
Merlin: Specification Inference for

Explicit Information Flow Problems

Anindya Banerjee

KSU

Benjamin Livshits, Aditya V. Nori, and Sriram K. Rajamani

Microsoft Research

December 15, 2008



Abstract

The last several years have seen a proliferation of static and runtime
analysis tools for finding security violations that are caused by explicit in-
formation flow in programs. Much of this interest has been caused by the
increase in the number of vulnerabilities such as cross-site scripting and SQL
injections. In fact, these explicit information flow vulnerabilities commonly
found in Web applications now outnumber vulnerabilities such as buffer over-
runs common in type-unsafe languages such as C and C++. Tools checking
for these vulnerabilities require a specification to operate. In most cases the
task of providing such a specification is delegated to the user. Moreover, the
efficacy of these tools is only as good as the specification. Unfortunately,
writing a comprehensive specification presents a major challenge: parts of
the specification are easy to miss leading to missed vulnerabilities; similarly,
incorrect specifications may lead to false positives.

This paper proposes Merlin, a new algorithm for automatically in-
ferring explicit information flow specifications from program code. Such
specifications greatly reduce manual labor, and enhance the quality of re-
sults, while using tools that check for security violations caused by explicit
information flow. Beginning with a data propagation graph, which rep-
resents interprocedural flow of information in the program, Merlin aims
to automatically infer an information flow specification. Merlin models
information flow paths in the propagation graph using probabilistic con-
straints. A näıve modeling requires an exponential number of constraints,
one per path in the propagation graph. For scalability, we approximate
these path constraints using constraints on chosen triples of nodes, result-
ing in a cubic number of constraints. We characterize this approximation
as a probabilistic abstraction, using the theory of probabilistic refinement
developed by McIver and Morgan. We solve the resulting system of prob-
abilistic constraints using factor graphs, which are a well-known structure
for performing probabilistic inference.

We experimentally validate the Merlin approach by applying it to 10
large business-critical Web applications that have been analyzed with
Cat.Net, a state-of-the-art static analysis tool for .NET. We find a total
of 167 new confirmed specifications, which result in a total of 302 additional
vulnerabilities across the 10 benchmarks. More accurate specifications also
reduce the false positive rate: in our experiments, Merlin-inferred speci-
fications result in 13 false positives being removed; this constitutes a 15%



reduction in the Cat.Net false positive rate on these 10 programs. The final
false positive rate for Cat.Net after applying Merlin in our experiments
drops to under 1%.
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1 Introduction

Constraining information flow is fundamental to security: we do not want
secret information to reach untrusted principals (confidentiality), and we do
not want untrusted principals to corrupt trusted information (integrity). If
we take confidentiality and integrity to the extreme, then principals from
different levels of trust can never interact, and the resulting system becomes
unusable. For instance, such a system would never allow a trusted user to
view untrusted content from the Internet.

Thus, practical systems compromise on such extremes, and allow flow
of sanitized information across trust boundaries. For instance, it is unac-
ceptable to take a string from untrusted user input, and use it as part of an
SQL query, since it leads to SQL injection attacks. However, it is acceptable
to first pass the untrusted user input through a trusted sanitization func-
tion, and then use the sanitized input to construct a SQL query. Similarly,
confidential data needs to be cleansed to avoid information leaks. Practi-
cal checking tools that have emerged in recent years [1, 5, 23] typically aim
to ensure that all explicit flows of information across trust boundaries are
sanitized.

The fundamental program abstraction used in the sequel (as well as by
existing tools) is what we term the propagation graph — a directed graph
that models all interprocedural explicit information flow in a program.1 The
nodes of a propagation graph are methods, and edges represent explicit
information flow between methods. There is an edge from node m1 → m2

whenever there is a flow of information from method m1 to method m2,
through a method parameter, or through a return value, or by way of an
indirect update through a pointer.

Following the widely accepted Perl taint terminology conventions [30]
more precisely defined in [15], nodes of the propagation graph are classified
as sources, sinks, and sanitizers; nodes not falling in the above categories are
termed regular nodes. A source node returns tainted data whereas it is an
error to pass tainted data to a sink node. Sanitizer nodes cleanse or untaint
or endorse information to mediate across different levels of trust. Regular
nodes do not return tainted data, and it is not an error to pass tainted data
to regular nodes. If tainted data is passed to regular nodes, they merely
propagate it to their successors without any mediation.

1We do not focus on implicit information flows [26] in this paper: discussions with
Cat.Net [1] developers reveal that detecting explicit information flow vulnerabilities is a
more urgent concern. Existing commercial tools in this space exclusively focus on explicit
information flow.
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1. void ProcessRequest(HttpRequest request,

2. HttpResponse response)

3. {

4. string s1 = request.GetParameter("name");

5. string s2 = request.GetHeader("encoding");

6.

7. response.WriteLine("Parameter " + s1);

8. response.WriteLine("Header " + s2);

9. }

Figure 1: Simple cross-site scripting example
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Figure 2: Merlin system architecture.

A classification of nodes in a propagation graph into sources, sinks and
sanitizers is called an information flow specification or, just specification
for brevity. Given a propagation graph and a specification, one can easily
run a reachability algorithm to check if all paths from sources to sinks pass
through a sanitizer. In fact, this is precisely what many commercial analysis
tools in everyday use do [5, 23].

User-provided specifications, however, lead to both false positives and
false negatives in practice. False positives arise because a flow from source
to sink classified as offending by the tool could have a sanitizer that the tool
was unaware of. False negatives arise because of incomplete information
about sources and sinks, as the following example illustrates.

This paper presents Merlin, a tool that automatically infers information
flow specifications for programs. Our inference algorithm uses the intuition
that most paths in a propagation graph are secure. That is, most paths
in the propagation graph that start from a source and end in a sink pass
through some sanitizer.

Example 1 Consider a Web application code snippet written in C# shown
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in Figure 1. While method GetParameter, the method returning arguments
of an HTTP request, is highly likely to be part of the default specifica-
tion that comes with a static analysis tool and classified as a source, the
method retrieving an HTTP header GetHeader may easily be missed. Be-
cause response.WriteLine sends information to the browser, there are two
possibilities of cross-site scripting vulnerabilities on line 7 and line 8. The
vulnerability in line 7 will be reported, but the vulnerability on line 8 may
be missed due to an incomplete specification.In fact, in both .NET and
J2EE there exist a number of source methods that return various parts
of an HTTP request. When we run Merlin on larger bodies of code,
even within the HttpRequest class alone, Merlin correctly determines that
getQueryString, getMethod, getEncoding, and others are sources missing
from the default specification that already contains 111 elements. While this
example is small, it is meant to convey the substantial challenge involved in
identifying appropriate APIs for an arbitrary application. �

