 
‘bar’  : 9, 
‘$ACP_0_1$’: 10,  
‘$ACP_1_2$’: 11,  
‘$HC_1_3$’ : 12, 
‘$foo_bin$’: 13, 
‘$bar_bin$’: 14 

} 
	
where	 $ACP_0_1	 corresponds	 to	 the	 author	 commit	 percentage	 bin	 between	 0%	 and	 1%,	
$ACP_1_2	corresponds	to	the	bin	between	1%	and	2%,	and	‘$HC_1_3’	represents	the	hunk	count	
bin	for	counts	between	1	and	3.	All	numeric	metadata	features	are	represented	 in	the	same	form,	
starting	and	ending	with	the	$	character.	
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For	our	example,	let	us	consider	two	commits,	shown	below	in	Table	4.	For	the	sake	of	simplicity,	we	
will	only	consider	commit	percentage	and	hunk	count	as	our	metadata	for	these	commits.	
	
As	we	can	see,	the	representation	of	commits	in	feature	set	context	(col	4	of	Table	4)	will	always	be	
equal	to	the	size	of	the	feature	set.	As	of	September	2017,	Chromium	contains	over	600,000	commits;	
the	feature	set	for	Chromium	commits	is	therefore	massive,	at	over	16	million	tokens.	Each	individual	
commit	 will	 only	 contain	 a	 handful	 of	 these	 tokens,	 which	 is	 why	 a	 sparse	 feature	 vector	 is	 an	
extremely	compact	and	therefore	efficient	representation	in	comparison	with	our	naïve	array.	
	

Commit	Additions	 Commit	
Metadata	

Tokenized	
Representation	

Representation	
in	Feature	Set	

Context	

Sparse	
Feature	
Vector	

 
 
 
 
File A: 
    int m = max(2, 
3); 
File B: 
    int n = max(4, 
5); 
 

 
 
 
 
 

ACP: 
0.3% 
HC: 2 

 
{‘2’:1, 
‘3’:1, 
‘4’:1, 
‘5’:1, 

‘int’:2, 
‘m’:1, 

‘max’:2,  
‘n’:1, 

‘$ACP_0_1’:1, 
‘$HC_1_3’:1} 

 
 

 
 
 
 

[1, 1, 1, 
1, 2, 1, 
2, 1, 0,  
0, 1, 0, 
1, 0, 0] 

 
{0:1, 
1:1, 
2:1, 
3:1, 
4:2, 
5:1, 
6:2, 
7:1, 
10:1, 
12:1} 

 
 
 
File A: 
    int n = max(4, 
5); 

 
 
 

ACP: 
1.8% 
HC: 1 

 

 
{‘4’:1, 
‘5’:1, 

‘int’:1,  
‘max’:1, 
‘n’:1, 

‘$ACP_1_2’:1, 
‘$HC_1_3’:1} 

 

 
 

[0, 0, 1, 
1, 1, 0, 
1, 1, 0,  
0, 0, 1, 
1, 0, 0] 

 
{2:1, 
3:1, 
4:1, 
6:1, 
7:1, 
11:1, 
12:1} 

 
Table	4:	Two	Commits	and	their	Tokenized	Representation	

Datasets	
	
To	build	our	classifier	we	started	with	the	goal	of	acquiring	a	dataset	of	labelled	vulnerable	and	non-
vulnerable	Chromium	commits	to	use	as	training	and	test	data.	As	this	dataset	does	not	(to	the	best	
of	our	knowledge)	currently	exist,	our	only	option	was	to	build	 it	ourselves	 from	publicly	available	
information	 online.	 However,	 due	 to	 the	 absence	 of	 a	 mapping	 from	 vulnerabilities	 to	 individual	
commits,	we	were	worried	that	building	an	accurate	dataset	might	be	difficult	or	nearly	impossible,	
and	that	our	classifier	would	therefore	produce	poor	results.	As	discussed	in	the	section	below,	Issues	
with	Chromium	Dataset	Collection,	it	turned	out	to	be	too	difficult	to	create	such	a	dataset	with	the	
time	and	resources	available	to	us.	
	
