
MoRePriv: Mobile OS Support for

Application Personalization and Privacy

Drew Davidson

University of Wisconsin

Benjamin Livshits

Microsoft Research

Abstract
This paper advocates for operating system support

for personalization and describes MoRePriv, an oper-
ating system service implemented on top of the Win-
dows Phone operating system. The approach presented
in this paper combines the frequently conflicting goals
of privacy and content personalization on mobile de-
vices. We argue that personalization support should be
as ubiquitous as location support, and should be pro-
vided by the OS instead of apps.

To enable easy application personalization or skin-
ning, MoRePriv approximates users’ interests using
personas such as technophile or business executive. We
demonstrate how always-on user interest mining can ef-
fectively and accurately infer user interests in a mobile
operating system by parsing and classifying multiple
streams of (sensitive) information about the user within
the OS, such as their email, SMS, Facebook stream,
and network communications. For privacy protection,
this sensitive information is distilled to a coarse-grained
profile, without being exposed to apps, which limits the
potential for information leaks.

We show that MoRePriv enables simple, but ef-
fective OS-wide universal personalization: for example,
long drop-down lists in application UIs are automati-
cally sorted to better fit the order of users’ likely pref-
erences. However, the real power of MoRePriv comes
from exposing a personalization API to apps.

Using a number of cases studies, we illustrate how
more complex personalization and app skinning tasks
can be achieved with the help of MoRePriv. We also
argue for better OS support for ad libraries, advocat-
ing that a more privacy-aware design is possible for
mobile advertising, combined with insight into users’
preferences and tastes gained with MoRePriv. This
approach combines the capabilities of today’s power-
ful ad libraries with privacy concerns of the applica-
tion, while reducing application permissions and en-
abling more powerful monetization models. Our experi-
ments show that we are able to reduce app permissions
in about 73% of apps that use ad libraries. The ad li-
brary study also shows that removing user tracking ca-
pabilities while providing persona information creates a
useful compromise in practice.

1. Introduction
Mobile applications are becoming increasingly per-

sonalized, fluidly adapting themselves to the needs and
preferences of their users. The most common type of
personalization most users have encountered is location-
based personalization: search engine results and Yelp
restaurant recommendations are simply better and
more relevant when the app knows about the user’s lo-
cation. Other examples of mobile personalization are
customizable news delivery apps such as AOL Edi-
tions (editions.com) and Flipboard (flipboard.com).
Restaurant and music recommendation services get bet-
ter with user interaction and training, and mobile but-
lers such as Apple’s Siri and Google’s Alfred adapt
themselves to the user over time. We believe that this
is just beginning.

Much work in personalization has taken the form of
aggregating user data in the cloud, then using it for
large-scale data mining. This has significant advantages
for data aggregators, as it allows them to target services
and ads. However, as the recent DoNotTrack debate has
illustrated, there are significant downsides for the user.
Recently, a series of papers has highlighted the sever-
ity of data leak problems for location and other data
in mobile apps [7, 9, 15, 24]. In contrast, MoRePriv
advocates leaving user data on the mobile device, un-
der the control of the user. The benefits of this simple
shift in perspective are many: the user retain control
over data in this model and the cloud providers do not
have to worry about properly maintaining data, pre-
venting unauthorized data access, complying with lo-
cal and international laws, running and powering ex-
pensive data centers, dealing with PR repercussions of
data leaks and unauthorized tracking (such as the re-
cent Apple location data scandal), etc. Also note that
MoRePriv, at its core, is an enabling technology — it
creates extra value and opportunity for all parties. As
such, MoRePriv tries to shepherd the ecosystem into
a new, more open and productive direction, but it can,
if desired, be combined with various privacy modes to
eliminate existing privacy leaks [15].

In this paper we present MoRePriv, an operating
system service that allows for rich personalization by
performing accurate local data collection on the hand-
set without the need to exfliltrate user data from the

1 2012/5/3



handset. Moreover, when user preference information is
collected from all apps and OS interactions, it is con-
siderably more accurate compared to what any given
app, even the mobile browser, can obtain. We argue
that it is to the benefit of users and application devel-
opers to draw this information from a single unified and
trustworthy source provided by the mobile OS. Person-
alization functionality can and should be built into the
mobile OS and exposed to app developers via an easy-
to-use API.

To enable easy application personalization or skin-
ning, MoRePriv approximates user’s interests using
personas such as technophile or business executive. We
demonstrate how always-on user interest mining can ef-
fectively and accurately infer user interests in a mo-
bile operating system. MoRePriv inference is based on
parsing and classifying multiple streams of (sensitive)
information about the user within the OS, such as their
email, SMS, Facebook stream, and network communi-
cations. For privacy protection, this sensitive informa-
tion is distilled to a coarse-grained persona (as opposed
to fine-grained location data, whose leaks have caused
much chagrin among users and privacy advocates),
without being exposed to apps. The use of personas lim-
its the potential for user tracking: while persona infor-
mation can be shared by apps to perform server-based
personalization, for instance, it is not enough to link the
user across multiple interactions.

Just like location services, which are now ubiqui-
tous on most mobile platforms, we believe MoRePriv
can unleash developer creativity. Moreover, there is a
real chance to create positive change in the mobile
ecosystem: as on the web, mobile apps are increas-
ingly ad-funded. Ad targeting necessitates user pro-
filing, which we argue is better delivered through a
controlled MoRePriv-based approach, than through
privacy-violating tracking. We believe that MoRePriv
is timely and can lead to game-changing innovation:
while the web tracking infrastructure is quite ingrained,
mobile development is less so.
1.1 Mobile Personalization: An Example

Figure 1 demonstrates the power of mobile personal-
ization. A traditional challenge on mobile devices is the
lack of screen real estate. As such, long news articles
are difficult to read, giving rise to various bookmarking
services such as Instapaper, ReadItLater, etc. However,
in a news article such as might be found in Wall Street
Journal or The New York Times, often only a fraction
of the article is relevant to a given user. As such, a
customized summarization strategy will go a long way
toward making the user more productive [21].

Figure 1a shows a text sample, a summarized version
of the text with unnecessary details faded 1b, and a ex-
cerpt with highlighted entities 1c. While many users will

(a) Original text.

(b) Important text highlighted.

(c) Entity extraction and color.

Figure 1. Mobile text view.

prefer versions (b) and (c) to version (a), because both
draw attention to important parts of the text, this raises
an important question: what is important and should be
brought to user’s attention? The answer is subjective:
if the user is someone interested in business or public
policy, the aspects of the text that have to do with the
FTC and its chairman are relevant. For someone inter-
ested in technology, the parts of the text talking about
Microsoft are important. This motivates our notion of
personas such as business executive or technophile, proto-
typical users with an easily recognizable set of interests
that offer targets for personalization.

This example of text display illustrates an important
general point: many tasks require knowledge of the user
to perform well. This has been observed before: most
spoken word recognition, dictation, and writing recog-
nition systems work considerably better with training.
Of course, having to train the system is a chore for the
user. In MoRePriv, training is done at the level of
the operating system and draws from other OS func-
tionality as well as user-level apps. This way, the app
developer can dedicate their energy to developing bet-
ter personalization and the user does not have to waste
their time training every app they have.

