
Turning Eclipse Against Itself:
Improving the Quality

of Eclipse Plugins

Benjamin Livshits

Computer Systems Laboratory

Stanford University

Stanford, CA 94305

livshits@cs.stanford.edu

Technical Report

September 14, 2005



2

Abstract

While many researchers have used Eclipse as a platform for devel-
oping software engineering and program analysis tools, Eclipse itself
presents an excellent subject for analysis and study. Eclipse represents
one of the biggest Java projects ever created. While surprisingly ro-
bust, Eclipse still suffers from serious bugs that lead to crashes and
resource exhaustion.

Eclipse is a collaborative development projects, with its core de-
velopers located across multiple continents. Furthermore, hundreds
of available plugins are developed by programmers with varying levels
of familiarity with the intricacies of Eclipse APIs. As a result of API
misuse, complex application-specific bugs are introduced.

In this paper1we describe common patterns in Eclipse code and
propose lightweight analyses for finding their misuse. Bugs addressed
in this paper often do not immediately exhibit themselves and are
often discovered after deployment. In our experiments, we find a total
of 68 likely errors in Eclipse sources that violate the coding patterns
we describe. In addition to these lightweight bug checkers, we also
propose the use of Eclipse templates extracted from existing Eclipse
code as a way to capture important coding rules.

1 Introduction

A great deal of attention has lately been given to addressing software bugs
such as errors in operating system drivers [4, 6] or security errors [10, 16].
These represent critical errors in widely used software and tend to get fixed
relatively quickly when found. A variety of static and dynamic analysis tools
have been developed to address these high-profile bugs.

Many other errors, however, are specific to individual applications or plat-
forms and are especially prevalent for large software systems such as Eclipse.
Repeated violations of these application-specific coding rules, referred to as
error patterns, are responsible for a multitude of errors.

Due to its extensibility, Eclipse is an excellent example of a project with a
lot of hidden rules that must be followed to preserve internal consistency and
to avoid bugs. There are hundreds of Eclipse plugins available, with more

1A preliminary version of this work was presented at the Eclipse Technology Exchange
in March 2005 [11].



3

Figure 1: Output of the extend super rule checker. Confirmed potential violations are
shows in bold.

and more being written every day. Most plugins, however, are written by
developers outside of the Eclipse core team, who are significantly less aware
of the proper API use patterns. Error patterns tend to be re-introduced into
the code over and over by multiple developers working on a project and are
a common source of software defects.

The problem of plugin quality has been recognized by the Eclipse founda-
tion, as evidenced by the inclusion of checkers that look for access to internal
APIs in version 3.1. However, we believe that there is a potential for much
more work towards both detecting potential errors and preventing them in
the first place by making it easier to follow coding rules.

In this paper we describe several such coding patterns and lightweight
static checkers to find their violations. We also propose adding Eclipse-
specific coding templates to make commonly used plugin code easier to write
correctly.

2 Patterns in Eclipse Code

In this section we describe three common error patterns in Eclipse APIs
we address. The first pattern is an implementation strategy that requires
subclass methods to always call the same method in the superclass. The
other two patterns fall into the category of complex resource management
errors: lapsed listener errors and object disposal rules both lead to leaks of
memory and other operating system resources.



4

D
e
cl

a
ri

n
g

cl
a
ss

(e
s)

M
e
th

o
d

O
cc

u
rr

e
n
ce

s

o
r
g
.e
c
l
i
p
s
e
.c
o
r
e
.r
u
n
t
i
m
e
.I
P
r
o
g
r
e
s
s
M
o
n
i
t
o
r

d
o
n
e

36
5

j
a
v
a
.i
o
.F
i
l
e
O
u
t
p
u
t
S
t
r
e
a
m
,.
..