Our approach. Merlin infers information flow specifications using prob-
abilistic inference. By using a random variable for each node in the propa-
gation graph to denote whether the node is a source, sink or sanitizer, the
intuition that most paths in a propagation graph are secure can be modeled
using one probabilistic constraint for each path in the propagation graph. A
probabilistic constraint is a path constraint parameterized by the probability
that the constraint is true. By solving these constraints, we can get solutions
to values of these random variables, which yields an information flow spec-
ification. In other words, we use probabilistic reasoning and the intuition
we have about the outcome of the constraints (i.e, the probability of each
constraint being true) to calculate values for the inputs to the constraints.
Since there can be an exponential number of paths, using one constraint per
path does not scale. In order to scale, we approximate the constraints using
a different set of constraints on chosen triples of nodes in the graph. We
show that the constraints on triples are a probabilistic abstraction of the
constraints on paths (see Section 5) according to the theory developed by
McIver and Morgan [20, 21]. As a consequence, we can show that approxi-
mation using constraints on triples does not introduce false positives when
compared with the constraints on paths. After studying large applications,
we found that we need additional constraints to reduce false positives, such
as constraints to minimize the number of inferred sanitizers, and constraints
to avoid inferring wrappers as sources or sinks. Section 2 describes these
observations and constraints in detail. We show how to model these obser-
vations as additional probabilistic constraints. Once we have modeled the
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problem as a set of probabilistic constraints, specification inference reduces
to probabilistic inference. To perform probabilistic inference in a scalable
manner, Merlin uses factor graphs, which have been used in a variety of
applications [13, 35]. While we can use the above approach to infer specifi-
cations without any prior specification, we find that the quality of inference
is significantly higher if we use the default specification that comes with the
static analysis tool as the initial specification, using Merlin to “complete”
this partial specification. Our empirical results in Section 6 demonstrate
that our tool provides significant value in both these situations.

In our experiments, we use Cat.Net [1], a state-of-the-art static analysis
tool for finding Web application security flaws that works on .NET bytecode.
The initial specification is also modeled as extra probabilistic constraints
on the random variables associated with nodes of the propagation graph
for which we have partial specifications. To demonstrate the efficacy of
Merlin, we show empirical results from 10 large web applications where we
have used Merlin to complete existing partial specifications.

Contributions. Our paper makes the following contributions:

• Merlin is the first practical approach to inferring specifications for
explicit information flow analysis tools, a problem made important in
recent years by the proliferation of information flow vulnerabilities in
Web applications.

• A salient feature of our method is that our approximation (using triples
instead of paths) can be characterized formally —we make a connec-
tion between probabilistic constraints and probabilistic programs, and
use the theory of probabilistic refinement developed by McIver and
Morgan [20, 21] to show refinement relationships between sets of prob-
abilistic constraints. As a result, our approximation does not introduce
false positives.

• Merlin is able to successfully and efficiently infer information flow
specifications in large code bases. We provide a comprehensive evalu-
ation of the efficacy and practicality of Merlin using 10 Web applica-
tion benchmarks. We find a total of 167 new confirmed specifications,
which result in a total of 302 vulnerabilities across the 10 benchmarks
that have thus far remained undetected. Merlin-inferred specifica-
tions also result in 13 false positives being removed.

Outline. The rest of the paper is organized as follows. Section 2 gives
motivation for our specification inference techniques Merlin uses and Sec-
tion 3 gives background on factor graphs. Section 4 describes our algorithm
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in detail. Section 5 proves that the system of triple constraints is a proba-
bilistic abstraction over the system of path constraints. Section 6 provides
our experimental evaluation. Finally, Sections 7 and 8 describe related work
and conclude.

2 Overview

Figure 2 shows an architectural diagram of Merlin. Merlin starts with
an initial, potentially incomplete specification of the application to produce
a more complete specification. Returning to Example 1, Merlin might
start with an initial specification that classifies GetParameter as a source
and WriteLine as a sink. The specification output by Merlin addition-
ally contains GetHeader as a source. In addition to the initial specifica-
tion, Merlin also consumes a propagation graph, a representation of the
interprocedural data flow that is output by Cat.Net. Merlin performs
the following steps: 1) construct a factor graph based on the propagation
graph; 2) Perform probabilistic inference on the factor graph to derive the
likely specification.

The crux of our approach is probabilistic inference: we first use the
propagation graph to generate a set of probabilistic constraints and then
use factor graphs to efficiently solve them. We will use the rest of this
section to describe the constraints and to build up the motivation for the
rest of the paper.

Example 2 We shall illustrate the ideas in this section using the example
program shown below.

public void TestMethod1() {

string a = ReadData1();

string b = Prop1(a);

string c = Cleanse(b);

WriteData(c);

}

public void TestMethod2() {

string d = ReadData2();

string e = Prop2(d);

string f = Cleanse(e);

WriteData(f);

}

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

In addition to two top-level “driver” methods, TestMethod1 and
TestMethod2, this code uses six methods: ReadData1, ReadData2, Prop1,
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Prop2, Cleanse, and WriteData. This program gives rise to the propagation
graph shown on the right. Intuitively, every node in this graph corresponds
to a method. An edge m1 → m2 indicates that the return result of method
m1 flows to method m2 as an argument. �

2.1 Assumptions and Probabilistic Inference

Merlin relies on on the assumption that most paths in the propagation
graph are secure. That is, most paths that start from a source to a sink pass
through a sanitizer node. The assumption that errors are rare has been used
before in other specification inference techniques [4, 11]. Further, we assume
that the number of sanitizers is small, relative to the number of regular
nodes. Indeed, developers typically define a small number of sanitization
functions or use ones supplied in libraries, and call them extensively. For
instance, the out-of-box specification that comes with Cat.Net summarized
in Figure 20 contains only 7 sanitizers.

However, as we show later in this section, applying these assumptions
along various paths individually can lead to inconsistencies, since the con-
straints inferred from different paths can be mutually contradictory. Thus,
we need to represent and analyze each path within a constraint system that
tolerates uncertainty and contradictions. Therefore, we parameterize each
constraint with the probability of its satisfaction. These probabilistic con-
straints model the relative positions of sources, sinks, and sanitizers in the
propagation graph. Our goal is to classify each node as a source, sink, san-
itizer, or a regular node, so as to optimize satisfaction of these probabilistic
constraints. We solve these constraints using probabilistic inference.

2.2 Core Constraints

Figure 3 summarizes the constraints that Merlin uses. We describe each
of them in turn below referring to Example 2 where appropriate.

B1: Path safety. We believe that most paths from a source to a sink pass
through at least one sanitizer. For example, we believe that if ReadData1
is a source, and WriteData is a sink, at least one of Prop1 or Cleanse is a
sanitizer. This is stated using the set of constraints B1 shown in Figure 3.
While constraints B1 models our core belief accurately, they are inefficient to
use directly. B1 requires one constraint per path, and the number of acyclic
paths could be exponential in the number of nodes of the propagation graph.

C1: Triple safety. In order to abstract the constraint set B1 with a
polynomial number of constraints, we add a safety constraint C1 for each

6



triple of nodes as shown in Figure 3. The number of C1 constraints is
O(N3), where N is the number of nodes in the propagation graph. In
Section 5 we prove that the constraints C1 are a probabilistic abstraction
of constraints B1 under suitable choices of parameters.

2.3 Auxiliary Constraints

In practice, the set of constraints C1 does not limit the solution space
enough. We have found empirically that just using this set of constraints al-
lows too many possibilities, several of which are incorrect classifications. By
looking at results over several large benchmarks we have come up with four
sets of auxiliary constraints C2, C3, C4, and C5, which greatly enhance
the precision of Merlin inference.

C2: Pairwise Minimization. The set of constraints C1 allows the solver

B1 For every acyclic path m1,m2, . . . ,mk−1,mk, where m1 is a potential
source and mk is a potential sink, the joint probability of classifying
m1 as a source, mk as a sink and all of m2, . . . ,mk−1 as regular nodes
is low.