2 2012/5/3



1.2 Contributions
In this paper, we

• propose OS-wide personalization as a way to com-
bine the goals of personalization and privacy on mo-
bile devices, while illustrating key opportunities for
mobile operating system designers and propose spe-
cific ways in which applications can be enhanced to
become more personalized;

• describe our implementation of MoRePriv on the
Windows Phone 7.5 OS; and advocate the use of
personas, through case studies and end-user experi-
ments;

• demonstrate how to do universal personalization of
UI and how MoRePriv APIs can be used for per-
sonalization and skinning though several case stud-
ies;

• advocate for an OS-supported mobile ad delivery ar-
chitecture that uses MoRePriv, which has signif-
icant advantages compared to the current state-of-
the-art in mobile advertising and monetization. In
the context of ad delivery and ad libraries, we show
how MoRePriv can be combined with a privacy-
enhancing technology designed to limit the capabili-
ties of mobile ads, while still providing the ability to
do ad targeting based on persona data.

1.3 Paper Organization
The rest of this paper is organized as follows: Sec-

tion 2 provides the background for mobile privacy
and personalization. Section 3 gives an overview of
MoRePriv. Section 4 describes how we implemented
MoRePriv by modifying the Windows Phone oper-
ating system and demonstrates the MoRePriv API.
Section 5 illustrates the benefits of mobile personaliza-
tion through several case studies. Section 6 describes
how MoRePriv enables an alternative design for mo-
bile ad delivery. Finally, Section 8 concludes the paper.
Our companion technical report [2] provides more de-
tails on mobile personalization, monetizing mobile apps
and restricting advertising, etc.

2. Mobile Personalization: Background
The prevalence of smart phones and other mobile

computing devices has opened up new avenues for per-
sonalized applications. Because users carry these de-
vices with them wherever they go, they are subject to
a level of user interaction never before seen on a per-
sonal computing platform. Furthermore, they are typ-
ically equipped with cameras, microphones, GPS, and
several forms of wireless networking, providing a con-
stant stream of data from both the physical world and
the Internet. Common examples of personalization in-
clude Siri, the mobile voice assistant and personalized
local search. Both, unfortunately, require moving a con-

siderably amount of user data into the cloud for process-
ing. We start out by presenting representative examples
of mobile personalization and then proceed to generalize
the requirements for a successful personalization plat-
form, such as MoRePriv.
Siri: A familiar example of mobile personalization is the
Siri personal assistant, which spun off from a large arti-
ficial intelligence undertaking by DARPA. Siri attempts
to parse human language in order to perform high-level
tasks on behalf of the user, such as making dinner reser-
vations, selecting movies, and making wine recommen-
dations. Over time, Siri learns the user’s preferences and
personalizes its interface and recommendations accord-
ingly, although the mechanism by which this happens is
proprietary. If the user tends to invoke Siri frequently,
then this information will pertain to a sizeable portion
of the user’s day-to-day activities, giving Siri a valu-
able window into the user’s life when targeting content
and advertisements. Siri, however, transmits user’s ut-
terances to Apple and potentially third parties affiliated
with Apple for analysis. As such, both the information
given directly by the user such as “set a birthday re-
minder” and secondary information such as gender and
age can be obtained through voice analysis.
GetGlue: GetGlue is a mobile application based on
personalization (getglue.com). As users consume me-
dia and purchase goods, GetGlue allows them to “check
in” to these entities. They can then post reviews, rat-
ings, and recommendations, which are tied to their per-
sonal profile. GetGlue uses this information to recom-
mend products and content to the user in future in-
teractions, based on the activity of the pool of users
in the GetGlue community. GetGlue is partnered with
a collection of online merchants and services, who can
benefit from the rich data provided by the user base to
better target content towards.
Shopkick: Other mobile apps, such as Shopkick
(shopkick.com), have integrated location-awareness
with user preference data. When a Shopkick user enters
a brick-and-mortar store, the app takes note of the fact,
and consults the user’s preferences to offer discounts and
recommendations. Users can scan the barcodes of items
in which they are interested as they shop, and Shopkick
incentivizes this type of data acquisition with payments
in a proprietary currency that can be used towards fur-
ther discounts in the store. This use of personalization
is interesting in that it offers traditional merchants the
ability to target content, advertisements, and discounts
towards users in much the same way as online retailers.
AOL Editions: Editions (editions.com) is a mobile
news magazine for tablets that learns over time, based
on both explicitly stated user preferences and the mag-
azine observing the user clicking on articles. Editions
uses a curated taxonomy of news topics, with the user

3 2012/5/3



being actively encouraged to update their interests, cre-
ating a virtuous circle of increasingly relevant news con-
tent. Editions combines user’s calendar within the UI,
further adding to the personalized appearance. Other
entires in this increasingly busy space are Zite, Pulse,
Apollo News, Flipboard, and Early Edition.
Shopitize: Mobile offer app Shopitize (shopitize.
com) promises to give the user personalized offers based
on their shopping receipts, which the user scans into
the application. It gives the user a convenient spending
report by parsing scanned receipts. This is a good ex-
ample of the cost of free: in exchange for this service,
the user provides valuable information that can be used
to target them with future offers and services.

3. Overview
The apps above share the following set of personal-

ization steps [19]:

1. Acquire personalization signal from user interac-
tions;

2. Address the cold start problem of not having data
to base personalization on; often, this is resolved
through the use of a secondary source. This is why
many modern apps encourage the user to sign up
with their Facebook credentials, so that their Face-
book data can be “scraped”.

3. Refine personalization signal as a result of subse-
quent interactions.

Opportunities in the Mobile Space: There are
several important distinctions for personalization in the
mobile space as opposed to desktop computing:

• Data on mobile devices is often more sensitive (or
“toxic”) than on desktop computers, frequently in-
cluding personal text messages, phone call records,
etc.

• The grip of the ad-based monetization model is not
as strong as it is on the web, thus permitting game-
changing innovation.

• Finally, processing power on mobile devices is less
than on desktop computers, while the energy effi-
ciency requirements are higher.

The majority of research in the mobile personaliza-
tion space focuses on privacy-preserving ad target-
ing [3, 11, 12, 30]. While we address mobile advertising
in Section 6, we should emphasize that the reach of
MoRePriv to enhance the mobile platform is consid-
erably broader, as demonstrated by the case studies in
Section 5.
3.1 System Architecture & Design Philosophy

As shown in Figure 2, we envision a system in which
both applications and the underlying operating system
expose opportunities for personalization. User interac-

Survey takers 179
Concerned about privacy? 149 83%
Use mobile phones? 178 99%
Use smart phones? 154 86%
Install mobile apps? 147 82%
Do you find your persona accurate? 143 77%

For 123 users who use smart phones and install apps and also
find the persona accurate

Would be willing to share (pick one)
fine-grained location 33 27%

coarse-grained location 35 28%
persona 55 45%

If it meant more personalized experience, would be willing to
share (pick one)

fine-grained location 40 33%
coarse-grained location 35 28%

persona 48 39%

Figure 3. Survey result summary.

tions are observed by personal preference miners (“min-
ers”, for short), shown at the top of the figure and com-
piled to a user interest profile, which is subsequently
used by a variety of personalizers for different forms of
personalization, at the bottom of the figure. Personal
preference miners are as diverse as location information
miners that can tell us about whether the user is around
home or on a trip, or miners that discover the activity
of the user (walking, riding a train, in a car, etc.) They
also pore over user’s email, SMS, and Facebook streams
to establish user’s interests and preferences for news and
entertainment.
3.2 User Interest Profile: Personas

Personas are custom representations of various walks
of life, offering different targets for personalization. Per-
sonas have been advocated before, as a user model-
ing approach [28]. In addition to being easy to under-
stand, the advatage of this technique is the degree of
pseudonymity that it provides [20]. In other words, us-
ing a persona provides a way to declassify sensitive in-
formation; persona data is all that is released by the user
to the application, as opposed to personally-identifiable
information such as their name or unique identifiers
such as the device IMEI.