However	as	noted	in	the	related	work	section,	Perl	et	al.	state	in	their	VCCFinder	paper	[14]	that	their	
commit	dataset,	which	is	known	to	be	accurate,	should	be	capable	of	training	classifiers	for	commits	
from	C	and	C++	projects	other	than	ones	used	to	build	the	dataset.	With	this	information	in	mind,	we	
resolved	to	train	our	classifier	using	their	dataset.	
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Issues	with	Chromium	Dataset	Collection	
	
For	our	set	to	provide	reliable	training	information	we	required	a	large	volume	of	Chromium	commits,	
preferably	 all	 commits	 in	 the	 repository,	 each	 accurately	 labelled	 as	 either	 vulnerable	 or	 not	
vulnerable.	Due	to	the	lack	of	publicly	available	information	mapping	vulnerabilities	to	commits,	our	
options	for	building	this	dataset	were	very	limited.		
The	only	mapping	we	could	find	from	official	CVE	reports	to	useful	information	regarding	them	is	the	
mapping	 found	 on	 the	 Chromium	 stable	 update	 blog	 [17],	 which	 maps	 officially	 reported	
vulnerabilities	 to	 their	 corresponding	bug	 reports	 [1].	 These	 reports	often	 include	a	 link,	 provided	
automatically	by	a	commit	bot,	to	the	commit	which	fixes	them;	with	this	in	mind,	we	attempted	to	
build	a	tool	which	could	automatically	find	vulnerable	commits	using	the	following	method:	
	

1. Collect	a	set	of	all	vulnerability	bug	reports,	found	using	the	mapping	on	the	stable	update	
blog	

2. Scrape	these	vulnerability	reports	to	find	commits	which	fix	them	
3. Use	 git blame	 on	 each	 fixing	 commit	 to	 find	 the	 commit(s)	 which	 introduced	 the	

vulnerabilities	
	
The	flaw	in	our	method	arose	at	step	2;	bug	reports	do	not	reliably	link	the	commit	which	fixes	the	
issue,	and	often	contain	links	to	several	other	commits	which	are	related	to	the	bug	being	discussed	
but	do	not	fix	it.	Of	the	1200	vulnerability	reports,	around	300	could	provide	links	to	one	or	more	fixing	
commits,	and	of	these	fewer	than	100	could	provide	a	definitive	link	to	a	single	fixing	commit;	this	is	
simply	not	enough	data	for	building	a	reliable	classifier.	
	
We	considered	the	possibility	of	collecting	a	list	of	fixing	commits	manually	with	the	help	of	our	script,	
but	due	to	our	lack	of	time	and	non-existent	experience	with	the	Chromium	codebase	we	were	forced	
to	resign	this	as	an	infeasible	option.	Our	inability	to	build	this	dataset	not	only	had	the	consequence	
that	we	were	unable	train	our	classifier	with	data	collected	directly	from	Chromium,	but	also	meant	
that	we	would	be	unable	to	test	our	classifier	if	we	were	to	train	it	using	the	VCCFinder	dataset,	thus	
stopping	us	from	gathering	any	concrete	data	on	the	predictions	our	classifier	would	make.		
	
Model	Building	
	
Despite	our	inability	to	fully	test	a	classifier	build	solely	with	VCCFinder	data,	we	decided	to	build	and	
test	a	VCCFinder-only	model	to	see	whether	we	could	reproduce	their	results	with	the	intention	of	
manually	 testing	 some	 Chromium	 commit	 samples.	 We	 did	 this	 to	 see	 whether	 we	 could	 gain	
information	about	whether	data	collected	from	other	projects	may	have	the	potential	to	be	able	to	
predict	vulnerabilities	in	Chromium,	a	project	independent	of	the	training	set.	
	