C1 For every triple of nodes 〈m1,m2,m3〉, where m1 is a potential
source, m3 is a potential sink, and m1 and m3 are connected by
a path through m2 in the propagation graph, the joint probability
that m1 is a source, m2 is not a sanitizer, and m3 is a sink is low.

C2 For every pair of nodes 〈m1,m2〉 such that both m1 and m2 lie on the
same path from a potential source to a potential sink, the probability
of both m1 and m2 being sanitizers is low.

C3 Each node m is classified as a sanitizer with probability s(m) (see
Definition 2 for definition of s).

C4 For every pair of nodes 〈m1,m2〉 such that both m1 and m2 are
potential sources, and there is a path from m1 to m2 the probability
that m1 is a source and m2 is not a source is high.

C5 For every pair of nodes 〈m1,m2〉 such that both m1 and m2 are
potential sinks, and there is a path from m1 to m2 the probability
that m2 is a sink and m1 is not a sink is high.

Figure 3: Constraint formulation. Probabilities in italics are parameters of
the constraints.
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flexibility to assign multiple sanitizers along a path. In general, we want
to minimize the number of sanitizers we infer. Thus, if there are several
solutions to the set of constraints C1, we want to favor solutions that infer
fewer sanitizers, while satisfying C1, with higher probability.

For instance, consider the path ReadData1, Prop1, Cleanse, WriteData
in Example 2. Suppose ReadData1 is a source and WriteData is a sink. C1
constrains the triple

〈ReadData1, Prop1, WriteData〉

so that the probability of Prop1 not being a sanitizer is low; C1 also con-
strains the triple

〈ReadData1, Cleanse, WriteData〉

such that the probability of Cleanse not being a sanitizer is low. One
solution to these constraints is to infer that both Prop1 and Cleanse are
sanitizers. In reality, programmers do not add multiple sanitizers on a path
and we believe that only one of Prop1 or Cleanse is a sanitizer. Thus, we
add a constraint C2 that for each pair of potential sanitizers it is unlikely
that both are sanitizers, as shown in Figure 3. The number of C2 constraints
is O(N2), where N is the number of nodes in the propagation graph.

Need for probabilistic constraints. Note that constraints C1 and
C2 can be mutually contradictory, if they are modeled as non-probabilistic
boolean constraints. For example, consider the propagation graph of Exam-
ple 2. With each of the nodes ReadData1, WriteData, Prop1, Cleanse let us
associate boolean variables r1, w, p1 and c respectively. The interpretation
is that r1 is true iff ReadData1 is source, w is true iff WriteData is a sink,
p1 is true iff Prop1 is a sanitizer, and c is true iff Cleanse is a sanitizer.
Then, constraint C1 for the triple 〈ReadData1, Prop1, WriteData〉 is given
by the boolean formula r1 ∧w =⇒ p1, and the constraint C1 for the triple
〈ReadData1, Cleanse, WriteData〉 is given by the formula r1 ∧ w =⇒ c.
Constraint C2 for the pair 〈Prop1, Cleanse〉 states that both Prop1 and
Cleanse cannot be sanitizers, and is given by the formula ¬(p1∧c). In addi-
tion, suppose we have additional information (say, from a partial specifica-
tion given by the user) that ReadData1 is indeed a source, and WriteData is
a sink. We can conjoin all the above constraints to get the boolean formula:

(r1 ∧ w =⇒ p1) ∧ (r1 ∧ w =⇒ c) ∧ ¬(p1 ∧ c) ∧ r1 ∧ w

This formula is unsatisfiable and these constraints are mutually contradic-
tory. Viewing them as probabilistic constraints gives us the flexibility to
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add such conflicting constraints, and the probabilistic inference algorithms
resolve such conflicts by favoring satisfaction of those constraints with higher
probabilities attached to them.

C3: Sanitizer Prioritization.

Definition 1. For each node m define weight W (m) to be the total number
of paths from sources to sinks that pass through m.

Suppose we know that ReadData1 is a source, ReadData2 is not a source,
and WriteData is a sink. Then W (Prop1) = W (Cleanse) = 1, since there
is only one source-to-sink path that goes through each of them. However, in
this case, we believe that Prop1 is more likely to be a sanitizer than Cleanse
since all paths going through Prop1 are source-to-sink paths and only some
paths going through Cleanse are source-to-sink paths.

Definition 2. For each node m define Wtotal (m) to be the total number of
paths in the propagation graph that pass through the node m (this includes
both source-to-sink paths, as well as other paths). Let us define s(m) for
each node m as follows:

s(m) =
W (m)

Wtotal (m)

We add a constraint C3 that prioritizes each potential sanitizer based on
its s() value, as shown in Figure 3. The number of C3 constraints is O(N),
where N is the number of nodes in the propagation graph.

C4: Source Wrapper Avoidance. Similar to avoiding inference of mul-
tiple sanitizers on a path, we also wish to avoid inferring multiple sources
on a path. A prominent issue with inferring sources is the issue of having
wrappers, i.e. functions that return the result produced by the source. For
instance, if an application defines their own series of wrappers around system
APIs, which is not uncommon, there is no need to flag those as sources.

In such cases, we want Merlin to infer the actual source rather than
the wrapper function around it. We add a constraint C4 for each pair of
potential sources as shown in Figure 3. The number of C4 constraints is
O(N2), where N is the number of nodes in the propagation graph.

C5: Sink Wrapper Avoidance. Wrappers on sinks can be handled simi-
larly, with the variation that in the case of sinks the data actually flows from
the wrapper to the sink. We add a constraint C5 for each pair of potential
sinks as shown in Figure 3. The number of C5 constraints is O(N2), where
N is the number of nodes in the propagation graph.
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3 Factor Graph Primer

In the previous section, we described a set of probabilistic boolean con-
straints that are generated from an input propagation graph. The con-
junction of all these constraints can be looked upon as a joint probability
distribution over random variables that measure the odds of propagation
graph nodes being sources, sanitizers or sinks.

Let p(x1, . . . , xN ) be a joint probability distribution over boolean vari-
ables x1, . . . , xN . We are interested in computing the marginal probabilities
pi(xi) defined as:

pi(xi) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

p(x1, . . . , xN ) (1)

where xi ∈ {true, false} for 1 ≤ i ≤ N . Since there are an exponential
number of terms in Equation 1, a näıve algorithm for computing pi(xi) will
not work in practice. Equation 1 can also be written as

pi(xi) =
∑
∼{xi}

p(x1, . . . , xN ) (2)

where the sum is over all variables except xi. The marginal probability
for each variable defines the solution that we are interested in computing.
Intuitively, these marginals correspond to the likelihood of each boolean
variable being equal to true or false.

fC1 fC2

x1 x2 x3

Figure 4: Factor graph
for (3).

Factor graphs [35] are graphical models that
are used for computing marginal probabilities ef-
ficiently. These graphs take advantage of their
structure in order to speed up the marginal prob-
ability computation (known as probabilistic in-
ference). There are a wide variety of techniques
for performing probabilistic inference on a factor
graph and the sum-product algorithm [35] is the
most practical algorithm among these.

Let the joint probability distribution p(x1, . . . , xN ) be a product of fac-
tors as follows:

p(x1, . . . , xN ) =
∏
s

fs(xs) (3)

where xs is the set of variables involved in the factor fs. A factor graph is
a bipartite graph that represents this factorization. A factor graph has two
types of nodes:
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• Variable nodes: one node for every variable xi.
• Function nodes: one node for every function fs.