In our prototype implementation of MoRePriv, we
target eight personas, shown within the MoRePriv
UI in Figure 4(b). Each persona is represented by a
Bayesian classifier Cp, trained on a manually curated
list of keywords characteristic to profile p. For example,
the executive persona represents strong interest in busi-
ness, finance, and national news. Thus, the correspond-
ing classifier is populated with text from such sites as
the Financial Times. On the other hand, the technophile
profile represents a strong interest in technology, so the
corresponding classifier is populated with text from tech
blogs.

4 2012/5/3



Personal preference miners

Personalizers

User interest profile

Location 
mining

Browsing 
history mining

Email mining SMS mining

Web page 
personalizer

Music collection 
prioritizer

Spelling/
completion engine

Generic UI 
personalizer

personalization 
APIs

profile data 
in cloud

Figure 2. Architecture of MoRePriv.

Our goal in choosing the set of personas is neither
completeness nor exclusivity: arguably, it is very diffi-
cult to be comprehensive; similarly, there may be inter-
sections between these personas. Instead we optimize
for ease of understanding by both the user and the de-
veloper. While we believe these profiles are a reasonable
proof of concept, we note that our system is modular
with respect to the profiles that are used, and the sys-
tem could easily by modified by training a Bayesian
classifier on a new list of keywords.

In practice, no user is likely to have interests that
match exactly one persona. As such, each persona is
assigned a persona weight that indicates how closely
that persona matches the user. Consider an example
user who is very interested in technology news and
somewhat interested in financial news. This user would
have a a high persona weight for the technophile persona
and a moderate persona weight the executive persona.
This person might be very interested in technology
news, and somewhat interested in financial news.

Using a combination of several crowd-sourcing plat-
forms, including Amazon’s Mechanical Turk, we admin-
istered a short survey to determine the breakdown of
our user population and their attitudes towards shar-
ing in formation in a mobile application context. To
make the notion of a persona information concrete for
the user, we asked them several question about their
employment situation, gender, etc. to crudely approxi-

mate their persona. Note that this is not the same as
doing precise data mining on the client, so, unsurpris-
ingly, in some cases this inferred persona information
was deemed imprecise. In later questions about persona
sharing, this concrete persona information was men-
tioned explicitly. Moreover, survey questions were un-
folded one-by-one, resulting in a slightly different work-
flow based on the answers, and preventing the users
from revising their answers based on later questions. To
obtain these values, we asked several qualifying ques-
tions such as whether the user had a smart phone and
installed app, only counting those user’s responses as
valid for the purposes of determining their sharing pref-
erences.

We summarize the results in Figure 3. Overall, the
most apparent result is that 39–45% of survey takers are
more willing to share persona data, whether in general
or for the purposes of personalization, compared to
the familiar baselines of location data and fine-grained
location data. We feel that many users understood
that their is more value and less sensitivity in sharing
persona data compared to location.
3.3 Design Choices

Advantages of performing personalization within the
mobile OS as opposed to the cloud, which is often the
status quo, or within apps, are as follows:

5 2012/5/3



• within the OS we greater visibility than within any
application or a server in the cloud;

• sensitive data does not leave the device; instead,
sensitive data is declassified by being distilled to
personas, as explained below.

Where to personalize: A natural question is where
to perform the personalization. While argue that min-
ing be done on the device itself, we also we also strongly
advocate performing personalization on the device, as
shown in Section 5. However, we realize that an im-
portant practical alternative is server-side personaliza-
tion. One advantage of doing things on the server in-
clude lower latencies: a personalized news reader such
as The Early Edition1 can pre-compile today’s person-
alized newspaper for each persona and just deliver the
right version when the user shares persona information.
Design alternatives: While our overall vision is quite
general, the implementation described in this paper
provides a fixed set of collectors and allows for actors
that query personalization data through a fixed set of
APIs, provided to applications. The decision to go with
this more limited approach is justified by our desire to
provide a simple and understandable interface to both
users (Section 3.2) and developers (Section 4).

Our miners are part of a mobile OS service, allowing
for easy data separation. We envision a more general
system that would allow installable OS-level miners that
would process, say, the user’s email stream or derive
more fine-grained information about the user’s travel
behavior from their Facebook check-ins. Of course, with
this extra power comes the danger of sensitive user data
being leaked by potentially untrusted collectors.
Extensibility: Much work has been done on verifiable
extensions, in the contexts as diverse as OS drivers and
browser extensions. In our case the problem is especially
difficult because 1) we need to worry about information
flow and not access control properties, and 2) the no-
tion of adequate data declassification in general is very
difficult to establish. Some proposed approaches involve
static analysis [4], type systems [10], and runtime infor-
mation flow tracking.

While all three suffer from problems of incomplete
specification, with a single missing tainted data source
leading to exploits [22], static analysis and type systems
also are subject to precision and usability challenges.
Runtime analysis can incur a non-trivial overhead. Un-
fortunately, none of these approaches seem ready for
practical deployment for regular mobile app developers.

A more manageable task for future work is to alert
the user when persona information leaves the device, in
addition to alerting them when the persona information

1http://www.glasshouseapps.com/the-early-edition/

is first obtained; this can be accomplished with runtime
taint tracking [7, 17].
3.4 Value Proposition

Our goal with MoRePriv is to provide an attractive
value proposition for all major categories of constituents
within the mobile ecosystem: users, developers, and
third party data and ad providers. We summarize the
benefits below.
Users: Users gain a clear way to communicate infor-
mation about themselves for the purposes of personal-
ization without revealing too much about themselves.
Users can also audit persona information released to
every application, to understand when each release has
token place. Note that MoRePriv is designed to be
combined with other privacy filters, to remove existing
tracking, if present. To make it easier for users to un-
derstand, we model the way persona information is sur-
faced to the user after GPS location data; Figure 4(a)
shows an example of a persona prompt within an app.
Developers: The main advantage for app develop-
ers is the MoRePriv API. It represents a single OS-
level data source for personalization (as opposed to
application-specific, ad-hoc information sources) allows
seamless and uniform functionality for a single user
across many applications, devices, and platforms. Easy
for developers to use for personalization and skinning.
Extension points [8] are possible.

The cold start problem common in many personal-
ization tasks is largely addressed, because of an OS-wide
user personalization context, which apps can easily take
advantage of. Thus, applications can plug into an exist-
ing source of data about the user. Finally, OS-wide data
collection for a single repository allows richer and more
accurate profile information about the user to be col-
lected than any single application can accomplish.
Third party and ad providers: The value proposi-
tion to data providers is that they are no longer respon-
sible for storing “toxic” user data and cross-correlating
it across a set of user interactions. Given the mounting
pressure by legislators in the US and Europe to limit the
impact of online tracking as well as mobile app tracking,
this can we welcome news. Instead of trying to engage
in user profiling, which is 1) costly, because it requires
maintaining or buying data center capacity, developing
custom software, and paying data mining and support
personnel, and 2) dangerous, because multiple laws23

,4 of different localities must be respected and there is

2http://www.truste.com/blog/2012/03/02/

mobile-app-privacy-policies-are-now-the-law
3http://www.applicationprivacy.org/?page_id=39
4http://www.infolawgroup.com/2011/05/

articles/data-privacy-law-or-regulation/

mobile-location-privacy-opinion-adopted-by-europes-wp29

6 2012/5/3



always a danger of being limited later in time, a clear
alternative is to use the information provided natively,
by the mobile OS.
3.5 Data Protection and Privacy

So far, our discussion of MoRePriv has primarily
focuses on personalization benefits of our approach. In
the rest of this section, we focus on privacy-related
advantages. In the past several years, a number of
projects have examined data leakage potential on the
mobile, including mobile information leakage [7, 9], lead-
ing to privacy-enhancing technologies designed to guard
against such data leaks, usch as AppFence [15].
Privacy by design: We want to draw a contrast be-
tween that line of research and MoRePriv, which is
envisioned as a privacy-by-design approach. The goal
of MoRePriv is to shepherd the different constituents
of the mobile ecosystem into compliance. MoRePriv
can and should be combined with privacy monitoring
and privacy leak detection tools, but we see that as an
orthogonal concern.
Data stored at the OS level: Our implementation of
MoRePriv maintains a vector of persona weights for
each user at any given time. This vector is maintained
serialized as part of the OS service that MoRePriv
implements. To make this maintainence an incremental
process, our implementation records two values for each
persona p:

1. relevance: sum of interest scores from classifier Cp, sp

2. support : number of elements that have been scored
by Cp, called np.

