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Abstract

Rich Internet applications are becoming increasingly distributed, as demon-
strated by the popularity of AJAX/Web 2.0 applications such as Hotmail, Google
Maps, Facebook, and many others. A typical multi-tier AJAX application con-
sists of a server component implemented in Java J2EE, PHP or ASP.NET and a
client-side component executing in JavaScript. The resulting application is more
performant and responsive because computation is moved closer to the client, and
thus avoids unnecessary network round trips for frequent user actions.

However, once a portion of the code is moved to the client, a malicious user
can easily subvert the client side of the computation and potentially jeopardize
sensitive server state. In this paper we propose RIPLEY, a system that uses repli-
cated execution to automatically preserve the integrity of a distributed computa-
tion. RIPLEY replicates a copy of the client-side computation on the trusted server
tier. Every client-side event is transferred to the replica of the client for execution.
RIPLEY observes results of the computation, both as computed on the client-side
and on the server side using the replica of the client-side code. Any discrepancy is
flagged as a potential violation of computational integrity. Our evaluation of RIP-
LEY on five complex and representative AJAX applications suggests that RIPLEY

is a promising method for building secure distributed web applications.
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1 Introduction
Web applications are becoming increasingly distributed, marked by the emergence
of popular AJAX (asynchronous JavaScript and XML) applications such as Hotmail,
Google Maps, Facebook, and many others. A typical multi-tier AJAX application con-
sists of a server component implemented in Java J2EE or Microsoft .NET and a client-
side component executing JavaScript in the browser. The resulting application is more
performant and responsive, because computation is moved closer to the client, thus
avoiding unnecessary network round trips. Unlike a computation performed entirely
on the server, once a portion of the code is moved to the client, the overall computation
can no longer be trusted.

Indeed, a malicious client can easily manipulate both data that resides and code
that runs within the browser using one of many readily available data tampering or
debugging tools [20, 32]. Imagine a JavaScript-based shopping cart within a typical
e-commerce retail site such as Amazon.com that allows the user to add items, adjust
their quantities, add coupons, compute the shopping cart totals, etc. When run on the
client, this application can be compromised in a variety of ways. For instance, coupon
validation checks can be dodged, allowing the user to reduce the total. Even simpler,
the total computation can be compromised to set the total to an arbitrary, potentially
even negative amount.

Due to the possibility of these attacks, almost every action in a typical shopping
cart application today requires a round trip to the server, the latency of which can be
quite noticeable, especially on mobile or long-distance connections. For non-malicious
users, who constitute the majority, this unnecessary precaution leads to a much less
responsive user experience.

Moreover the developer currently is responsible for splitting the application in a
way that places all security-sensitive operations on the server. While some language-
based approaches have recently been proposed to address this problem [5, 6], these
techniques still require a great deal of developer involvement, making them difficult to
use for existing large-scale projects.

In this paper we propose RIPLEY, a system that uses replicated execution to auto-
matically preserve the integrity of a distributed computation, such as a typical AJAX
application. RIPLEY replicates a copy of the client-side computation on the trusted
server tier. Every user-initiated event is transferred to the replica of the client for ex-
ecution. RIPLEY observes results of the computation, both as computed on the client
side and on the server side using the replica of the client-side code. Any discrepancy
is flagged as a potential violation of computational integrity. Note that RIPLEY is
primarily designed to protect the integrity of distributed applications. RIPLEY does
not remove the need for input validation nor does it eliminate confidentiality con-
cerns. Nonetheless, RIPLEY automatically protects the application without requiring
the developer to reason about code placement and trust implications. Note that con-
fidentiality and input validation are important orthogonal issues addressed by prior
work [11, 19, 25, 31, 33, 40].

As shown in Figure 1, with RIPLEY, a distributed Web application can combine the
best of both worlds: the application is still responsive because of client-side execution,
but the results of this execution do not have to be trusted because they are replayed on
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Figure 1: Performance vs. integrity trade-off for various Web application execution models. RIPLEY com-
bines the best of both.

the server. In other words, the integrity of the overall distributed computation is the
same as if the application had been run entirely on the server. In certain cases RIPLEY
can even lead to better performance: since the application is replicated on the server,
and the server is typically faster than the client, the client replica running on the server
enables it to anticipate RPCs from the client in advance. This helps it to prepare and
send the reply to the client ahead of time. In the best case, the client has the illusion of
the server taking zero time for executing the RPC.

RIPLEY capitalizes on a recent trend towards distributing compilers such as
Links [8], Hilda [42], Swift [5], and GWT [10]. Distributing compilers allow both the
client- and the server portion of the distributed application to be developed together.
We have closely integrated RIPLEY with Volta [30], a distributing compiler that splits
.NET applications, translating them into JavaScript as needed. Integration with Volta
significantly simplifies the process of code replication because the entire application
is given to the Volta compiler at compile time. RIPLEY also integrates into the RPC
infrastructure of Volta, making the process of communication between RIPLEY compo-
nents on different tiers convenient. However, the ideas of RIPLEY are fully applicable
to Silverlight or regular AJAX applications.