Example 3 As an example, consider the following formula

(x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ x3)︸ ︷︷ ︸
C2

(4)

Equation 4 can be rewritten as:

f(x1, x2, x3) = fC1(x1, x2) ∧ fC2(x1, x3) (5)

where

fC1 =
{

1 if x1 ∨ x2 = true
0 otherwise

(6)

fC2 =
{

1 if x1 ∨ ¬x3 = true
0 otherwise

(7)

The factor graph for this formula is shown in Fig. 4. There are three variable
nodes for each variable xi, 1≤ i≤3 and a function node fCj for each clause
Cj , j ∈ {1, 2}.

Instead of using boolean values to check satisfiability of formula 4, we
could use probabilistic inference: then we must interpret the formula as a
probabilistic constraint.

p(x1, x2, x3) =
fC1(x1, x2)× fC2(x1, x3)

Z
, (8)

where
Z =

∑
x1,x2,x3

(fC1(x1, x2)× fC2(x1, x3)) (9)

is the normalization constant. The marginal probabilities are defined as

pi(xi) =
∑
∼{xi}

p(~x), 1 ≤ i ≤ 3 (10)

Equations 6 and 7 can also be defined probabilistically thus allowing for
solutions that do not satisfy formula 4; but such solutions are usually set up
such that they occur with low probability as shown below:

fC1 =
{

0.9 if x1 ∨ x2 = true
0.1 otherwise

(11)
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fC2 =
{

0.9 if x1 ∨ ¬x3 = true
0.1 otherwise

(12)

pi(xi = true) denotes the fraction of solutions where the variable xi has value
true. �

This information can be used to find a solution efficiently – choose a
variable with the highest probability and assign its value as specified by the
marginal probability and recompute marginal probabilities and iterate until
all variables have been assigned values. Exact details of iterative approaches
that operate on factor graphs in order to compute marginal probabilities can
be found in [13, 35].

4 Inference Algorithm

As described in Section 2 and shown in Figure 2, Merlin’s processing pro-
gresses in stages. The first step in Merlin is to construct a propagation
graph.

Definition 3. A propagation graph is a directed graph G = 〈NG, EG〉,
where nodes NG are methods and an edge (n1 → n2) ∈ Eg indicates that
there is a flow of information from method n1 to method n2 through method
arguments, or return values, or indirectly through pointers.

The propagation graph is a representation of the interprocedural data flow
produced by Cat.Net, the static analysis tool for .NET. Further steps of
Merlin use the propagation graph as a representation of information flow
between methods in the program.

Section 4.2 describes how we convert a propagation graph P into a factor
graph F and in Section 4.3, we describe the computation of the functions
W () and s() (from Definitions 1 and 2 in Section 2) that are used in the
construction of the factor graph.

4.1 Reducing the Propagation Graph

The reduced propagation graph abstracts away the intraprocedural details
and creates a considerably smaller interprocedural data flow representation
to operate on. Figure 5 shows the original propagation graph for Example 2.
Because of space limitations, the figure only shows function TestMethod1.
The edges within the thick dashed boundary are intraprocedural edges; the
rest of the edges crossing the boundary are interprocedural.
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As shown in Figure 7, to construct a compressed propagation graph, we
systematically traverse dataflow paths in graph P to detect when the return
result of one method is passed to another.

4.2 Constructing the Factor Graph

Figure 9 shows the algorithm GenFactorGraph that we use to generate the
factor graph from the propagation graph. The construction of the factor
graph proceeds as follows. First, in line 1, the procedure MakeAcyclic con-
verts the input propagation graph into a DAG G′, by doing a breadth first
search, and deleting edges that close cycles. Next, in line 2, the procedure
ComputePairsAndTriples computes four sets shown in Figure 8.

These sets can be computed by doing a topological sort of G′ (the acyclic
graph), and doing one pass over the graph in topological order and recording
for each internal node, the set of sources and sinks that can be reached from
the node. These sets can be computed in O(N3) time, where N is the
number of nodes in the propagation graph.

Next in line 3, the function ComputeWAndSValues is invoked to com-
pute the W (n) and s(n) for every potential sanitizer n. The function
ComputeWAndSValues is described in Figure 10. In lines 4–8, the algorithm
creates a factor node for the constraints C1. In lines 9–13, the algorithm
iterates through all pairs 〈b1, b2〉 of potential sanitizers (that is, actual sani-
tizers as well as regular nodes) such that there is a path in the propagation
graph from b1 to b2 and adds factors for constraints C2. In lines 14–18, the
algorithm iterates through all potential sanitizers and adds factors for con-
straints C3. In lines 19–23, the algorithm iterates through all pairs 〈a1, a2〉
of potential sources such that there is a path in the propagation graph from
a1 to a2 and adds factors for constraints C4. Similarly, in lines 24–28, the
algorithm iterates through all pairs 〈c1, c2〉 of potential sources such that
there is a path in the propagation graph from c1 to c2 and adds factors for
constraints C5.

Example 4 Figure 6 shows the factor graph obtained by applying al-
gorithm FactorGraph to the propagation graph in Figure 2. The marginal
probabilities for all variable nodes are computed by performing probabilistic
inference on the factor graph and these are used to classify sources, sanitizers
and sinks in the propagation graph. �
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4.3 Computing s() and W ()

Recall the definitions of s() and W () from Definitions 1 and 2. Figure 10
shows the body of ComputeWAndSValues, which computes s(n) for each po-
tential sanitizer node, given input probabilities for each potential source and
each potential sink. The value s(n) for each potential sanitizer n depends
on the sum of weighted source-sink paths that go through n divided by the
total number of paths that go through n. The algorithm computes W (n)
and s(n) by computing four numbers F (n), Ftotal (n), B(n) and Btotal (n).

F (n) denotes the total number of sources that can reach n, and Ftotal (n)
denotes the total number of paths that can reach n. B(n) denotes the
total number of sinks that can be reached from n and Btotal (n) denotes the
total number of paths that can be reached from n. Since the graph G′ is a
DAG, F (n) and Ftotal (n) can be computed by traversing potential sanitizers
in topological sorted order, and B(n) and Btotal (n) can be computed by
traversing potential sanitizers in reverse topological order. The computation
of F (n) and Ftotal (n) in forward topological order is done in lines 5–12 and
the computation of B(n) and Btotal (n) in reverse topological order is done in
lines 17–24. Once F (n) and B(n) are computed, W (n) is set to F (n)×B(n)
and s(n) is set to

W (n)
Ftotal (n)×Btotal (n)

=
W (n)

Wtotal(n)

as shown in line 26.

5 Relationship between Triples and Paths

In this section, we give a formal relationship between the exponential num-
ber of constraints B1 and the cubic number of constraints C1 in Section 2.
In particular, we use the theory of probabilistic abstraction and refinement
developed by McIver and Morgan [20, 21] to derive appropriate bounds on
probabilities associated with constraints B1 and C1 so that C1 is a prob-
abilistic abstraction of the specification B1 (or, equivalently, B1 is a prob-
abilistic refinement of C1). We first introduce some terminology and basic
concepts from [21].