Intuitively, sp indicates a raw score of how closely the
persona matches the user, while np indicates the amount
of evidence to support that score. The persona weight is
given by the fraction sp/np. Thus, only two data vectors
per persona are stored. Note that these vectors are never
directly shared with user mode apps.
Use of personas limits information leaks: At the
core of MoRePriv design is the use of personas, which
provides a degree of pseudonymity [20]. Sensitive data
is distilled by MoRePriv to a restricted, deliberately
coarse-grained persona, and is never given to user mode
apps directly.

A natural direction to consider is implementing an in-
formation flow restriction approach to mitigate leaks of
persona information. While many research efforts have
argued for information flow and tainting approaches, in
both static and runtime flavors at levels varying from
hardware to the application runtime, practicable adop-
tion has been slow. We argue that this is because it is
very difficult to these systems without causing numer-
ous false positives or tolerating many false negatives.

In our model, apps are allowed to leak the most rel-
evant persona of the user if they so desire. However,

(a) Requesting access to per-
sona information in an app.

(b) Personas used in
MoRePriv.

Figure 4. MoRePriv User Interface

we consider the consequences of that to be relatively
benign, especially when compared to the current prac-
tice of user monitoring built into many of today’s apps
(Section 6).

Permissions: As Figure 4(a) illustrates, access to per-
sona data in apps is guarded with a permission prompt,
similar to that used for obtaining location data. We be-
lieve that this is part of responsible disclosure: the user
is informed of persona data access and is given the op-
portunity to opt in.

Furthermore, at the level of application manifest,
access to MoRePriv’s persona data requires statically
declared permissions. We envision extra scrutiny, code
review, and testing being applied to apps that request
persona data by app marketplace maintainers.

Data synchronization: While the default storage
strategy is to keep the interest profiles local, on the cur-
rent device, it is entirely possible to synchronize them —
in an encrypted form — with the cloud. This is not
unlike the approach used in Apple’s iCloud for synchro-
nizing application settings, etc. However, unlike appli-
cation settings, persona information encroaches on user
privacy considerably less.

In addition to synchronization across multiple de-
vices, some desktop, some mobile, some tablets, cloud
synchronization also serves as a backup. Precedents of
this exist in several domains, including bookmark syn-
chronization, Microsoft Office setting synchronization,
Dropbox, automatic note synchronization with Win-
dows Mobile phones and Windows Live, etc.

7 2012/5/3



4. Implementation
In order to test the effectiveness of personal

preference miners, we instrumented Windows
Phone 7.5 (Mango) to capture several important
personalization signals, sources of data that indicate
likely user preferences. We then use these signals to
locally classify the user with respect to the given
personas. There are two facilities for personalizers in
MoRePriv: a privileged service to perform automatic
personalization within the OS, and a set of APIs that
give third-party applications limited access to the
user interest profile. Although we chose to implement
MoRePriv on top of the Windows Phone, a similar
implementation on Android or iOS is possible.
4.1 Personalization Signals

In order to assign relevance scores to each persona,
MoRePriv needs data to classify. Here, we leverage our
position at the OS level: all user information must pass
through the operating system in order to be consumed
or produced by the user. However, one must be careful
of which data stream to collect: a poor choice can slow
down the device or introduce noise. One must also
consider how data is collected: the collection mechanism
should be positioned at a level of abstraction such that
the data has appropriate context. For example, one may
be interested in mining the text of web pages that the
user views, but if the miner interposing at a low level of
the protocol stack, bytes of text will be indistinguishable
from bytes of an image.

In our implementation, we capture five distinct per-
sonalization signals, as listed in Figure 5. We briefly
discuss our approach to mining each of these signals on
Windows Phone, and we mention how equivalent signals
could be captured for an Android Device.

Facebook and Twitter: A unique feature of the Win-
dows Phone is that several popular networking features
are integrated directly into the operating system and or-
ganized into the People Hub. The intention of the People
Hub is to organize social updates in a single, unified feed
called the social feed, which is updated automatically.
The social feed is a good target for mining because it is
a rich source of structured user data. We implemented
a miner for Facebook by reading social feed data from
the Facebook service, consisting of “likes”, posts that
the user made, and posts that others made to the users
wall.

There is no direct analogue to the People Hub on
Android. However, since the account credentials are
stored in the android.accounts.AccountManager, an
Android device could make separate queries through
the APIs exposed by high-value services like Facebook
and Twitter, and classify the results of those queries. It
should be noted that this approach loses an advantages

of MoRePriv, namely that it does not consume any
additional network bandwidth.

SMS: due to the simplicity and inherent lack of struc-
ture in SMS messages, we implemented our miner by
interposing on the SMS handler in native code under-
lying the application framework. Alternatively, similar
modifications can be made from within the C# core
libraries to read SMS messages. A technique to imple-
ment a similar miner in Android would be to be to peri-
odically query the ContentResolver for SMS content,
and classify each SMS message in turn.

Email: Sending email is exposed to third party
users via the Microsoft.Phone.Tasks classes such as
EmailComposeTask. However, in order to capture sim-
plify capture of both outgoing and incoming email,
we instead interpose on the internal implementation of
SMTP. Although we do not treat fields such as the sub-
ject and differently from text in the body, interposing on
SMTP allows us to avoid classifying noise, e.g. attached
images.

HTTP Traffic: Unlike SMS, HTTP has structure that
cannot be ignored. Windows Phone framework, upon
which apps are built. Fortunately, the Windows Phone
passes information to an HTTP handler which parses
the structure of the message. By interposing on the
parser as it parses text, we can gather relevant web
text without adding significant noise from non-textual
HTTP traffic.
These signals demonstrate an advantage of performing
signal capture at the Operating System level: since the
OS and framework have a very high level of privilege,
the user must already trust these components to handle
personal data. As such, the signal capture mechanisms
are already within the user’s trusted computing base.

Furthermore, instrumentation at the OS level has the
unique advantage of being able to integrate multiple
data sources together. This is important for several
reasons. Firstly, even very rich data sources can suffer
from a cold-start problem, but are useful in aggregate.
Figure 6 shows the technophile relevance scores for the
example user with a strong interest in technology. The
“wall” line represents the relevance score as posts on
the user’s Facebook wall are added. The “posts” line
represents the relevance score as posts made my the
user are added. The “likes” line represents the relevance
score as the user “likes” additional things. In all three of
these cases, it takes a fair amount of data for the signals
to converge.

To drive this point home, we conducted a study
to see how strongly a user with a strong interest in
technology would be classified based on their interaction
with various web sites or mobile apps. Figure 7 lists
this user’s technophile weigh (relevance computed by the
appropriate Bayesian classifier) as they interact with

8 2012/5/3



Miner/data source Description

Email Bodies of all incoming and
outgoing email messages

SMS Text of incoming and outgo-
ing text messages

Facebook Facebook “likes”, posts by
user, posts of others on user’s
wall

Twitter Tweets posted to user’s feed

Network interface All other HTTP traffic to and
from the device

Figure 5. Personalization miners in MoRePriv.