1.1 Contributions
This paper makes the following contributions:

• RIPLEY provides a practical and effective solution for the to the pressing prob-
lem of preserving the computational integrity of distributed Web applications.
Unlike previously proposed approaches, RIPLEY requires no developer involve-
ment, and automatically enforces application integrity at runtime.
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• RIPLEY not only protects against malicious users, it is also able to protect benign
users affected by a hostile execution environment. For instance, RIPLEY is able
to prevent a a JavaScript worm from spreading through an application such as a
social networking or a blogging site.

• We propose a number of performance optimizations that alleviate the CPU and
network overhead imposed by the use of the replication technique

• To demonstrate the practicality of our approach, we evaluate the effectiveness
and overhead of RIPLEY on five realistic and representative security-sensitive
Volta applications. RIPLEY is able to foil security attacks with a low runtime
overhead.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 summarizes the threat model
and provides an overview of RIPLEY architecture. Section 3 gives a detailed descrip-
tion of RIPLEY implementation choices. Section 4 describes the results of applying
RIPLEY to five security-sensitive AJAX applications. Section 5 presents a discussion
of RIPLEY design. Section 6 presents related work and Section 7 concludes.

2 Overview
We first present an overview of Volta in Section 2.1 to make our description of RIPLEY
more concrete. Although RIPLEY does not have to rely on Volta to work, integrating
with Volta makes our approach considerably cleaner. The techniques in RIPLEY are
in fact suitable for any distributed Web application written in JavaScript, Silverlight
or Flash once the client logic is mimicked on the server. Section 2.2 presents a sum-
mary of RIPLEY architecture. Finally, Section 2.3 presents the threat model and shows
the security assurance offered by RIPLEY against various threats that exist in today’s
distributed Web applications.

2.1 Volta Background
While the RIPLEY approach can be used for general AJAX-based Web applications,
integrating with Volta provides a number of clear advantages. As illustrated in Figure 2,
the Volta compiler is a distributing compiler that takes a .NET application as input
and tier-splits it into a client and a server component by replacing appropriate cross-
tier method calls with AJAX RPCs. Data is serialized before being sent to the server
and deserialized on the server once received. A similar serialization-deserialization
happens when the server returns control to the client. The client-side component is
translated into JavaScript for execution within a standard browser [27].

Volta requires the developer to declaratively define which portion of the application
runs on the server and which part on the client with the help of class-level annotations.
Tier-splitting is performed subsequently as a .NET bytecode rewriting pass that reads
the placement annotations, introducing RPCs as needed. To implement RIPLEY, we
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Figure 2: Tier-splitting in Volta: an application is split into a server-side component S and a client-side
component C. The client-side component C is translated into JavaScript C′ to be run within the browser.

have augmented the Volta tier-splitter to perform additional rewriting steps described
in Section 3. We have also augmented the base Volta libraries to provide support for
browser emulation, as described in Section 3.3. Note that, while relying on the Volta
compiler and runtime makes our implementation easier, the RIPLEY approach does
not require Volta: we could have implemented RIPLEY on top of Silvelight or regular
AJAX applications.

2.2 Architecture of RIPLEY

The architecture of RIPLEY is shown in Figure 3. RIPLEY adds to Volta in the following
key ways:

1. Capture user events: RIPLEY augments the client to capture user events within
the browser.

2. Transmit events to the server for replay: The client run-time is modified to
transmit user events to the client’s replica C for replay.

3. Compare server and client results: The server component S is augmented
with a RIPLEY checker that compares arriving RPCs m′ and m received from
the client C ′ and server-based client replica C, respectively, looking for discrep-
ancies.

These steps are described in detail in Section 3. In summary, RIPLEY relies on re-
execution to produce the correct result within C based on user events that it receives,
effectively ignoring malicious data and code changes that occur on the client. If the
malicious changes result in different RPCs issued to the server, RIPLEY will flag a
potential exploit and terminate that client’s connection. The re-execution takes place
within client replica that runs in .NET on the server. For efficiency and scalability, we
run the replica within a browser emulator instead of a full-fledged browser, as described
in Section 3.3.

2.3 Security Threats and Assurances
While Volta and similar distributing compilers [8, 36, 42] propose a powerful program-
ming model for distributed application development, moving execution to the untrusted
client tier clearly diminishes the security of the resulting distributed application com-
pared to the single-tier original [12]. It is the primary goal of RIPLEY to restore the
level of security that has been lost. Note that RIPLEY does not try to enhance the secu-
rity beyond that: a SQL injection [1] or a cross-site scripting vulnerability [3, 9] in the
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Figure 3: Architecture of RIPLEY: user events are delivered to both the JavaScript client-side component C′

and its server-side replica C. RPCs arriving from both to the server component S m and m′ are compared
by the RIPLEY checker.

original application will persist in the distributed version; reliance on RIPLEY does not
negate the need for input sanitization. However, with RIPLEY, we ensure that distribut-
ing the application will not worsen the application security posture. For instance, input
sanitization checks are automatically replicated on the server, ensuring that a malicious
client cannot bypass them. Replicating such checks also assures that the client- and the
server-side sanitization checks are consistent with each other.

2.3.1 Threat Model

In this section we consider some of the typical threats against distributed Web appli-
cations that exist today and how RIPLEY addresses them; the reader is referred to [13]
for more details about specific vulnerabilities and exploits.