Probabilistic refinement primer. Non-probabilistic programs can be
reasoned with assertions in the style of Floyd and Hoare [8]. The following
formula in Hoare logic:

{Pre} Prog {Post}
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e x . c s ( 5 )   s t a c k 0  : =  b

e x . c s ( 6 )   t h i s . { T e s t } W r i t e D a t a ( s t a c k 0 )

e x . c s ( 4 )   s t a c k 0  : =  a

e x . c s ( 3 )   a  : =  t h i s . { T e s t } R e a d D a t a 1 ( )

e x . c s ( 5 )   c  : =  t h i s . { T e s t } C l e a n s e ( s t a c k 0 )

e x . c s ( 6 )   s t a c k 0  : =  c

e x . c s ( 4 )   b  : =  t h i s . { T e s t } f 1 ( s t a c k 0 )

b

s

s t a c k 0

c

s

a

s t a c k 0

s

s t a c k 0

s t a c k 0

s t a c k 0s t a c k 0

Figure 5: Original propagation graph for Example 2.

is valid if for every state σ satisfying the assertion Pre, if the program Prog
is started at σ, then the resulting state σ′ satisfies the assertion Post . We
assume Prog always terminates, and thus we do not distinguish partial and
total correctness.

McIver and Morgan extend such reasoning to probabilistic programs [20,
21]. In order to reason about probabilistic programs, they generalize asser-

fC3(xProp1) fC2(xProp1,xCleanse) fC3(xProp2) fC2(xProp2,xCleanse) fC3(xCleanse)

xReadData1 xReadData2 xProp1 xProp2 xCleanse xWriteData

fC1(xReadData1,xProp1, xWriteData) fC1(xReadData1,xProp1, xWriteData) fC1(xReadData2,xProp2, xWriteData) fC1(xReadData1,xProp1, xWriteData)

Figure 6: Factor graph for the propagation graph in Example 2.
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tions to expectations. An expectation is a function that maps each state to
a positive real number. If Prog is a probabilistic program, and PreE and
PostE are expectations, then the probabilistic Hoare-triple

{PreE} Prog {PostE}

is interpreted to mean the following: If the program Prog is started with
an initial expectation PreE , then it results in the expectation PostE after
execution.

Assertions are ordered by implication ordering. Expectations are ordered
by the partial order V. Given two expectations AE and BE , we say that
AE V BE holds if for all states σ, we have that AE (σ) ≤ BE (σ). Given
an assertion A the expectation [A] is defined to map every state σ to 1 if σ
satisfies A and to 0 otherwise.

BuildReducedPropGraph
Inputs:
Propagation graph P
Returns:
Reduced propagation graph G

1: for all node n ∈ P do
2: if n.IsCall then
3: for all m ∈ n.Callees do
4: traverse(m, n, ∅, true)
5: end for
6: end if
7: end for

{This subroutine is called repeatedly}
8: function traverse(s, n, visited, allowToExit)
9: if n /∈ visited then
10: visited = visited ∪ {n}
11: for all e ∈ n.OutgoingEdges do
12: if ¬ allowToExit ∧ e.Type.IsInterprocedural then
13: continue
14: end if
15: if e.Type.IsInterprocedural then
16: if e.To.IsCall then
17: for t ∈ e.To.Callees do
18: G.Edges = G.Edges ∪ {s → t}
19: end for
20: else
21: traverse(s, e.To, visited , e.Type.IsInterprocedural);
22: end if
23: end if
24: end for
25: end if

Figure 7: Constructing reduced propagation graph G from the original prop-
agation graph P .
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Set Definition

Triples
⋃

p∈paths(G′)

{〈xsrc , xsan , xsnk 〉 |
xsrc is connected to
xsnk via xsan in p}

Pairssrc
⋃

p∈paths(G′)

{〈xsrc , x
′
src〉 | xsrc is connected to

x′
src in p}

Pairssan
⋃

p∈paths(G′)

{〈xsan , x′
san〉 | xsan is connected to

x′
san in p}

Pairssnk

⋃
p∈paths(G′)

{〈xsnk , x′
snk 〉 | xsnk is connected to

x′
snk in p}

Figure 8: Set definitions for algorithm in Figure 9.

Suppose AE V BE . Consider a sampler that samples states using the
expectations as a probability measure. Then, for any threshold t and state
σ, if AE (σ) > t, then it is the case that BE (σ) > t. In other words, for any
sampler with any threshold t, sampling over AE results in a subset of states
than those obtained by sampling over BE .

Traditional axiomatic proofs are done using weakest preconditions. The
weakest precondition operator is denoted by WP. By definition, for any
program Prog and assertion A, we have that WP(Prog, A) to be the weakest
assertion B (weakest is defined with respect to the implication ordering
between assertions) such that the Hoare triple {B}Prog{A} holds.

McIver and Morgan extend weakest preconditions to expectations,
and define for an expectation AE , and a probabilistic program Prog,
WP(Prog,AE ) is the weakest expectation BE (weakest is defined with re-
spect to the ordering V between expectations) such that the probabilistic
Hoare triple {BE}Prog{AE} holds. Given two probabilistic programs Spec
and Impl with respect to a post expectation PostE , we say that Impl refines
Spec if WP(Spec,PostE) V WP(Impl,PostE).

Refinement between constraint systems. We now model constraints
B1 and C1 from Section 2 as probabilistic programs with an appropriate
post expectation, and derive relationships between the parameters of B1
and C1 such that B1 refines C1.

Consider any directed acyclic graph G = 〈V,E〉, where E ⊆ V × V . In
this simple setting, nodes with indegree 0 are potential sources, nodes with
outdegree 0 are potential sinks, and other nodes (internal nodes with both
indegree and outdegree greater than 0) are potential sanitizers. We want
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to classify every node in V with a boolean value 0 or 1. That is, we want
a mapping m : V → {0, 1}, with the interpretation that for a potential
source s ∈ V , m(s) = 1 means that s is classified as a source, and that for
a potential sink n ∈ V , m(n) = 1 means that n is classified as a sink, and
that for a potential sanitizer w ∈ V , m(w) = 1 means that w is classified as
a sanitizer. We extend the mapping m to operate on paths (triples) over G
by applying m to every vertex along the path (triple).

We want mappings m that satisfy the constraint that for any path p =
s, w1, w2, . . . , wm, n that starts at a potential source s and ends in a potential
sink, the string m(p) 6∈ 10∗1, where 10∗1 is the language of strings that begin
and end with 1 and have a sequence of 0’s of arbitrary length in between.

The constraint set B1 from Section 2 is equivalent in this setting to

GenFactorGraph
Inputs:
(G = 〈V, E〉 : PropagationGraph),
parameters low1, low2, high1, high2, high3, high4 ∈ [0..1]
Returns:
a factor graph F for the propagation graph G

1: G′ = MakeAcyclic(G)
2: 〈Triples,Pairssrc ,Pairssan ,Pairssnk 〉= ComputePairsAndTriples(G′)
3: s = ComputeWAndSValues(G′)
4: for each triple 〈a, b, c〉 ∈ Triples do
5: Create a factor fC1(xa, xb, xc) in the factor graph
6: Let fC1(xa, xb, xc) = xa ∧ ¬xb ∧ xc

7: Let probability Pr(fC1(xa, xb, xc) = true) = low1

8: end for
9: for each pair 〈b1, b2〉 ∈ Pairssan do
10: Create a factor fC2(xb1 , xb2 ) in the factor graph
11: Let fC2(xb1 , xb2 ) = xb1 ∧ xb2
12: Let probability Pr(fC2(xb1 , xb2 ) = true) = low2