0

0.2

0.4

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

Likes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

wall
self
likes

Figure 6. Facebook data convergence.

different sites and apps. While we would expect this
score to be high, the quality of different signals taken
in isolation varies significantly, as shown in Figure 7a.
However, as shown in Figure 7b, combining these signals
together can boost the correct relevance score even in
the face of highly irrelevant signal data, such as data
from eBay.

In MoRePriv, we give the user the option to switch
data collection on and off (see Figure 9 for an example),
but we envision a use case in which the data collection
is always on, refining each persona’s relevance score as
the user interacts with their mobile device.
4.2 Building MoRePriv Classifiers

Each MoRePriv persona is represented by a Naive
Bayesian classifier. We trained our classifiers offline
on manually curated lists of words obtained for web
pages relevant to each profile, e.g., techcrunch.com for
technophile and espn.com for football dad. An alterna-

0.000

0.050

0.100

0.150

0.200

0.250

eBay Gowalla frontpage news tech news

(a) Sources compared.

0.000

0.050

0.100

0.150

0.200

0.250

Facebook Facebook + Gowalla Facebook + Gowalla
+ eBay

Facebook + Gowalla
+ eBay + tech news

(b) Sources combined.

Figure 7. Sources of personalization data.

tive source of such pages are taxonomies such as the
Open Directory Project (ODP).

This resulted in thousands of words per persona,
which were subsequently used to obtain the probabil-
ities P (wi|Cj) for each attribute word wi and each per-
sona Cj . This classification data was then loaded into
an OS-level service.

Note that while building each classifier can in princi-
ple be a time-consuming task, especially if a large vol-
ume of training data is used, applying classification to a
piece of text is very fast. For example, for find the most
relevant profile for a piece of text, we tokenize it into
words and perform a simple log-likelihood addition for
each persona, maximizing over that value.
4.3 Universal Personalization

In the context of MoRePriv, we implemented au-
tomatic universal personalization within the OS. To ac-
complish this, we modified the Windows Phone C#
framework upon which apps are built. We focused on
reordering lists such that elements that are of the most
interest to the user are at displayed at the top, while
items of less interest to the user are be kept at the
bottom. We modified internal widget classes such as
System.Windows.Controls.ListBox, which is (directly
or through the use of a subclass) used in many third
party apps to display lists.

9 2012/5/3



The standard ListBox kept an internal reference to
an ItemSource, the list of elements to be displayed on
the screen. Our modification added a second, person-
alized list to the ListBox that included all elements of
the default list, but ranked by their relevance to the
user profile. When the element is drawn to the display,
the elements are drawn with respect to this second or-
dering, rather than the default ordering. An important
consideration for universal personalization is not to per-
sonalize “too much”. For example, if automatic person-
alization were to be applied to an alphabetized list, the
alphabetic ordering would be lost. In light of this con-
sideration, we attempt to detect if a list has been sorted,
and if so we do not use the personalized list ordering to
draw elements, instead relying on the ordering of the in-
ternal ItemSource list. We have made a small number
of changes to the internal C# classes to inform our uni-
versal personalization mechanism that a list has been
sorted, such as modifying the List.Sort() method to
set a sorted flag on the list. Before performing the per-
sonalized sorting, classes like ListBox will first check to
see if the sorted flag has been set.
4.4 OS-level Service

Positioning MoRePriv within the OS provides an
opportunity to collect a great deal of data to build a user
interest profile. However, it also provides an opportunity
to perform personalization on user-level apps without
any modification of the app itself.

To explore automatic personalization, we altered the
Windows Phone C# framework to reorder lists in the
application UI, as described in Section 4.3, based on
the persona weights. For legacy applications such as
news readers, this has the effect of not only reordering
the order in which stories are displayed (stories more
relevant to the user’s interests are shuffled to the top),
but also reordering entire categories of subjects such
that the “technology news” category page of a news
reader app appears earlier in the menu than the “arts
section” for a technophile. Finally, in order to give users
power over how the service is used, we allow users to
toggle two independent facilities of MoRePriv:

• Users may switch personalization on and off. When
personalization is off, the user will have the regular
Windows Phone experience. When personalization
is on, OS-level personalization is enabled and apps
have access to the user’s persona.

• Users may switch data collection on and off, thus al-
lowing them to freeze their profile scores. This allows
users to indicate to MoRePriv that it should not
track any behavior of the user until persona refine-
ment is re-enabled. This is a form of a privacy mode,
similar to those supported in modern browsers.

4.5 MoRePriv APIs
MoRePriv also exposes APIs to third party de-

velopers that allow application-specific personalization.
There are four API functions listed below. These APIs
can be accessed via a user-mode library that can be
bundled with an app. Consequently, a single app can
be written to the MoRePriv APIs that will work on
a standard image of the Windows Phone without the
MoRePriv enhancements (albeit without personaliza-
tion):

• IsMoRePrivEnabled() returns true if personaliza-
tion is enabled. We allow users to toggle personal-
ization on and off as part of the MoRePriv config-
uration UI.

• Classify(String s, Object o) classifies the rel-
evance of o to persona s. For example, Clas-
sify("technophile", "Computer") will return a
high value, because computers are of high interest
to technophiles. Note that this call does not reveal
any information about the user to the app, it is sim-
ply a convenience method to allow apps to classify
objects.

• TopProfile() return the most relevant profile to the
user if personalization is enabled, and null other-
wise.

• Ignore(Object o) Informs MoRePriv not to ap-
ply OS-level personalization to o. This allows devel-
opers to bypass the GUI features such as automatic
list reordering.

Example 1 Accessing the MoRePriv Profile
The example below shows an instance of application
skinning using profile information that is obtained
through a system call on lines 2 and 5. Depending on

1 var bitmap;
2 if ("Technophile".Equals(MoRePriv.TopProfile ()))
3 bitmap = technophileImage;
4 if ("Soccer Mom".Equals(MoRePriv.TopProfile ()))
5 bitmap = soccerImage;
6 ...
7 var personaBG = new ImageBrush(ImageSource=bitmap );
8 app.RootFrame.Background = personalizedBG;

the current persona, a different background is used for
the app. �

5. Personalization Scenarios & Studies
We discuss news personalization in Section 5.1, app

skinning in Section 5.2, and highlight some other per-
sonalization opportunities in Section 5.3.
5.1 RSS News Feed Personalization

To test the usefulness of the MoRePriv APIs, we
built a custom RSS reader called MoRSS. This app pulls
stories from 10 RSS news feeds, and samples from these

10 2012/5/3



feeds to display a list of stories to the user. MoRSS
disables the OS-level GUI enhancements described in
Section 4. Instead, MoRSS relies on the built-in table
in Figure 8 to rate how interesting each of the RSS feeds
that MoRSS subscribes to will be to a profile.

MoRSS can operate with no personalization, in which
case stories from each RSS feed will be sampled uni-
formly and displayed to the user in the order in which
they are sampled. When personalization is enabled,
MoRSS queries the MoRePriv API to determine the
top profile of the user, and then samples according to
the column of Figure 8 for that persona.

Figure 9a shows an example screenshot of MoRSS
with no personalization applied. In Figure 9b, the same
set of stories are sampled according to the interests
of the soccer mom persona column of Figure 8, which
places an emphasis on Health and Entertainment sto-
ries. Similarly, Figure 9c shows the same set of stories
sampled by the interests of the technophile column.