Data manipulation. The most obvious kind of attack against a distributed Web ap-
plication involves manipulation of data that is sent to the server. As in the shopping
cart example in Section 1, where the cart total could be forged easily, any piece of
data that is transferred to the server can be easily manipulated within the browser using
one of many readily available data tampering and debugging tools [22]. Moreover, the
integrity of data may also be compromised on the wire by a man-in-the-middle attack.

Not only can a malicious client change existing data before it is sent over to the
server, it can also choose to manufacture new messages. If you consider the interface
the server exposes as a set of commands, the client may choose to “drive” the server by
invoking any of them out of order, potentially violating internal application logic.
Protection: As mentioned above, RIPLEY uses re-execution to produce the correct
result within C based on user events that it receives, effectively ignoring malicious
data changes that occur on the client. If the malicious changes result in discrepancies
in the RPCs, this will cause RIPLEY to flag a potential exploit.

Code manipulation. The code sent over to the client can be easily edited within the
browser to produce a variety of undesired effects. For instance, consistency or input
validation check can be easily removed, which is why these checks have been tradi-
tionally relegated to the server, thus making even the benign users incur a round trip
overhead. In a game application, the user may manipulate the code to make it possible
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to circumvent the rules of the game. Often these changes are as simple as replacing the
conditional of an if statement with true [14].

In a language as dynamic as JavaScript, code changes may affect not only the cur-
rent application, but others running within the same interpreter. A prime example of
this is the prototype hijacking vulnerability [4], where a malicious widget in a mashup
overrides the Array constructor, thus allowing it to snoop on any of the other widgets.
Protection: Note that RIPLEY does not try to prevent code tampering in general; in-
deed, adding a semicolon that does not change the program semantics will never be
detected by RIPLEY. However, RIPLEY will in fact prevent code modifications that
result in different RPCs being issued by the client.

Script injection and JavaScript worms. While the threats above deal with the case
of a malicious user, RIPLEY can actually help detect situations when benign users are
affected by a malicious environment. Two prime examples of such a situation are
injection attacks such as cross-site scripting [9] and JavaScript worms [23], both of
which allow for potentially malicious actions to be executed on part of an innocent
user, as long as malicious activity results in RPCs to the server.

As an example, consider an auction site such as eBay.com where users are either
buyers or sellers. A malicious seller may embed JavaScript in the item description page
so that when the item description page is viewed, a bid would be placed automatically
on behalf of the viewer. Another common case is a worm on a social networking site
such as the Samy worm on MySpace.com [38]. When a particular page was viewed,
a hidden embedded malicious script would add the viewer as Samy’s MySpace friend,
which will result in a extra RPC easily spotted by RIPLEY.
Protection: RIPLEY protects against script injection in a particularly elegant way:
referring to Figure 3 the replica C executes in the .NET CLR, not JavaScript, thus ren-
dering injected JavaScript code non-executable when run within C. So, if the example
above, the client-side component C ′ will produce an RPC which will not even be issued
by C, thus causing RIPLEY to immediately observe a discrepancy.

2.3.2 Underlying Assumptions

The basic assumption throughout this paper is that anything executing on the server
tier is believed to be uncompromised and trusted, whereas the client tier may be com-
promised. For simplicity, we assume that program execution is deterministic. Clearly,
allowing non-determinism will lead to differences in the execution of C and C ′ that
are not captured by RIPLEY, thus resulting in false positives. Fortunately, there is a
way to “virtualize” sources of randomness, as discussed in Section 5. For instance, if
a random number generator is used, the client can block its execution until it gets the
random number from the server. Similarly, for a computation that accesses local time,
the server component can block until the time measurement arrives from the client.

2.3.3 Security Assurance and Integrity Guarantees

The key focus of RIPLEY is to provide assurance to application developers or deploy-
ers. RIPLEY does not eliminate the need for input sanitization, however, the ability
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to not worry about the placement of sanitizers illustrates the convenience of the RIP-
LEY model: a sanitizer check will be first performed on the client and then re-executed
within the replica. So, for a benign user unintentionally supplying malformed input,
the check will fail quickly on the client.

Unlike with some prior work, it is not our goal to convince the user that a particular
security policy is satisfied within the application; this is the focus on much recent
work in language-based security [5–7]. Neither it is our focus to ensure that the user
is communicating with the right application or that the browser or user machine are
uncompromised. This can be accomplished through remote attestation methods [21].
Also, man-in-the middle attacks can be addressed with SSL.

The key observation about RIPLEY model is that the execution that is trusted takes
place entirely on the server. The RIPLEY server and replica pair execute based on the
event stream received from the client. The client-side component is only there to en-
hance the responsiveness of the application. It is possible for the client-side state to
deviate from the replica state; this may not be noticed until the next RPC or ever, if that
difference does not affect RPCs at all. However, we are not concerned with preserving
the client-state of a malicious user. We are, however, concerned with preserving the ex-
ternally observable behavior of the application, which might include database queries,
file system operations, etc.