c
l
o
s
e

24
0

o
r
g
.e
c
l
i
p
s
e
.j
d
i
.i
n
t
e
r
n
a
l
.M
i
r
r
o
r
I
m
p
l

h
a
n
d
l
e
d
J
d
w
p
R
e
q
u
e
s
t

76
o
r
g
.e
c
l
i
p
s
e
.j
d
t
.i
n
t
e
r
n
a
l
.c
o
r
e
x
t
.r
e
f
a
c
t
o
r
i
n
g
.u
t
i
l
.R
e
f
a
c
t
o
r
i
n
g
F
i
l
e
B
u
f
f
e
r
s
,.
..

r
e
l
e
a
s
e

48
o
r
g
.e
c
l
i
p
s
e
.c
o
r
e
.i
n
t
e
r
n
a
l
.r
e
s
o
u
r
c
e
s
.W
o
r
k
s
p
a
c
e

e
n
d
O
p
e
r
a
t
i
o
n

46
o
r
g
.e
c
l
i
p
s
e
.c
o
r
e
.i
n
t
e
r
n
a
l
.u
t
i
l
s
.P
o
l
i
c
y

s
u
b
M
o
n
i
t
o
r
F
o
r

31
o
r
g
.e
c
l
i
p
s
e
.j
d
t
.i
n
t
e
r
n
a
l
.c
o
r
e
x
t
.r
e
f
a
c
t
o
r
i
n
g
.c
o
d
e
.C
a
l
l
I
n
l
i
n
e
r
,.
..

d
i
s
p
o
s
e

18
o
r
g
.e
c
l
i
p
s
e
.c
o
r
e
.f
i
l
e
b
u
f
f
e
r
s
.I
F
i
l
e
B
u
f
f
e
r
M
a
n
a
g
e
r

d
i
s
c
o
n
n
e
c
t

17
o
r
g
.e
c
l
i
p
s
e
.j
d
t
.c
o
r
e
.I
C
o
m
p
i
l
a
t
i
o
n
U
n
i
t

d
i
s
c
a
r
d
W
o
r
k
i
n
g
C
o
p
y

16
o
r
g
.a
p
a
c
h
e
.t
o
o
l
s
.a
n
t
.P
r
o
j
e
c
t
,.
..

l
o
g

15
o
r
g
.e
c
l
i
p
s
e
.j
d
t
.i
n
t
e
r
n
a
l
.c
o
r
e
.s
e
a
r
c
h
.i
n
d
e
x
i
n
g
.R
e
a
d
W
r
i
t
e
M
o
n
i
t
o
r

e
x
i
t
R
e
a
d

12

F
ig

u
re

2:
M

et
ho

ds
co

m
m

on
ly

ap
pe

ar
in

g
in

cl
ea

nu
p

co
de

(f
i
n
a
l
l
y

bl
oc

ks
).



Extend Super Misuse 5

Extend Super

methods that require super to be called 38
calls to these methods 390
filtered calls 19
potential errors (methods not calling super) 13

Disposal Rules

dispose methods checked 794
filtered methods 51
potential errors (leaking dispose methods) 42

Lapsed Listeners

subclasses of ViewPart checked 81
subclasses with matched listeners 6
subclasses not using listeners 53
subclasses with mismatched listeners 22
potential errors (classes with lapsed listeners) 13
total errors 68

Figure 3: Summary of experimental results.

Applying a sound static analysis to find violations of these patterns
presents a considerable technical challenge. First, a flow-sensitivity analysis
is necessary because the patterns we discuss are highly dependent on the
order in which events occur. Second, a powerful alias analysis is necessary
because Eclipse APIs refer to the same heap object through multiple access
paths. Finally, since the Eclipse code base is so big, scalability presents a
major concern. Instead, we propose a lightweight analysis approach that
may suffer from both false positives and false negatives, but gives developers
almost immediate indication as to where to expand their bug-finding efforts.

2.1 Extend Super Misuse

The template method design pattern [13] defines the skeleton of an algorithm
in an operation, deferring some algorithm steps to subclasses. Subclasses re-
define certain steps of an algorithm without changing the algorithm’s struc-
ture. A particular variation of this pattern called the extend super pattern
ensures that a subclass implements the functionality of the superclass by
calling methods of the superclass.