13: end for
14: for each potential sanitizer n ∈ V do
15: Create a factor fC3(xn) in the factor graph
16: Let fC3(xn) = xn

17: Let Pr(fC3(xn) = true) = s(n)
18: end for
19: for each pair 〈xa1 , xa2 〉 ∈ Pairssrc do
20: Create a factor fC4(xa1 , xa2 ) in the factor graph
21: Let fC4(xa1 , xa2 ) = xa1 ∧ ¬xa2
22: Let probability Pr(fC4(xa1 , xa2 ) = true) = high3

23: end for
24: for each pair 〈xc1 , xc2 〉 ∈ Pairssnk do
25: Create a factor fC5(xc1 , xc2 ) in the factor graph
26: Let fC5(xc1 , xc2 ) = ¬xc1 ∧ xc2
27: Let probability Pr(fC5(xc1 , xc2 ) = true) = high4

28: end for

Figure 9: Generating a factor graph from a propagation graph.
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the probabilistic program Path given in Figure 16, and the constraint set
C1 from Section 2 is equivalent in this setting to the probabilistic program
Triple given in Figure 17. The statement assume(e) is a no-op if e holds
and silently stops execution if e does not hold. The probabilistic statement
S1 ⊕q S2 executes statement S1 with probability q and statement S2 with
probability 1 − q. Note that both programs Path and Triple have the same
post expectation [∀ paths p in G, m(p) 6∈ 10∗1]. Further, note that both
programs are parameterized. The Path program has a parameter cp asso-
ciated with each path p in G, and the Triple program has a parameter ct

associated with each triple t in G.
The following theorem states that the probabilistic program Path re-

ComputeWAndSValues(G : PropagationGraph)
Precondition:
Inputs:
acyclic propagation graph G
Returns:
W (n) and s(n) for each potential sanitizer n in G

1: for each potential source n ∈ V do
2: F (n) := probability of n being a source node
3: Ftotal (n) := 1
4: end for
5: for each potential sanitizer n ∈ V in topological order do
6: F (n) := 0
7: Ftotal (n) := 0
8: for each m ∈ V such that (m, n) ∈ E do
9: F (n) := F (n) + F (m)
10: Ftotal (n) := Ftotal (n) + Ftotal (m)
11: end for
12: end for
13: for each potential sink n ∈ V do
14: B(n) := probability of n being a sink node
15: Btotal (n) := 1
16: end for
17: for each potential sanitizer n ∈ V in reverse topological order do
18: B(n) := 0
19: Btotal (n) := 0
20: for each m ∈ V such that (n, m) ∈ E do
21: B(n) := B(n) + B(m)
22: Btotal (n) := Btotal (n) + Btotal (m)
23: end for
24: end for
25: for each potential sanitizer n ∈ V do
26: W (n) := F (n) ∗B(n)

27: s(n) :=
W (n)

Ftotal (n)∗Btotal (n)

28: end for
29: return s

Figure 10: Computing W (n) and s(n).
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Benchmark LOC DLLs DLL sz

Alias Management Tool 10,812 3 65
Bicycle Club App 14,529 3 62
Software Catalog 11,941 15 118
Sporting Field Managament Tool 15,803 3 290
Commitment Management Tool 25,602 7 369
New Hire Tool 5,595 11 565
Expense Report Approval Tool 78,914 4 421,200
Relationship Management 1,810,585 5 3,345
Customer Support Portal 66,385 14 2,447

Figure 11: Benchmark statistics.

fines program Triple under appropriate choices of probabilities as parameters.
Furthermore, given a program Path with arbitrary values for the parameters
cp for each path p, it is possible to choose parameter values ct for each triple
t in the program Triple such that Path refines Triple.

Theorem. Consider any directed acyclic graph G = 〈V,E〉 and probabilis-
tic programs Path (Figure 16) and Triple (Figure 17) with stated post ex-
pectations. Let the program Path have a parameter cp for each path p.
For any such valuations to the cp’s there exist parameter values for the
Triple program, namely a parameter ct for each triple t such that the pro-
gram Path refines the program Triple with respect to the post expectation
PostE = [∀ paths p in G, m(p) 6∈ 10∗1].

G F

Benchmark Nodes Edges Vars Nodes

Alias Management Tool 59 1,209 3 3
Terralever 156 187 25 33
Bicycle Club App 176 246 70 317
Software Catalog 190 455 73 484
Sporting Field Management Tool 268 320 50 50
Commitment Management Tool 356 563 107 1,781
New Hire Tool 502 1,101 116 1,917
Expense Report Approval Tool 811 1,753 252 2,592
Relationship Management 3,639 22,188 874 391,221
Customer Support Portal 3,881 11,196 942 181,943

Figure 12: Size statistics for the propagation graph G and factor graph F
used by Merlin.
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Before After

Benchmark All X ? 7 All X - ? 7

Alias Management Tool 2 2 0 0 2 2 0 0 0
Terralever 0 0 0 0 1 1 0 0 0
Bicycle Club App 0 0 0 0 4 3 0 1 0
Software Catalog 14 8 0 6 8 8 6 0 0
Sporting Field Management 0 0 0 0 0 0 0 0 0
Commitment Management Tool 1 1 0 0 22 16 0 3 3
New Hire Tool 4 4 0 0 3 3 1 0 0
Expense Report Approval Tool 0 0 0 0 2 2 0 0 0
Relationship Management 9 6 3 0 13 10 3 0 0
Customer Support Portal 59 19 3 37 280 277 3 13 0

Total 89 40 6 43 335 342 13 17 3

Figure 14: Vulnerabilities before and after Merlin.

Proof: Consider any triple t = 〈s, w, n〉. Choose the parameter ct for the
triple t to be equal to the product of the parameters cp of all paths p in G
that start at s, end at n and go through w. That is,

ct =
∏
p

cp (13)

such that t is a subsequence of p.
To show that Path refines Triple with respect to the post expectation

PostE stated in the theorem, we need to show that WP(Triple,PostE) V

Cat.Net Merlin Total
Benchmark P G F time

Alias Management Tool 2.64 4.59 2.63 9.86
Terralever 4.61 .81 2.67 8.09
Bicycle Club App 2.81 .53 2.72 6.06
Software Catalog 3.94 1.02 2.73 7.69
Sporting Field Management Tool 5.97 2.22 2.69 10.88
Commitment Management Tool 6.41 18.84 2.91 28.16
New Hire Tool 7.84 2.98 3.44 14.27
Expense Report Approval Tool 7.27 3.59 3.05 13.91
Relationship Management 55.38 87.63 66.45 209.45
Customer Support Portal 89.75 29.75 31.55 151.05

Figure 15: Static analysis and specification inference running time, in sec-
onds.
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Path(G = 〈V, E〉)
Returns:
Mapping m from V to the set {0, 1}

1: for all paths p = s, . . . , n from potential sources to sinks in G do
2: assume( m(p) 6∈ 10∗1) ⊕cp assume(m(p) ∈ 10∗1)
3: end for

Post expectation: [∀ paths p in G, m(p) 6∈ 10∗1].

Figure 16: Algorithm Path

Triple(G = 〈V, E〉)
Returns:
Mapping m from V to the set {0, 1}

1: for all triples t = 〈s, w, n〉 such that s is a potential source, n is a potential sink and w lies on
some path from s to n in G do

2: assume( m(〈s, w, n〉) 6= 101) ⊕ct assume( m(〈s, w, n〉) = 101)
3: end for

Post expectation: [∀ paths p in G, m(p) 6∈ 10∗1].