As a result, RIPLEY ensures that a distributed Web application has the same observ-
able behavior as the application that is run entirely on the trusted server tier, as it would
have been in a Web 1.0 application. We assume that the Volta translation (RPC intro-
duction, etc.) preserves the original application semantics. We also assume that that the
emulator further described in Section 3.3 is not going to faithfully represent key por-
tions of the client state such as the DOM and cookies. Given enough assumptions about
the original-to-Volta program and Volta program-to-Ripley program mappings, we can
for example argue that server is connected to an external store, such as a SQL database,
running a RIPLEY-protected version of the application and a standalone version of the
application will result in the same queries sent to the database. Formalization of this
argument is part of future work.

3 Ripley Implementation
This section provides a deep dive into the RIPLEY implementation. Throughout this
section we will find it helpful to refer to the following components shown in Figure 3:

• The server-side component S running in a .NET CLR within the Web application
server;

• The client-side component C ′ running in JavaScript within the browser;

• The replica of the client-side component C running in a .NET CLR within the
Web application server.

Overall, RIPLEY is implemented as an optional extension to the Volta tier-splitting
process. This process takes the original application and produces S and C, optionally
translating C into C ′ that runs in JavaScript. Integrating with the Volta tier-splitter al-
lows RIPLEY to be implemented as several simple IL-to-IL bytecode rewriting passes.
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// a custom button handler

this.button.Click += delegate {

var name = this.userName.Value;

var pass = this.passWord.Value;

Login l = new Login();

l.attempt(name, pass);

}

// our rewriter adds the following handler

this.button.Click += delegate {

// capture the event

HtmlEventArgs evt = this.Window.Event;

// read target object ID

var id = evt.__ObjectId;

// event type: keyboard, click, etc.

var type = evt.Type;

// extra event-specific data

var data = serializeData(evt);

// enqueue event for transfer

__ClientManager.

enqueueEvent(type, data, id);

}

Figure 4: (a) A typical button on-click handler and (b) RIPLEY-generated handler for event interception.

Of course, from the standpoint of the developer, enabling RIPLEY on an existing Volta
application is as easy as ticking a checkbox in a Volta project configuration. In the rest
of this section, we shall describe each of the components above in detail.

3.1 C ′: Instrumenting the Client
Prior to being translated to JavaScript, the client binary C generated by the tier-splitter
is rewritten to capture client-side user events.

3.1.1 Event Handling

In RIPLEY, events are classified into two kinds — primitive events and custom events.
Primitive events include each key press and mouse click event, regardless of whether
the application actually has registered any handlers for them. Custom events are those
that the application has registered explicit handlers for. A typical handler for a button
click event is shown in Figure 4a. Clearly, it is crucial to intercept these events on the
client and relay them to C for replay.

Tracking primitive events helps maintain the state of crucial elements such as text
areas and radio buttons. For instance, each keystroke a user types into an HTML form
will produce a separate keyboard event that is intercepted by RIPLEY and transferred
to the replica.

Note that we do not handle all JavaScript events that occur on the client; doing so
would involve listening to all MouseMove events, for example, which occur every time
the user repositions the mouse pointer. Clearly, this would be prohibitively expensive.
The second reason is that our DOM emulation discussed in Section 3.3 is only an
approximation of the real DOM and does not maintain information about the mouse
position, etc. It is therefore conceivable that an application that relies on MouseMove
events may break under RIPLEY. However, such an application is very likely to register
a custom event handler for MouseMove events, which will lead RIPLEY to instrument
these events properly.

10



UI event e1

UI event e2

RPC: m
m'

checker C’C

m

e1

e2

e1

e2

UI event e1

UI event e2

RPC: m’ + {e1, e2}
m'

checker C’C

{e1, e2}

m

Figure 5: Eager (a) and lazy (b) event transfer. Events e1 and e2 arrive one after another. In a, they are
sent over to the server right away. In b, they are queued-up and sent with the next RPC. While the overall
completion time is later in the lazy case (as shown by a red filled square), one network message vs. three
messages is used.

3.1.2 Event Interception

Primitive events are intercepted by registering a handler for each on the HTML BODY
element. Since in the HTML event model, all events bubble up (or propagate) to the
top-level document BODY element, it is a convenient point to intercept them. To inter-
cept custom events, RIPLEY registers an extra handler shown in pseudocode in Fig-
ure 4b for each event of interest, via bytecode rewriting.

RIPLEY-generated event handlers enqueue details about the event into an
application-specific queue. In addition to the event type (key press, key release, etc.),
the serialized event details include the key code for keyboard-related events, mouse
button information for mouse events, etc. Finally, the unique identifier corresponding
to the DOM object which raised this event is also sent over, so that the event can be
delivered to the corresponding DOM object within the replica.

3.1.3 Event Transfer

To reduce the number of round trips to the server, which is likely to become a bottle-
neck on high-latency connections, events are asynchronously relayed to the server in
batches. Figure 5a and 5b show two scenarios of how events may be batched on the
client and transmitted to the server. There is a natural trade-off between eager and lazy
event transfer. As Figure 5a demonstrates, sending events eagerly will result in excess
of network usage, which might be costly on a mobile connection, for instance, but will
ensure speedy replication on the server. On the other hand, batching events longer as in
Figure 5b would result in minimal network usage, but will delay the integrity checking
and resulting server updates and responses.