The coding idiom used to achieve this in Java is to call super.m(...) in



Object Disposal Rules 6

Figure 4: Output of the dispose rule checker showing dispose methods and collections
leading to potential leaks.

method m [5]. However, when deep class hierarchies are used, developers
implementing the subclasses sometimes forget to properly call the superclass
implementation, thus breaking API invariants and leading to potential errors
later in program execution.

2.2 Object Disposal Rules

While perhaps not as widespread as in C or C++, memory leaks still exist in
Java [14]. A Java program can maintain a link to an object that is never used
again, causing the garbage collector to never reclaim that object. Finding
such memory leaks is difficult, but important because they can gradually
cause resource exhaustion in long-running applications.

Languages with explicit resource management such as C++ often uses
specific resource allocation disciplines, such as object ownership [7] to specify
who is responsible for object deletion. Similar disciplines are necessary in
large-scale Java projects that use a lot of operating system resources, such
as native GUI elements, fonts, colors, etc. Eclipse documentation suggests a
certain well-established resource management discipline [1, 2, 15]. However,
this discipline is often violated.

In particular, various Eclipse classes define method dispose that is called
to dispose of dependent resources. Proving that all resources are properly
deallocated is a very difficult task in general. However, some rules of thumb
commonly used by developers are relatively easy to check: Eclipse classes of-
ten store references to objects in locally allocated collections such as Vectors
or HashMaps. Unless these collections are cleared within method dispose, it
is possible for superfluous links to objects stored in the collections to exist



Lapsed Listeners 7

2.0 F2
2.0 F3
2.0 M

6
2.0.2
2.1 M

4
2.1 R

C
3

2.1 R
C

4
3.0
3.0 M

7
3.0 M

8
3.0 M

9
3.0 R

C
1

3.0 R
C

2
3.0 R

C
3

3.0.1
3.1
3.1 M

2
3.1 M

3
3.1 M

4
3.1 M

5
3.2 i2
Future

Eclipse Milestone

0

2

4

6

8

10

12

14

N
um

be
r 

of
 b

ug
s

Figure 5: Distribution of lapsed listener errors across Eclipse release milestones.

after the base object has been disposed of, thus leading to memory leaks.

2.3 Lapsed Listeners

Event listeners in Java GUI programs is another common source of memory
leaks. Event listeners are a common way to specify actions that should occur
when a user interface event such as a mouse click occurs on a given GUI
component. This is achieved by registering a listener with a GUI component;
when the component is destroyed, the listener should be unregistered. If a
listener is is not unregistered, it will preserve a link to the GUI component.
The listener is reached from a global listener table, thus making the poten-
tially large GUI component also reachable and therefore considered live by
the garbage collector. This error pattern is referred to in the literature as
the lapsed listener problem [14]. Lapsed listener errors are quite prominent in
Eclipse: our searches on bugs.eclipse.org revealed at least 92 bugs in this
category. The number of lapsed listener bugs reported for each development
milestone shown in Figure 5.

Figure 6: Output of the lapsed listener checker. For each method, calls in green are
matched; others are potential mismatches.

bugs.eclipse.org


Cleanup Templates 8

2.4 Cleanup Templates

Matching method pairs represent one of the most commonly used temporal
patterns in software. While pairs such as 〈fopen, fclose〉 are widespread in
C, similar method pairs are present in Eclipse code as well. Eclipse APIs have
a number of such methods pairs throughout the code, including 〈register,
unregister〉, 〈beginCompoundEdit, endCompoundEdit〉, etc.

A common coding idiom pertaining to using method pairs consists of
making sure that the second method is placed within a finally block. Given
a pair of methods 〈A, B〉, the following code is common:

A(...);

try {

...

} finally {

B(...);

}

To ensure that method B is called on all execution paths, the call to B is
placed within the finally block. Placing it outside the finally block may
lead to B not being called when an exception is thrown. This coding idiom
in Java is explored in more detail in Weimer et.al. [18].