This demonstrates the advantages of exposing lim-
ited information to third party applications. Develop-
ers have the flexibility to reinterpret the top profile in
any way that they see fit. Apps such as MoRSS are free
to sample tech stories for the soccer mom, even though
the built-in Bayesian classifier for that profile does not
have tech keywords. Furthermore, the personalization
can be done in a privacy-preserving way: MoRSS uses
client-side personalization, so even the owner of the RSS
feeds cannot learn the top profile of the user from the
requests that MoRSS makes.

Example 2 Accessing MoRePriv Classifiers
MoRePriv also simplifies the development of person-
alized apps by exposing a classification service to the
developer, rather than forcing developers to include
general-purpose classification algorithms in their apps.
MoRePriv allows developers to query how relevant an
entity is to each persona, and then use that value to
determine if the entity will be of interest to the user.
MoRSS takes advantage of this when the user adds a
new RSS feed to their RSS stream, as shown below.

1 var top = MoRePriv.TopProfile ();
2 var storyText = RSS_NewsItem.getText ();
3 var weight = MoRePriv.Classify(top , storyText );
4 if (weight > THRESHOLD ){
5 storiesToDisplay.append(RSS_NewsItem );
6 }
7 MoRePriv.Ignore(storiesToDisplay );

MoRSS gets the top profile for the user on line 1 and
then determines how relevant a given story is to the top
profile on line 3. If the story is considered to be highly
relevant, as defined by some threshold value on line 4, it
will be displayed. On line 7, MoRePriv is notified that
the list of high-interest stories should not be subject to

News topic a
ct

iv
is
t

b
a
ch

el
or

b
u
si
n
es

s
ex

ec

fo
o
tb

a
ll

d
a
d

re
ti
re

e

so
cc

er
m

o
m

te
ch

n
o
p
h
il
e

tw
ee

n

Health 3 3 4 4 10 7 2 1
Tech 4 6 5 5 3 4 10 8

US 9 4 7 6 6 4 3 2
Business 4 5 10 5 5 2 6 1

World 7 2 4 1 2 2 2 1
Entertainment 0 7 3 4 4 6 5 5

Science 2 3 3 1 3 2 6 4
Society 6 3 2 2 3 3 2 3
Politics 10 4 6 5 5 3 2 1
Sports 0 7 4 10 4 2 5 7

Figure 8. News personalization parameters for Sec-
tion 5.1.

universal personalization, since it is constructed with
custom, fine-grained personalization in mind. �

5.2 Application Skinning
Though we have focused primarily on personalization

as it related to networked device use, OS-level person-
alization has broad applicability. To demonstrate these
possibilities, we implemented a simple calculator using
the MoRePriv API. Figure 10a displays the default
calculator with no personalization.

When personalization is enabled and the top profile
is a tween, the calculator is whimsically re-skinned for a
pre-teen girl. When the top profile is a retiree, the same
calculator goes into a high contrast, high usability mode
in which text size is increased, as shown in Figure 10b.

MoRePriv provides an alternative to providing
complicated configuration menus to users who nonethe-
less prefer different configurations. Although the calcu-
lator will perform personalization at each run, an alter-
native would be to use user profile data to provide an
initial configuration that is likely to be close to what
the user wants, and allow her to tweak configuration
options from there.
5.3 Other Personalization Examples

In the rest of this section, we focus on some promi-
nent examples of personalization in the rapidly grow-
ing mobile space, and discuss their implications. This is
not meant to be a comprehensive account, but rather
a representative sample highlighting some of the more
significant advances.

5.3.1 Word completion, spelling checking, and
voice recognition

Given the small form factors of mobile devices, it is
important to streamline common tasks, such as typing,
for the user. For example, having typed decla, the
completion might be declaration for a user interested

11 2012/5/3



(a) No personalization. (b) Personalization (soccer mom). (c) Personalization (technophile).

Figure 9. RSS news reader.

(a) No Personalization (b) Personalization (tween) (c) Personalization (retiree)

Figure 10. Calculator personalization.

12 2012/5/3



Permission Ad-only

android.permission.INTERNET 699
android.permission.ACCESS FINE LOCATION 362
android.permission.VIBRATE 128
android.permission.READ PHONE STATE 425
android.permission.READ LOGS 10
android.permission.ACCESS NETWORK STATE 483
android.permission.ACCESS COARSE LOCATION 502
android.permission.GET TASKS 65
android.permission.ACCESS WIFI STATE 10

Figure 11. Reducing Android application permissions
with ad library partitioning.

in law and declamation for a user interested in public
speaking or opera.

Similarly, voice recognition software such as Siri on
iOS or Dragon Dictate can be pre-populated with a dif-
ferent set of prior probabilities: a business executive is
more likely to talk about a“cash management”, whereas
a technophile is more likely to talk about “cache man-
agement”.

As the discussion above suggests, different personas
are likely to use a different vocabulary, or at least use
the same word with different probabilities. As such,
spell checking can order suggestions differently for dif-
ferent personas, and perhaps even come with custom
persona-specific dictionaries, augmenting the main one.

5.3.2 Suggested Web Sites and URLs

Today’s smart phones come with browsers whose his-
tory and bookmarks are pre-polulated with a short list
of sites that the phone provider thinks may be rele-
vant for the user, such as apple.com for iOS. Based on
the user’s persona, the list of suggested sites for mobile
browsing can be pre-populated differently. For a business
executive, ft.com, marketwatch.com, and forbes.com
are relevant, whereas for a technophile, shashdot.org
and techcrunch.com will likely be of value.

The same principle applies to URL and search sug-
gestions obtained by the mobile browser from the search
engine such as Google or Yahoo. These suggestion lists
can be re-prioritized based on the user persona.

6. Personalized Ad Delivery
Increasingly, mobile applications have embedded ads

as a monetization strategy [14]. Much of the time, ad
embedding is done by including a library that co-exists
with the application. The library ecosystem is well-
developed and crosses mobile platform boundaries, with
most popular libraries such as AdMob providing ver-
sions that the developer can link with for iOS, Android,
and Windows Phone. Other such libraries are provided
by Flurry, mobclix, adwhirl, mobfox, and many other
companies; the reader is referred to a survey by Grace et

al. [9] for more details on the state of mobile advertising
industry and ad libraries.
Existing challenges: Several problems both with con-
fidentiality and integrity existing with the current ap-
proach have been identified, primarily stemming from
library and app code not being properly isolated:

• Ad librares frequently access globally-identifiable
data such as the device ID, known as AndroidId
on Android or DeviceUniqueId on Windows Phone,
or IMEI that is phone-specific. This allows cross-
application mobile user profiling, a problem simi-
lar to tracking users on multiple sites on the web
through the use of third-party trackers, but one made
easier by the fact that correlation is trivial to estab-
lish.

• An ad library can force the application to increase
its privileges. On the Android platform, permis-
sions such as INTERNET, ACCESS FINE LOCATION, and
READ PHONE STATE. This can lead to users deciding
not to install the application for fear of what it may
do to their device or with their data.

• Since the library is not isolated from the the core
app, it may snoop on the rest of the application,
exfiltrating sensitive user data. Indeed, it is fairly
easy to develop a key logger masquerading as an ad
library.

In many ways, the current situation with mobile ad
libraries resembles that with third-party trackers that
co-exist alongside first-party content on a web site.
The disadvantages of unrestricted sharing of code and
data between application logic and ad libraries are in
reality quite similar. Both integrity violations such as
the library interfering with normal app operation and
privacy violations such as the ad library snooping on
user data located within the app, are possible. Finally,
availability challenges emerge if the ad library is hogging
network resources, etc.