To resolve this trade-off between responsiveness and network usage, we adopt a
simple middle-path strategy. Events are batched until the queue reaches the maximum
size of a network packet, in which case they are sent over immediately. Otherwise,
whenever there is a RPC call, all events in the queue are flushed to the server.

3.2 S: Adding a Ripley Checker
RIPLEY modifies the server binary S to receive and properly handle events arriving
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Figure 6: Audit logs from C and C′.

from the client and relay them to the client replica C for replay. Events are deserialized
from the wire before being delivered to C. RIPLEY intercepts the RPCs that are re-
ceived from both the JavaScript client and the replica and records them into audit logs,
as shown in Figure 6.

By default, RIPLEY waits until it receives and compares RPCs m and m′. Only
when they are equivalent does the runtime relay the RPC call to the application server
code. The return response from the server is again intercepted as a string at the HTTP
level. Copies of the response are relayed to both the client replica C and the actual
client C ′ over the network.

Note that lock-step execution fashion is not the only option. Alternatively, RIPLEY
could allow the server-side client replica C to move ahead, by relaying m to the server
and sending back the response. When m′ arrives, the server can confirm its equivalence
with m. This is a likely scenario with well-provisioned servers and relatively slow
clients. An alternative approach consists of keeping audit logs for messages arriving
from both C and C ′ and to do periodic randomized cross-checking offering a lower
overhead at the cost of a probabilistic integrity guarantee. Moreover, if RPCs are large,
sending the entire RPCs is unnecessary — to save bandwidth, we can simply compute
Message Authentication Codes (MAC) and send them over.

Since there could be multiple clients connected to the same server, the client replica
C is executed in its own APPDOMAIN, a lightweight process-like abstraction in the
.NET runtime [34]. At runtime, RIPLEY maintains a separate APPDOMAIN associated
with each user session, and looks it up each time a batch of events is received from the
client.

The main advantage of using separate APPDOMAINs is memory isolation: each
uses its own heap and loads its own copy of dynamically linked libraries and maintains
its copy of global data structures. Moreover, cross-APPDOMAIN communications are
cheaper than inter-process communication in general as they do not require a process
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context switch and APPDOMAINs can share certain DLLs.
We should point out that on a multi-core machine the RIPLEY replicas can be put

on the extra unused cores. In this architecture, it would also be desirable to co-locate
the client-side replica on the same core as the server thread it is communicating with.
We further address the question of server scalability in the next section.

3.3 C: Emulator and the Client Replica
By now, one questions begs to be asked: how are we going to scale a RIPLEY server?
Not only are we running the existing server code, for reasons of security, we have
also migrated client replicas for all clients connected to the server. Our goal of faith-
fully replicating the client execution on the server can be accomplished by running
an instance of the actual full-fledged browser loaded with the application code on the
server, one per user, as proposed by Deepfish [29]. However, for a popular and complex
application, this approach is difficult to scale because the browser is a highly memory-
and CPU-intensive piece of software.

There are two primary reasons that we believe that our solution will scale. First, we
run the replicas in .NET instead of JavaScript, making it about two orders of magnitude
faster. Second, we use a lightweight emulator instead of a full-fledged browser to
reduce the memory and CPU utilization, as demonstrated in Section 4.2.

Much of the execution and state of the client does not affect the server state. For
instance, any of the DOM rendering code or the state associated with the layout of the
UI widgets do not feature in the application logic that updates application state on the
server or the database. Clearly, such details can be abstracted away when we execute
the client replica. We accomplish this by building a browser emulator that hosts the
client replica C instead of an actual browser. The emulator is a lightweight browser that
keeps track of the relevant UI state including the structure of the DOM and contents
of editable elements. Since it performs no rendering or layout related computations, it
avoids a lot of computation. As shown in Section 4.2, the memory footprint is an order
of magnitude less for the emulator compared to a full browser.

The emulator is built as a dynamically linked library that exposes a DOM ma-
nipulation interface, with which the client replica C links at runtime. For reasons of
efficiency, in addition to using the emulator, the replica is linked against a slightly
modified Volta client runtime, that relays the HTTP requests to the server component
S directly using a .NET method call instead of sending it over the network.

To ensure that the replica exhibits the same observable behavior as an actual
JavaScript client, some further machinery is required. Relaying events to the right ob-
ject within the replica is done by associating each DOM node with a unique ID. Each
time a new DOM node is created, either on the actual client or on the replica, a new ID
is created and stored within the node. Since the runtime behavior of the actual client
and its replica is identical, new DOM objects are created in the same order, providing
a deterministic mapping between DOM elements of the client and its replica.

When an event is raised on a client DOM object, the ID of the target object is sent
over the wire to the replica on the server, as shown in Figure 3. The APPDOMAIN
hosting the replica maintains a lookup table of IDs-to-object references, which allows
RIPLEY to identify the appropriate object instance to deliver the event to. The method
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Lines of code Remote procedure calls (RPCs)
Benchmark C# JavaScript with RIPLEY w/o RIPLEY

Shopping Cart 594 698,832 one at checkout on every cart update
Game of Sudoku 658 699,873 one at the end on every game cell entry
Blog Application 341 699,071 submit, load each blog submit, load each blog
Speed Typing Test 363 697,782 initialization, finish on every word entry
Online Quiz 416 699,056 load questions, finish on every question

Figure 7: Summary of statistics pertaining to the RIPLEY benchmark applications.

to be invoked on that instance and the parameters that need to be sent are provided as
part of the event.