We take this concept further by creating a set of coding templates common
to plugin development. According to the Eclipse documentation, “templates
are a structured description of coding patterns that reoccur in source code”,
and thus represent a perfect mechanism for our purposes. The machinery
built into Eclipse is responsible for template expansion.

3 Experimental Results

Eclipse JDT APIs expose abstract syntax trees of Java programs and make
tasks such as examining the statements in a method or looking for specific
method calls easy to accomplish. Our checkers perform local intraprocedu-
ral analysis to find likely violations. Our implementation consists of three
special-purpose checkers addressing each of the error patterns described in
the previous section as well as an analysis for finding good candidates to be
included as Eclipse-specific code templates.



Extend Super 9

Figure 7: Template creation for 〈acquireRead, exitRead〉 pattern.

We summarize the results of running our static checkers on 20 large plu-
gins from the Eclipse 3.0 code base in Figure 3. A total of 68 likely errors is
reported. Unlike many other types of bugs, these errors are very difficult to
verify statically by examining the code and are best validated either through
the use of dynamic analysis or by original code developers. We used our
best judgement about the code to arrive at the final bug count. Applying
our tools to all the plugins took on the order of several minutes on an AMD
Athlon XP 2500+ machine.

3.1 Extend Super

This checker finds implementations of methods such as hookControl and
others that do not include a call to the super’s method on all paths through
the method. This has allowed us to expose error cases where super is either
called conditionally or not called at all. The results are presented to the user
for verification, as shown in Figure 1.

3.2 Disposal Rules

To find potential memory leaks caused by collections that are not deallo-
cated, we find all methods dispose that have collections defined in the same
class. Classes that fail to use all those collections in the code of dispose
are reported as potential sources of leaks. While false positives are possible,
the answer computed by our checker provides a pretty strong indication that
there may be a memory leak. The user is presented with a listing of offending
dispose methods and collections that need to be cleared for each, as shown



Lapsed Listener 10

in Figure 4. The output is color-coded to simplify the code auditing process:
collections shown in green are mentioned in dispose at least once, the ones
in red are not.

3.3 Lapsed Listener

The lapsed listener checker looks for mismatches in the way
createPartControl and dispose method make listener registration
and unregistration calls by pattern matching add{T}Listener and
remove{T}Listener calls, where T is the listener type. An example of
checker output is given in Figure 6. Methods shown in green represented
matching listener registration and unregistration calls.

3.4 Cleanup Templates

To determine a set of methods that are commonly used in cleanup code,
we wrote an analysis to process all finally blocks and rate methods called
from within the block in order of frequency. The most common “cleanup”
methods are listed in Figure 2.

Most of the methods listed in Figure 2 corresponds to one or more cod-
ing pattern in Eclipse code and we created Eclipse templates to match these
patterns. Methods such as log which are commonly used for recording excep-
tion information are not really part of a well-formed pattern. In many cases,
several patterns correspond to a single method. For instance, in the case of
endOperation, we provide several templates corresponding to common uses
of the Workspace class.

The process of template creation is shown in Figure 7. While templates
are easy to create and use, there are several inherent shortcomings that
Eclipse templates have. These issues can be addressed as part of future
work.

• Pattern expansion needs to be made more context-sensitive by taking
the types of variables involved into account. In other words, only offer-
ing to expand the 〈aquireLock, exitLock〉 template on a variable of
type ReadWriteMonitor would make template expansion more useful.

• Pattern expansion needs to be made more context-sensitive by being
aware of already existing code. For example, if a call to exitLock

already exists, there is no need to insert it again.



11

4 Related Work

There has been a lot of interest recently in the general subject of code pat-
tern discovery [3, 17] and enforcement [6, 9]. However, the Eclipse code base
represents a relatively novel study subject. Several recent projects target
the development of programmer assistant technology for Eclipse plugin de-
velopment, including the Strathcona example recommendation tool [8] and
Prospector tool for synthesizing API usage code [12].