We	 followed	 the	 VCCFinder	 approach	 of	 using	 a	 linear	 SVM	model	with	 the	 help	 of	 the	 Liblinear	
library[25]	using	the	feature	set	discussed	above.	The	dataset	contained	a	total	of	351,409	commits,	
of	 which	 734	 were	 vulnerable,	 over	 66	 different	 open	 source	 C++	 projects	 on	 GitHub.	 More	
information	 regarding	 the	 collection	 and	 accuracy	 of	 this	 data	 can	 be	 found	 in	 the	 VCCFinder	
paper[14].	We	tested	our	model	with	VCCFinder	data	to	get	an	 idea	of	whether	our	features	were	
indicative	 of	 vulnerabilities;	 our	 precision	 and	 recall	 values	 were	 quite	 poor	 at	 around	 0.2.	 After	
removing	a	large	percentage	of	non-vulnerable	commits	from	our	training	set	precision	and	recall	rose	
to	 0.75;	 this	 indicated	 that	 although	 our	 features	 were	 indeed	 indicative	 of	 vulnerabilities,	 the	
correlation	between	them	and	commit	vulnerability	was	low.	We	decided	that	unfortunately	it	would	
not	be	worth	testing	our	model	across	Chromium	commits,	given	its	poor	performance	for	commits	
in	the	same	dataset.	



13	
	

	

5. Conclusions	
	
Summary	of	Results	
	
Despite	the	lack	of	results	in	the	form	of	concrete	data,	this	study	has	provided	several	insights	into	
vulnerabilities	in	Chromium	and	the	way	in	which	data	is	reported	and	presented.	Our	key	findings	are	
detailed	below.	
	
Potential	Insights	from	High	Level	Data	
Our	visualization	tool	may	provide	Chromium	developers	with	the	ability	to	find	high	level	bug	and	
vulnerability	patterns	in	their	source	which	may	not	have	otherwise	been	discovered.	If	found	to	be	
useful,	 tools	 like	 this	which	 present	 high-level	 vulnerability	 data	 could	 open	 new	 avenues	 for	 the	
discovery	and	prevention	of	vulnerabilities.	
	
Lack	of	Available	Data	
Our	attempt	to	build	a	vulnerability	prediction	model	fell	short	primarily	due	to	the	lack	of	reliable	
reported	data	for	Chromium.	To	successfully	build	an	accurate	prediction	model	which	can	be	tested	
and	verified,	we	believe	data	accurately	linking	vulnerabilities	to	their	occurrences	in	source	code	is	
required.		
	
This	data	could	be	collected	for	past	vulnerabilities	with	enough	man	hours	from	developers	who	are	
familiar	with	the	Chromium	source,	and	could	be	easily	maintained	with	more	reliable	reporting	of	
direct	occurrences	of	vulnerabilities	as	they	appear	in	source.	For	reliable	vulnerability	prediction	tools	
to	become	 the	norm,	open	 source	projects	 such	 as	Chromium	 should	 seek	 to	 enforce	more	 strict	
reporting	of	vulnerability	information.	
	

Potential	for	Future	Improvements	
	
This	study	has	opened	several	options	for	potential	improvement	and	exploration	in	future	studies.	
	
Data	Visualization	
There	is	a	huge	amount	of	potential	for	our	visualization	tool	and	others	like	it	to	provide	much	more	
intuitive,	high	level	vulnerability	information.	Some	possible	features	may	include:	
	

• Ability	for	users	to	add	and	analyze	their	own	data	from	their	own	projects	
• Direct	linking	of	source	files	and	commits	from	visualization	
• Query	system	for	customization	of	results	
• Timeline	 view,	 where	 users	 can	 traverse	 git	 branches	 to	 view	 project	 throughout	 its	

development	
	
Predictive	Model	
As	stated	above,	improvements	to	vulnerability	prediction	models	in	future	will	revolve	around	the	
availability	 of	 larger	 amounts	 of	 reliable	 data;	 along	with	 this,	 improvements	may	 also	 stem	 from	
testing	different	learning	models	and	feature	sets	to	find	those	which	work	best.	
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