4 Experimental Results
This section is organized as follows. Section 4.1 discusses the benchmark applications
we have built to test the ideas of RIPLEY. Section 4.2 focuses on the runtime overhead
that RIPLEY imposes on application execution.

4.1 Benchmark Applications
In this section we describe the benchmark applications we used to test RIPLEY. All
of these applications have been developed on top of Volta. A summary of information
about these applications is given in Figure 7. All of these applications were origi-
nally developed in C# and (partially) translated into JavaScript by the Volta compiler.
Columns 2 and 3 provide the line-of-code metric for the original application and the re-
sulting JavaScript code. Note that the JavaScript code includes the translated versions
of the required system classes that may be needed at runtime, which causes it to be
quite substantial; if GWT experience is any indication, we expect code size to decrease
drastically in subsequent Volta releases [24]. Column 4 shows the frequency of RPCs
in the version of the application protected with RIPLEY. In most cases, there is only
one RPC required at the end of the execution.

To put this into perspective, for each of our benchmarks we also consider an appli-
cation that would have the same strong integrity properties written by hand or with the
help of a compiler such as Jif [5, 6]. In the majority of cases, engineering such an appli-
cation requires manually moving significant portions of the computation to the server
to preserve the integrity. Column 5 shows the number of RPCs for such an application.
Clearly, RIPLEY results in fewer RPCs for the same integrity guarantee.

4.1.1 Shopping Cart

As in a typical shopping cart within an e-commerce application, one can add and re-
move items to the cart, update their amounts, and eventually check-out. There is a
provision for using coupons values where designed coupons C5, C10, and C15 denote
5%, 10%, and 15% discounts, applied to the cart total. As described in Section 1, it
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Figure 8: Sudoku UI: invalid entries are highlighted in red.

is typical for such an application to carry out the total calculation on the sever side,
which means that every cart update results in a RPC to the server. Our shopping cart
is implemented entirely on the client, with only one message containing the cart total
sent to the server upon check-out.
Security threats: In many ways, the shopping cart application is a demonstration of
typical client-side security threats described in Section 2.3. For example, a malicious
user may attempt to manipulate the discount computation by using invalid coupons
or using the same coupon multiple times. Better yet, the malicious client can just
manually set the resulting total before it is sent over to the server without even touching
the code.
Benefits of RIPLEY: With RIPLEY enabled, we can afford to do these computations on
the client side, thereby preserving the application responsiveness. Since the user events
are replicated on the server side, the server also maintains an abstract state of the cart,
which includes values of various form fields, and can easily verify the total amount as
soon as it is received from the client.

4.1.2 Game of Sudoku

This online game presents one of five hard-coded Sudoku puzzles for the user to solve.
The solution is checked on the client and sent over to the server to be recorded for
computing user ratings, etc. A sample Sudoku session is shown in Figure 8. As the
game progresses, there are two kinds of validation checks being performed. After a
number is typed into a game cell, a the row and the column is checked to look for
repetitions; repeated numbers are flagged in red. When the user is ready to submit a
solution, the entire grid is checked for validity.
Security threats: Both the local and the global validation checks of the game state can
be easily bypassed by a malicious user, leading them to declare the puzzle as finished
without even making an effort.
Benefits of RIPLEY: When the result of the game is submitted to the server, RIPLEY
will check the validity of the final solution based on the event stream that it receives
as input. A single RPC may be used to submit all the events at once without creating
extra network traffic.
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4.1.3 Blog Application

This online blog application allows the user to view a blog, and to post and edit blog
entries.
Security threats: Unlike the previous two applications that address the issue of a ma-
licious client, the focus here is on protecting the benign client from the effects of script
injection and worm attacks. By default, the blog application does not perform exten-
sive data sanitization, leaving itself open to cross-site scripting attacks. Worms can be
used to amplify the effects of cross-site scripting. In the case of a blog, a worm may
post a blog entry on behalf of an unsuspecting user.
Benefits of RIPLEY: In case of a JavaScript worm, when the worm tries to propagate
by uploading executable contents to the server, it will do so by sending extra RPCs.
Because the client replica runs on the server side in .NET, it is impervious to JavaScript
code injection. As a result, the mismatch in the stream of RPCs will be detected by
RIPLEY. Also, client-side checks can now be reliably performed on the client.

4.1.4 Speed Typing Test

In this application, a set of words are randomly chosen from a dictionary and displayed
to the user as a paragraph. The objective for the user is to type as many words as she can
within the time limit of one minute. The user’s word-per-minute count and accuracy
is calculated once the time limit has passed. As the words are typed in, their correct
spelling is checked and highlighted on the fly. An interesting twist in this application is
that events arrive at a very rapid rate, thereby stressing the performance side of RIPLEY.
Security threats: A malicious user may tamper with per-word spelling checks and also
manipulate the time measurements to further rig the test.

4.1.5 Online Quiz

In this quiz application, trivia questions appear one by one, and depending on the cor-
rectness of the current answer, the next question is selected, of a higher or same point
value, respectively. After answering a total of ten questions, the user’s score is calcu-
lated and sent to the server for recording. The answer to each question consists of a
single word.