IFRAMES are a common browser-based solution
that provides isolation, in that case to avoid data theft
and arbitrary code injection [25]. In the rest of this sec-
tion, we advocate a similar, albeit more special-purpose
mechanism for isolating mobile ad libraries.
6.1 MoRePriv-based Design for Mobile Ads

An alternative design involves the mobile OS explic-
itly separating ad libraries from the rest of the app.
The library may need more permissions that the appli-
cation needs, including location data and persona infor-
mation. However, the library will be prevented from get-
ting global unique identifiers such as DeviceUniqueId
and will contain no persistent state: the job of the OS
will be to erase library-specific state. This will in turn
lower app permissions and provide a degree of data iso-
lation.

13 2012/5/3



Advantages of MoRePriv: A key advantage of the
ad separation approach is that the ad libraries can be
jailed in several different ways. First, we can of course
lower or deny permissions such as location permissions.
However, in many cases that will lead those libraries to
fail to cease to be useful. At the same time, we would
like to protect the user from the aggressive tracking that
some ad libraries perform. To do so, we must

• make the library compartment stateless;
• randomize user-specific identifiers;
• institute privacy-enhancing measures such as making

location data more approximate [17].

Monetization: A nice consequence of this design ap-
proach to the mobile platform is that both free and paid
versions of the same app can be delivered as part of the
same app package. This way, application updates to the
free and the paid “pro” version do not get out of sync.
Moreover, the app marketplace, with the developer’s
permission, can control the pricing model by watching
the demand and competition, or using an auction, in-
stead of the developer trying to do so crudely, based on
their intuition and incomplete information about the
market [5].

Moreover, this approach allows for a clear compro-
mise between the app cost and the amount of advertis-
ing the user gets. For instance, the user may be pre-
sented with three versions of the same app, shown in
Figure 12. However, in the MoRePriv approach, all of
these can be generated from the same app package and
the pricing can be selected by the user at installation
time. For screenshots of sample marketplace interfaces
automatically generated using this technique, please see
our companion TR [2].
6.2 Experimental Evaluation

In order to determine how much opportunity for pri-
vacy and integrity abuse exists in the Android ecosys-
tem, we developed a system to characterize how the per-
missions of an app are used with respect to advertising.
Using the permission to function mapping of [27], we
annotate functions of the Android framework with the
corresponding permissions necessary to call that func-
tion. We will refer to functions that require some per-
mission declared in the app’s manifest as permission
sinks.

Our task is to determine the provenance of calls
to sinks from the application. We do this by marking
all methods in the application that are members of a
known advertising library as advertising sources, and
all other methods as application sources. We then per-
form a reachability analysis from advertising sources to
permission sinks, and from application sources to per-
mission sinks. If a permission sink can be reached from
an application source, we consider the use of that per-

(a) Free version with advertising.

(b) Half-price version with persona informa-
tion only.

(c) Paid version no ads.

Figure 12. Differently priced versions of the same app.
14 2012/5/3



mission to have application provenance. If it can be be
reached from an advertising source, it has advertising
provenance. If the sink can be reached from both adver-
tising and application sources, it has mixed provenance.

Experimental setup: Although there is a dearth of
analysis tools for Android apps to perform our reach-
ability analysis directly on the application’s bytecode,
there are an abundance of tools to perform such analysis
on Java programs. Thus, we use the dex2jar decompiler
to recover Java bytecode for our apps. We then con-
struct our reachability graph and conduct our reachabil-
ity analysis over the Java bytecode using IBM’s WaLA
tool [16]. In order to extract the manifest from the app,
we use the apktool apk unpacker [1].

Experimental summary: We have experimented
with 3,120 Android applications that we downloaded
from the SlideMe third-party app store and were able
to decompile and process using dex2jar. Out of these
applications, 1,605 or 40% did not use any known ad
libraries. Out of the remaining 1,876 applications, we
found that 1,361 or 73% of the applications declared
some permission that was used exclusively by bundled
advertising libraries. By packaging these libraries sepa-
rately, we could remove these permissions from the ap-
plication’s manifest completely.

Figure 11 shows a breakdown of these advertising-
only permissions and lists the number of cases when
they were used for the ad library only. By far the
most common permission we were able to remove was
INTERNET, in 699 out of 1,361 or 51% of the cases. This
indicates that the only reason that the app needed net-
work access was to fetch ads and report on ad clicks.
Of course, removing this permissions has direct privacy
benefits: the user no longer needs to be concerned about
the app exfiltrating their data onto the network. Ex-
amples of application that benefit from this are puzzle
apps such as One Piece Puzzle. Our analysis detected
the presence of seven different ad libraries in this app,
but did not find any non-advertising need for use of the
network.

Representative examples: Another common permis-
sion was READ PHONE STATE, which protects access to
the phone IMEI. This is one of the two most common
ways to uniquely identify the user’s device, the other
being AndroidId, which does not require an access per-
mission.

Because mobile ads are frequently location-
sensitive, permissions ACCESS COARSE LOCATION and
ACCESS FINE LOCATION can often be removed as well,
as the underlying application does not itself need
location data. An example of this includes the Travel
England app, which is a tourist’s guide to places in
England. The app integrates features such as posting
on Facebook, and searching for information on specific

Treatment P
r
ic

e

A
d
v
e
r
ti

se
r

se
p
a
r
a
te

A
d
s

p
r
e
se

r
v
e
d

U
se

p
e
r
so

n
a

Default Full price no yes no
Separate Full price yes yes no
No ads Full price N/A no no
No ads + persona Full price N/A no yes

Free separate 0 yes yes no
Free together 0 no yes no

Half-price 1/2 price N/A no yes
Half-price + ads 1/2 price yes yes yes

Figure 13. Treatments used for user studies.

tourist sites. However, somewhat surprisingly, the app
does not use GPS functionality to locate the user.
However, the embedded AdHub and Flurry advertising
libraries do take advantage of these permissions in
order to provide location-targeted advertising. This
example illustrates that it is not enough to ascribe
permissions to functionality based on expectations.

Interestingly, in 10 cases, we were able to remove
the READ LOGS permission, which allows apps to read
low-level system events including debugging informa-
tion. Overall, we have found 2,684 instances where a
permission could be removed.

7. Related Work
Most efforts in this rapidly growing space focus on de-

tection and prevention techniques for information leaks.
Our work on MoRePriv takes a different position:
there are legitimate reasons for apps to learn more
about the user, and we want to provide extra value that
goes beyond prevention, while preserving end-user pri-
vacy.

As a result, we see MoRePriv as complimentary to
prevention mechanisms mentioned below. While privacy
protection measure become more effective over time, we
want to provide a legitimate path we can encourage app
builders to use in order to perform personalization. We
briefly cover mobile application privacy in Section 7.1
and on mobile ad privacy in Section 7.2.
7.1 Mobile Application Privacy

Monitoring: PiOS [6], which performs a reachability
analysis over the control flow graph an an iPhone app to
find privacy leaks. As we have also found in our analysis
in Section 6, device identifiers are often leaked from the

15 2012/5/3



device, though the situation is likely more pronounced
than what we we see on Android because of AndroidId,
which does not require a permission. TaintDroid [7]
has a similar goal of detecting leaks, but it does so
dynamically. While TaintDroid requires modifications
of the Android operating system itself, our analysis is
performed entirely offline.