Figure 17: Algorithm Triple

WP(Path,PostE). That is, for each state σ, we need to show that
WP(Triple,PostE)(σ) ≤ WP(Path,PostE)(σ).

Note that WP(assume(e), [A]) = [e ∧ A], and WP(S1 ⊕q S2, [A]) =
q × WP(S1, [A]) + (1 − q) × WP(S2, [A]) [21]. Using these two rules, we
can compute WP(Triple,PostE) and WP(Path,PostE) as an expression tree
which is a sum of product of expressions, where each product corresponds
to a combination of probabilistic choices made in the program.

First, consider any state σ that does not satisfy PostE . For this state,
WP(Triple,PostE)(σ) = WP(Path,PostE)(σ) = 0, and the theorem fol-
lows trivially. Next, consider a state ω that satisfies PostE . In this case,
WP(Path,PostE)(ω) is the product of probabilities cp for each path p in G.

Also, in this case WP(Triple,PostE)(ω) is the product of two quantities
X(ω) and Y (ω), where X(ω) is equal to the product of probabilities ct for
each triple t = 〈s, w, n〉 such that m(〈s, w, n〉) 6= 101, and Y (ω) is equal to
the product of probabilities (1− ct′) for each triple t′ = 〈s′, w′, n′〉 such that
m(〈s′, w′, n′〉) = 101. Since ct’s have been carefully chosen according to
Equation 13 and Y (ω) ∈ [0, 1], it follows that X(ω) is less than or equal to
the product of the probabilities cp for each path p. Therefore, it is indeed
the case that for each state ω, WP(Triple,PostE)(ω) ≤ WP(Path,PostE)(ω).

Any solver for a probabilistic constraint system C with post expectation
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PostE chooses states σ such that WP(C,PostE)(σ) is greater than some
threshold t. Since we have proved that Path refines Triple, we know that
every solution state for the Triple system, is also a solution state for the
Path system. Thus, the set of states that are chosen by solver for the Triple
system is contained in the set of states that are chosen by the solver for the
Path system. This has the desirable property that the Triple system will not
introduce more false positives than the Path system.

Note that the Path system itself can result in false positives, since it
requires at least one sanitizer on each source-sink path, and does not re-
quire minimization of sanitizers. In order to remove false positives due to
redundant sanitizers, we add the constraints C2 and C3 to the Triple sys-
tem. Further, the path system does not distinguish wrappers of sources or
sinks, so we add additional constraints C4 and C5 to avoid classifying these
wrappers as sources or sinks. Using all these extra constraints, we find that
the Triple system performs very well on several large benchmarks and infers
specifications with very few false errors. We describe these results in the
next section.

6 Experimental Evaluation

We believe that the ultimate success of a specification inference project
such as Merlin is to be judged on the quality of the experimental results
it produces. This section presents the results of evaluating Merlin on 10
large .NET Web applications. All of these are enterprise line of business
applications currently in production written in C# on top of ASP.NET.

6.1 Experimental Setup

Figure 11 summarizes information about our benchmarks. Column 2 shows
the traditional line-of-code metric for all the code within the application.
However, as we discovered, not all code is actually deployed to the Web
server, and the number and size of deployed DLLs primarily consisting of
.NET bytecode is more relevant. These applications compile to one or more
DLLs; the number of DLLs is shown in column 3. The total size of these
DLLs, as measured in KB, is shown in column 4.

To put our results on specification discovery in perspective, Figure 20
provides information about the out-of-the box specification for Cat.Net,
the static analysis tool that we used for our experiments. The second column
shows the number of specifications for each specification type. The last
column shows the number of revisions each portion of the specification has
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1 public static string CreateQueryLink(

2 HttpRequest request, string key, string value,

3 List<string> keysToOmit, bool ignoreKey)

4 {

5 StringBuilder builder = new StringBuilder(

6 request.Url.AbsolutePath);

7 if (keysToOmit == null) {

8 keysToOmit = new List<string>();

9 }

10 builder.Append("?");

11 for (int i = 0; i < request.QueryString.Count; i++) {

12 if ((request.QueryString.GetKey(i) != key) &&

13 !keysToOmit.Contains(request.QueryString.GetKey(i)))

14 {

15 builder.Append(request.QueryString.GetKey(i));

16 builder.Append("=");

17 builder.Append(AntiXss.UrlEncode(

18 QueryStringParser.Parse(

19 request.QueryString.GetKey(i))));

20 builder.Append("&");

21 }

22 }

23 if (!ignoreKey) {

24 builder.Append(key);

25 builder.Append("=");

26 builder.Append(AntiXss.UrlEncode(value));

27 }

28 return builder.ToString().TrimEnd(new char[] { ’&’ });

29 }

Figure 18: Function CreateQueryLink for Example 5.

Sources (1):

string System.Web.HttpUtility+UrlDecoder.Getstring()

Sanitizers (8):

string System.Web.HttpUtility.HtmlEncode(string)

string System.Web.HttpUtility.UrlEncodeSpaces(string)

string System.Web.HttpServerUtility.UrlDecode(string)

string System.Web.HttpUtility.UrlEncode(string, Encoding)

string System.Web.HttpUtility.UrlEncode(string)

string System.Web.HttpServerUtility.UrlEncode(string)

string System.Web.HttpUtility.UrlDecodestringFromstringInternal...

string System.Web.HttpUtility.UrlDecode(string, Encoding)

Sinks (4):

void System.Web.HttpResponse.WriteFile(string)

void System.Web.HttpRequest.set_QuerystringText(string)

void System.IO.TextWriter.Write(string)

void System.Web.HttpResponse.Redirect(string)

Figure 19: Specification inferred in Example 6.
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gone through, as extracted from the code revision repository. It is clear from
the table that even arriving at the default specification for Cat.Net, as

Type Count Revisions

Sources 27 11
Sinks 77 10

Sanitizers 7 2

Figure 20: Statistics for the out-
of-the box specification that comes
with Cat.Net.

incomplete as it is, took a pretty sig-
nificant number of source revisions.
Moreover, the initial specification is
also fairly large, consisting of a total
of 111 methods.

To provide a better metric for the
scale of the benchmarks relevant for
Cat.Net and Merlin analyses, Fig-
ure 12 provides statistics on the sizes
of the propagation graph G computed by Merlin, and the factor graph F
constructed in the process of constraint generation. With propagation
graphs containing thousands of nodes, it is not surprising that we had to
develop a polynomial approximation, as Section 5 describes.

6.2 Merlin Findings

Figure 13 provides information about the specifications discovered by Mer-
lin. Columns 2–16 provide information about how many correct and false
positive items in each specification category has been found. Note that in
addition to “good” and “bad” specifications, as indicated by Xand 7, we
also have a “maybe” column denoted by ?. This is because often what con-
stitutes a good specification is open to interpretation. Even in consultations
with Cat.Net developers we found many cases where the classification of
a particular piece of the specification is not clear-cut.

Figure 14 summarizes information about the security vulnerabilities
we find based on both the initial and the post-Merlin specifications.
Columns 2–10 show the number of vulnerabilities based on the original
specification, newly found vulnerabilities, and the number of newly found
vulnerabilities that are in fact false positives. For the post-Merlin part of
the table we also report the number of false positives eliminated with the
Merlin specification, 13 in total, as caused by the newly discovered san-
itizers. As with many other static analysis tools, false positives is one of
the primary complaints about Cat.Net in practice. As can be seen from
Figure 14 (the “-” column), Merlin helps reduce the overall false positive
rate from 48% to 33% (the latter computed as (43-13)/89).