In an online quiz application such as this, the answer would be sent to the server for
checking after each question and the next question would be returned. This requires a
round trip after every question, making the application less responsive. Moreover, if
the quiz is timed, the round trip overhead needs to be properly taken into account. In
contrast, our design moves the entire database of questions (62 questions total) to the
client. The next question’s selection is performed on the client, only a single RPC is
required at the end.
Security threats: An interesting twist in the Quiz application compared to the ones
above is that the confidentiality of the data on the client is important. Indeed, if
the client can easily learn and enter the proper answers, cheating on the quiz would
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Application Network overhead for event transfer

RPCs Uncompressed Compressed

Benchmark RPCs Bytes Events RPCs Total Norm. Total Norm.

Shopping Cart 1 157 13 1 1,548 119 300 23
Game of Sudoku 1 160 146 8 16,953 116 812 5.6
Blog Application 9 1,595 252 11 31,090 123 863 3.4
Speed Typing Test 4 1,598 556 28 63,945 115 1422 2.6
Online Quiz 2 275 66 4 7,801 118 445 6.7

Figure 9: Network overhead measurements after applying RIPLEY.

be trivial. In general, RIPLEY does not do anything to address confidentiality con-
cerns, relegating these concerns to the developer. For this application, we use a simple
confidentiality-preserving approach.

We only send hash values of the proper answers instead of the answers themselves.
This allows us to compare hash values of the provided answers with the correct ones.
We chose to allow for one-word answers to each question instead of multiple-choice;
this way we avoid dictionary attacks, which would be trivial if the space of answers
were small. Additionally, just as for the applications above, a malicious client can
manipulate the solution checking code and related data.
Benefits of RIPLEY: As the entire application is run on the client side, integrity issues
like bypassing solution checking etc can be handled by Ripley as the checks are repli-
cated on the server side. RIPLEY cannot address confidentiality concerns in general,
though.

4.2 Overhead Measurements
We focus on three dimensions of overhead: extra network utilization, extra CPU time,
and extra memory utilization. Subsequent sections discuss these issues in turn.

4.2.1 Network Overhead

The first group of columns, columns 2–3, in Figure 9 shows the network usage of
the application itself. Most applications in our benchmark suite send only a few RPC
messages to the server. The Blog application has been written to produce one RPC per
blog entry read, and so it uses more messages than other applications.

Columns 4–7 show the network overhead introduced by using RIPLEY. The “To-
tal” column shows the total number of bytes and the “Norm.” column shows number of
bytes per event. Extra network activity is only due to transmission of event data to the
server. Unsurprisingly, applications such as the Speed Typing and the Blog, that gener-
ate a lot of key strokes consume more network resources. However, network messages
containing event data are sent asynchronously and thus do not significantly slow down
the client-side execution. The bandwidth requirement is directly proportional to the
number of events, as can be seen in the last column. All applications use up about 120
bytes per event, uncompressed.
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Server checks Event capture
Benchmark Max Min Avg Max Min Avg Med

Shopping Cart 0.083 0.083 0.083 8 0 1.21 1
Game of Sudoku 0.462 0.462 0.462 87 0 1.25 1
Blog Application 0.079 0.002 0.012 8 0 0.676 1
Speed Typing Test 0.078 0.004 0.023 84 0 0.8 1
Online Quiz 0.078 0.004 0.041 162 0 3.044 1

Figure 10: CPU overhead measurements in ms after applying RIPLEY.

Fortunately, the event stream is highly compressible; applying GZIP compression
reduces the size of a single event on the wire to just 3–4 bytes on average, as shown in
columns 8–9. The effectiveness of compression is be most noticeable in highly interac-
tive benchmarks such as Speed typing, reducing the number of needed network packets
to just a single one in most cases. Unfortunately, the current generation of browsers do
not support automatic compression of HTTP requests, only HTTP responses, requiring
it to make compression part of Volta tier splitting, which is part of future work.

4.2.2 CPU Overhead

RIPLEY introduces CPU overhead on both the server and the client. Clearly, running
the replica on the server also consumes CPU resources, despite the fact that running
within the emulator described in Section 3.3 makes things considerably faster. RIPLEY
assumes that we have enough server resources, such as extra processor cores, to be
able to run the RIPLEY replicas without slowing down the server-side execution of the
application. Further scalability issues under high client workloads are subject of future
work.

RIPLEY checking on the server introduces some latency for regular requests, as
shown in columns 2–4 in Figure 10. The server runs an ASP.NET application server on
a dual-core 3 GHz machine with 4 GB of RAM running Microsoft Vista. We measure
the time that each client-side request spends waiting for the replica to generate the
corresponding request and to compare the two to verify its integrity. In most cases, the
former component forms the bulk of the overhead, since the replica receives the event
information in batches and needs time to catch up with the actual client.