5 Conclusions

This paper describes usage patterns in Eclipse code and lightweight static
checkers that allowed us to find a total of 68 likely bugs in 20 plugins from
the Eclipse code base. Misuse of application-specific coding patterns are
a common source of errors in large software systems developed by multi-
ple programmers. The sheer complexity and scale of the problem makes a
sound, whole-program analysis prohibitively expensive and justifies the use
of lightweight tools that may suffer from both false positives and negatives.

In addition to finding errors in Eclipse code, we also explored the use
of programmer assistant technology for plugin development. We describe
an approach for discovering common resource cleanup patterns, which are
subsequently converted into code templates that Eclipse can insert into the
code during development.

References

[1] SWT: The standard widget toolkit. part 2: Managing operating system resources.
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html.

[2] User interface resources. http://dev.eclipse.org/viewcvs/index.cgi/
~checkout~/org.eclipse.platform.doc.isv/guide/jface_resources.htm?
rev=1.14&content-type=text/html.

[3] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In POPL ’02: Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 4–16, Portland, Oregon, 2002. ACM Press.

[4] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver verifier:
Technology transfer of formal methods inside Microsoft. Technical Report MSR-TR-
2004-08, Microsoft, 2004.

http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/org.eclipse.platform.doc.isv/guide/jface_resources.htm?rev=1.14&content-type=text/html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/org.eclipse.platform.doc.isv/guide/jface_resources.htm?rev=1.14&content-type=text/html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/org.eclipse.platform.doc.isv/guide/jface_resources.htm?rev=1.14&content-type=text/html


REFERENCES 12

[5] Cedric. Don’t call super. http://www.beust.com/weblog/archives/000077.html,
2004.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In Proceedings of the Fourth Sym-
posium on Operating Systems Design and Implentation, pages 1–16, 2000.

[7] D. Heine and M. Lam. A practical flow-sensitive and context-sensitive C and C++
memory leak detector. In Conference on Programming Language Design and Imple-
mentation, pages 168–181, June 2003.

[8] R. Holmes and G. C. Murphy. Using structural context to recommend source code
examples. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 117–125, 2005.

[9] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA ’04: Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 132–136, 2004.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing web
application code by static analysis and runtime protection. In Proceedings of the 13th
conference on World Wide Web, pages 40–52, May 2004.

[11] V. B. Livshits. Turning Eclipse against itself: Finding bugs in Eclipse code using
lightweight static analysis. Eclipsecon ’05 Research Exchange, Mar. 2005.

[12] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Mining Jungloids: Helping to
navigate the API jungle. In Proceedings of the ACM SIGPLAN’05 Conference on
Programming Language Design and Implementation, 2005.

[13] S. A. Stelting and O. Maassen. Applied Java Patterns. Prentice Hall, 2001.
[14] B. A. Tate. Bitter Java. Manning Publications Co., 2002.
[15] tazzzzz. SWT and memory management. http://www.blueskyonmars.com/

archives/2003/10/20/swt_and_memory_management.html, 2003.
[16] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated

detection of buffer overrun vulnerabilities. In Proceedings of Network and Distributed
Systems Security Symposium, pages 3–17, Feb. 2000.

[17] W. Weimer and G. Necula. Mining temporal specifications for error detection. In
Proceedings of the 11th International Conference on Tools and Algorithms For The
Construction And Analysis Of Systems, pages 461–476, Apr. 2005.

[18] W. Weimer and G. C. Necula. Finding and preventing run-time error handling mis-
takes. In 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 419–431, Oct. 2004.

http://www.beust.com/weblog/archives/000077.html
http://www.blueskyonmars.com/archives/2003/10/20/swt_and_memory_management.html
http://www.blueskyonmars.com/archives/2003/10/20/swt_and_memory_management.html

	Introduction
	Patterns in Eclipse Code
	Extend Super Misuse
	Object Disposal Rules
	Lapsed Listeners
	Cleanup Templates

	Experimental Results
	Extend Super
	Disposal Rules
	Lapsed Listener
	Cleanup Templates

	Related Work
	Conclusions