Example 5 Function CreateQueryLink in Figure 18 is taken from the
Software Catalog benchmark. The return result of this function is passed
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into a known cross-site redirection sink not shown here for brevity.

• The paths that go through request.Url.AbsolutePath and
request.QueryString on lines 6 and 15 are correctly identified vul-
nerabilities.

• Cat.Net flags the path that passes through function
QueryStringParser.Parse on line 18 as a vulnerability. How-
ever, with Merlin, AntiXss.UrlEncode is correctly determined to
be a sanitizer, eliminating this false positives. With Merlin, we
eliminate all 6 false positives in this benchmark.

• Cat.Net addressed explicit information flow only and will not flag
the fact that there is a control dependency on line 13 because tainted
value request.QueryString is used within a conditional.

This short function illustrates many tricky issues with explicit information
flow analyses as well as the danger of unrestricted manipulation of tainted
data as strings. �

Note that while we start with the Cat.Net specification characterized
in Figure 20, Merlin can even infer specification entirely without an initial
specification purely based on the structure of the propagation graph.

Example 6 Consider a short program fragment written in C# below con-
sisting of two event handlers.

protected void TextChanged(object sender, EventArgs e) {

string str = Request.QueryString["name"];

string str2 = HttpUtility.HtmlEncode(str);

Response.Write(str2);

}

protected void ButtonClicked(object sender, EventArgs e) {

string str = Request.UrlReferrer.AbsolutePath;

string str2 = HttpUtility.UrlEncode(str);

Response.Redirect(str2);

}

When run with no intial specification at all, Merlin is able to infer a small
but absolutely correct specification consisting of 13 elements, as shown in
Figure 19. Starting with even a small specification such as the one above,
Merlin is able to succesfully infer increasingly larger specifications that fill
many gaps in the original Cat.Net specification. �

6.3 Running Times

Finally, Figure 15 provides information about running time of the various
Merlin components, measured in seconds. The experiments were con-
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ducted on a 3 GHz Pentium Dual Core Windows XP SP2 machine equipped
with 4 GB of memory. Overall, in part due to the approximation described
in Section 5, our analysis scales quite well, with none of the benchmarks
taking over four minutes to analyze. Given that Cat.Net is generally run
once a day or less frequently, these running times are more than acceptable.

7 Related Work

Related work falls into the following broad categories discussed in turn:
securing Web applications, mining specifications.

7.1 Securing Web Applications

There has been much interest in static and runtime protection techniques to
improve the security of Web applications. Static analysis allows the devel-
oper to avoid issues such as cross-site scripting before the application goes
into operation. Runtime analysis allows exploit prevention and recovery dur-
ing the operation of an application. The WebSSARI project pioneered this
line of research [9], by combining static and dynamic analysis for PHP pro-
grams. Several projects that came after WebSSARI improve on the quality
of static analysis for PHP [10, 33].

The Griffin project proposes a scalable and precise sound static and
runtime analysis techniques for finding security vulnerabilities in large Java
applications [16, 19]. Several other runtime systems for taint tracking have
been proposed as well, including Haldar et al. for Java [2, 7] and Pietraszek et
al. [24] and Nguyen-Tuong et al.for PHP [22].

Several tools have been built to detect information flow vulnerabilities in
programs [1, 5, 23]. All these tools without exception require a specification
of information flow. Our work infers such specifications.

7.2 Mining Specifications

We are aware of several efforts to infer security specifications automatically.
Tan et al.’s [28] AutoISES tool uses static analysis to automatically check if
access to sensitive data is suitably guarded by an appropriate authorization
check. Similar to our goals, AutoISES automatically infers specifications for
this problem. Their core idea is to identify security which data structures
are security-sensitive, based on known authorization checks that are present
in the code, and check all occurrences of accesses to these data structures
to check if they are guarded. Thus, if a security-sensitive data structure is
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protected in most accesses, and inadvertently accessed without protection in
a few places, they are able to detect such errors. Ganapathy et al.used con-
cept analysis to find fingerprints of security-sensitive operations [6]. Unlike
these works, we solve a different problem —one of inferring specifications
for explicit information flow.

A number of projects have addressed inferring specifications outside the
context of security. For a general survey of specification mining techniques,
the reader is referred to Perracotta [34], DynaMine [17], and Weimer et
al. [31]. We mention several efforts below. Engler et al. [4] infer specifica-
tions from code by seeking rules that involve action pairs: malloc paired
with free, lock paired with unlock, etc. Li and Zhou [14] and Livshits
and Zimmerman [17] look at more general patterns involving action pairs
by combining data mining techniques as well as sophisticated pointer analy-
ses. Whaley et al. [32] considers inference of interface specifications for Java
method calls using static analysis. Jagannathan et al. [25] use data mining
techniques for inference of method preconditions in complex software sys-
tems. The preconditions might incorporate data-flow as well as control-flow
properties.

Kremenek et al. [11] use probabilistic inference to classify functions that
allocate and deallocate resources in programs. While similar in spirit to our
work, inference of information flow specifications appears to be a more com-
plex problem than inference of allocation and deallocation routines in C code
because there are different kinds of classifiers — sources, sinks, and sanitizers
at play. Furthermore, the wrapper avoidance and sanitizers minimization
constraints do not have analogs in the allocator-deallocator inference. Un-
like Kremenek et al. [11] we use the theory of probabilistic refinement to
formally characterize the triple approximation we have made for the pur-
pose of scaling.

8 Conclusions

The growing importance of explicit information flow is evidences by the
abundance of analysis tools for information flow tracking and violation
detection at the level of the language, runtime, operating system, and
hardware [2, 3, 7, 9–12, 16, 18, 19, 22, 27, 29, 33, 36]. Ultimately, all these ap-
proaches need a specification.

In this paper we have presented Merlin, a novel algorithm that infers
explicit information flow specifications from programs. Merlin derives a
system of probabilistic constraints based on interprocedural data flow in the
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program, and computes specifications using probabilistic inference.
In order to scale to large programs, we approximate an exponential num-

ber of probabilistic constraints by a cubic number of triple constraints, show-
ing that that path-based constraint system is a refinement of the triple-based
constraint system. This ensures that, for an given threshold, every solution
admitted by the approximated triple system is also admitted by the path sys-
tem (for the same threshold). Though this connection gives formal ground-
ing to our approximation, it does not say anything about the precision of
the results that can be obtained; such an assessment is obtained empirically
by evaluating the quality of the specification inferred for large applications,
the number of new vulnerabilities discovered, and the number of false pos-
itives removed. Based on our observations about large Web applications,
we added extra constraints to the triple system (constraints C2, C3, C4,
and C5 in Figure 3) to enhance the quality of the results.

With these extra constraints, our empirical results convincingly demon-
strate that our model indeed achieves good precision. In our experiments
with 10 large Web applications written in .NET, Merlin finds a total of 167
new confirmed specifications, which result in a total of 302 newly discovered
vulnerabilities across the 10 benchmarks. Equally importantly, Merlin-
inferred specifications also result in 13 false positives being removed. As a
result of new findings and eliminating false positives, the final false positive
rate for Cat.Net after Merlin in our experiments is under 1%.
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