Privacy-enhancing technologies: AppFence [15] al-
lows fine-grained control over what permissions are used
by the device. AppFence also allows for some control
over the provenance of private data by restricting per-
missions such as limiting network communication to
known advertisers, any third party. Unlike MoRePriv,
AppFence does not offer an incentive for advertisers to
agree to these controls, and it provides incentives for
applications to engage in stealthy private data leaks,
such as laundering data thrseparating advertising from
regular content RePriv [8] explored personalization op-
portunities in the context of a web browser by building a
user interest profile expressed using the Open Directory
Project (ODP) taxonomy of interests, acquired based
on the user’s browsing history, by classifying the sites
the user visits. Unlike RePriv, we focus on the mobile
space. We go further by integrating our system directly
into the operating system, drawing from more diverse
data sources, and explicitly separating advertising from
regular content.
7.2 Privacy in Advertising

One problem that has received much recent attention
is that of delivering targeted advertisements to web
users without violating their privacy, as summarized in
a recent survey by Mayer et al. [23]. This is lead to
the DoNotTrack initiative and a variety of policy and
legislative pressures against advertisers and trackers.

An alternative direction perused by several re-
searchers has advocated remedying the problem by stor-
ing the necessary sensitive personal data on the client,
along with all ads to be matched [13, 18, 30]. When an
ad is displayed, it is matched to personal information
locally, thus sidestepping the need to leak to the ad
network. Accounting and click-fraud prevention are ad-
dressed using either additional semi-trusted parties, or
homomorphic encryption.

AdRisk [9] takes a similar approach to our own reach-
ability analysis. However, the goals of the two projects
are different. Whereas AdRisk seeks to characterize the
permissions of common advertising libraries found in
Android apps, it does so after decoupling the ad library
from the app, and seeks to characterize the potential
for abuse embodied by ad library has. Our reachability
analysis seeks to compare, for each app, the aggregate
effect of advertising permissions versus non-advertising
permissions. AdRisk does not propose a mechanism
such as MoRePriv in order to manage the relation-

ship between advertising and application permissions
beyond alerting the user to the presence of risky per-
missions in an advertising library.

Obliviad [3] proposes a cryptographically secure
scheme using secure hardware on the server side to al-
low advertisers to serve targeted advertising to users.
We differ from this work in that MoRePriv does not
require the use of specialized hardware.

Developed contemporaneously with our effort on
MoRePriv, AdDroid [26] and AdSplit [29] focus on
the idea of separating ad libraries from the rest of the
mobile app. While we share the spirit of this approach,
as detailed in Section 6, we believe that we need to
create a strong incentives for developers and ad library
makers, and users. In MoRePriv, this is given in the
form of persona data, which both provides much needed
context for targeting, and allows the OS to both “po-
lice” the ad libraries and to create a natural monetary
trade-off between app price and privacy guarantees.

8. Conclusions
This paper proposes operating system-level mecha-

nisms that simplify building personalized applications.
Our focus is primarily on mobile operating systems. We
believe that at the level of the operating system these
opportunities are largely untapped at the moment. This
paper shows that personalization can be done quickly
and effectively using personas, which provide a degree
of pseudonymity and are easy for both users and the
developers to understand.

We show how both OS-wide universal personalization
and custom personalization can be done with little ef-
fort on the part of the developer, making us hope that
persona and location information can become equally
ubiquitous on mobile devices. When combined with a
privacy filter for embedded ad libraries, we demonstrate
how MoRePriv can be used to provide information
needed for targeting while not violating user privacy,
and reduce permissions in 73% of apps that use adver-
tising. Finally, our user studies show that people are
quite comfortable with releasing persona information.

16 2012/5/3



References

[1] Android-apktool. http://code.google.com/

android-apktool/.
[2] Anonymized for Submission. MoRePriv: Mobile OS

Support for Application Personalization and Privacy
(Tech Report). http://www.arxiv.org/abs/1205.

0467446v1.
[3] M. Backes, A. Kate, M. Maffei, and K. Pecina. ObliviAd:

Provably secure and practical online behavioral advertis-
ing. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2012.

[4] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichten-
berg, C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner. Thorough static analysis of device drivers.
In Proceedings of the 1st ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2006, EuroSys
’06, pages 73–85, 2006.

[5] S. Dhar and U. Varshney. Challenges and business mod-
els for mobile location-based services and advertising.
Communications of the ACM, 54(5):121–128, May 2011.

[6] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in iOS applications. In Pro-
ceedings of the Annual Network & Distributed System
Security Symposium (NDSS), Feb. 2011.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the
USENIX Conference on Operating Systems Design and
Implementation, pages 1–6, 2010.

[8] M. Fredrikson and B. Livshits. RePriv: Re-envisioning
in-browser privacy. In IEEE Symposium on Security and
Privacy, May 2011.

[9] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In
Proceedings of the Conference on Security and Privacy
in Wireless and Mobile Networks, Apr. 2012.

[10] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy.
Verified security for browser extensions. In IEEE
Symposium on Security and Privacy, May 2011.

[11] S. Guha, B. Cheng, and P. Francis. Privad: practical
privacy in online advertising. In Proceedings of the 8th
USENIX conference on Networked systems design and
implementation, pages 13–13, 2011.

[12] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and
P. Francis. Serving Ads from localhost for Performance,
Privacy, and Profit. In Proceedings of the 8th Workshop
on Hot Topics in Networks (HotNets), Oct 2009.

[13] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and
P. Francis. Serving Ads from localhost for Performance,
Privacy, and Profit. In Proceedings of Hot Topics in
Networking, Nov. 2009.

[14] S. Han, J. Jung, and D. Wetherall. A study of third-
party tracking by mobile apps in the wild. Technical
report, University of Washington, Mar. 2012.

[15] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These arenŠt the droids youŠre looking
for: Retrofitting android to protect data from imperious

applications. In Proceedings of the International Sympo-
sium on Information, Computer, and Communications
Security, 2011.

[16] IBM T.J. Watson. Watson libraries for analysis.
http://wala.sourceforge.net.

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, N. Reddy,
Y. Zhu, J. S. Foster, and T. Millstein. Dr. Android and
Mr. Hide: Fine-grained security policies on unmodified
Android. Technical Report CS-TR-5006, University of
Maryland, Dec. 2011.

[18] A. Juels. Targeted advertising ... and privacy too. In
Proceedings of the Conference on Topics in Cryptology,
Apr. 2001.

[19] A. Kobsa. Privacy-enhanced personalization. Commu-
nunications of the ACM, 50(8):24–33, Aug. 2007.

[20] A. Kobsa and J. Schreck. Privacy through
pseudonymity in user-adaptive systems. ACM Transac-
tions Internet Technologies, 3(2):149–183, May 2003.

[21] H. Lam and P. Baudisch. Summary thumbnails:
readable overviews for small screen web browsers.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 681–690, 2005.

[22] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Baner-
jee. Merlin: Specification inference for explicit informa-
tion flow problems. In Proceedings of the Conference
on Programming Language Design and Implementation,
June 2009.

[23] J. Mayer and J. C. Mitchell. Third-party Web tracking:
Policy and technology. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2012.

[24] J. R. Mayer and J. C. Mitchell. Third-party Web
tracking: Policy and technology. In IEEE Symposium on
Security and Privacy, May 2012.

[25] J. R. Mayer and J. C. Mitchell. What we know: Third-
party web tracking policy and technology. In Proceedings
of the IEEE Symposium on Security and Privacy, 2012.

[26] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in Android. In Proceedings of AsiaCCS,
May 2012.

[27] A. Porter Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In ACM
Conference on Computer and Communications Security,
pages 627–638, 2011.

[28] E. Rich. User modeling via stereotypes. Cognitive
Science, 3:329–354, 1979.

[29] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit:
Separating smartphone advertising from applications.
CoRR, abs/1202.4030, 2012.

[30] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas. Adnostic: Privacy preserving targeted
advertising. In Proceedings of the Network and Dis-
tributed System Security Symposium, Feb. 2010.

17 2012/5/3