The maximum overhead of the Shopping Cart and Sudoku is due to this effect, since
the events are sent to the replica right before the checkout and finishgame RPCs are
sent to the server. The maximum overhead for the other applications is observed during
the application initialization phase and typically involves application-specific IO on the
server. For instance, in the Blog application, it involves fetching the blog data and in
the Quiz application, it involves initializing the database of questions. Despite this,
this overhead is negligible for pretty much all benchmarks. The minimum times were
fractions of milliseconds, since for these requests, the replica is already in sync when
the requests arrive. The overhead is only due to the string comparison of messages.

Client-side instrumentation for capturing and serializing event information to the
server adds execution overhead in the browser. The overhead is low as shown in
columns 5–8 in Figure 10, typically about a couple of milliseconds on average. The
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Figure 12: Memory footprint in MB as a function of the number of replicas.

client runs in an Internet Explorer browser, with a plugin that can run .NET CLR code.
The extremes of minimum and maximum are shown to indicate the spread. The high
extremes are believed to be statistical anomalies since the median overhead is 1 ms
for all application, which is not noticeable for interactive GUI applications. This is
the typical overhead we might expect, since the events are sent asynchronously to the
server. Note that moving event capture to within the browser as discussed in Section 5
is likely to reduce the client-side CPU overhead even further.

4.2.3 Memory Overhead

In the presence of multiple replicas running alongside the server it is possible for the
replicas to use up quite a bit of extra memory. Of course, the emulator is significantly
less memory-consuming than running a full-fledged version of the browser.

Volta RIPLEY

Server 23 – 26 27 – 32
Client (IE) 59 – 64 59 – 65
Client (FF) 69 – 77 69 – 78

Figure 11: Comparison of memory utiliza-
tion.

To experimentally demonstrate this point we
first considered a version of the Shopping cart
application running without RIPLEY and then
with RIPLEY enabled, with both Internet Ex-
plorer and Firefox running on the client. A sum-
mary of information about this experiment is
shown in Figure 11. The table shows the range
of memory utilization, in megabytes, for each
version with and without RIPLEY; in most cases,
more memory was allocated as the application progressed. We used Internet Explorer
version 7.0.6001 and Firefox version 2.0.0.16 on Windows Vista to perform these mea-
surements. The server memory utilization goes up by about 5 MB by adding the
RIPLEY emulator. This is an order of magnitude cheaper than adding a full-fledged
browser with a memory footprint of over 60 MB.

Furthermore, we modified the server to create more client replicas to simulate the
process of a multitude of clients that are simultaneously connected to the server. Fig-
ure 12 shows the server memory size as we increase the number of replicas to 100.
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Because of DLL sharing across the different APPDOMAINs, the marginal cost of an
additional replica is only about 1.3 MB compared to 5 MB. In the future we are plan-
ning to perform additional scalability studies by observing how the number of replicas
affect the server throughput with and without RIPLEY.

5 Discussion
Section 5.1 further discusses our assumptions specified in Section 2.3.2. Section 5.2
addresses scalability issues.

5.1 Dealing with Non-Determinism
We can introduce fully deterministic execution with the help of additional instrumenta-
tion. The following sources of non-determinism are most common in Web applications.
Using the Random family of functions. JavaScript exposes a random number gen-
erator through function Math.Random. Clearly, unless additional measures are taken,
the value returned by calls to this function on the client and the replica will disagree.
A uniform approach to treating randomness is to perform the computation on one,
“canonical” tier. In this case, we can instrument the client-side code C ′ to send the
result of the call to Math.Random in the event stream. We can further instrument the
replica C to block until the outcome of the random call is received. Once received, the
result of the call is substituted in place.
Reading and measuring time. Access to time is provided through the Date object in
JavaScript. Similarly to the approach described above, access to time routines can be
instrumented and the replica can be blocked until the time measured on the client is
delivered to continue the computation.
Accessing third-party servers. A systematic way to deal with accessing third-party
servers is to require that these accesses be tunneled through the server. For servers
in a different domain, this is necessary anyway, because of the same origin policy in
JavaScript. This allows for easy centralized access to outside data for both the replica
and the client-side code. Because calls to external services are performed only once,
this also deals with the issue of non-idempotent calls with side-effects.

Browser Enhancements In fact, a set of small changes to the JavaScript interpreter
would help us secure event capture and delivery and would also address the sources of
non-determinism discussed above.

In particular, instrumenting Math.Random and Date routines as well as event han-
dlers as described in Section 3.1 in the interpreter is the easiest and most systematic
way to treat these issues that ensures that malicious JavaScript code co-existing within
the same page is unable to gain access to this data. This effectively makes a portion
of the browser or the JavaScript interpreter part of the trusted computing base. Since
event capture is done outside of JavaScript, it will also ensure that the overhead of this
instrumentation is low. To ensure that event streams are not tampered with, standard
techniques such as Message Authentication Codes (MACs) can be used.
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5.2 Performance and Scalability
RIPLEY enables the following optimizations.
0-latency RPCs. An advantage of the RIPLEY architecture is that, once computed,
RPC results can be actively pushed to the client. This way, when the RPC is finally
issued on the client, its result will already be available, leading to 0-latency RPCs.
This demonstrates that not only does RIPLEY make the application more secure, in
many cases it can also make it more responsive.
MAC-ing RPCs. To further reduce the network overhead we may send MACs (mes-
sage authentication codes) of RPCs m′ instead of their actual values.
Deployment strategy. RIPLEY meshes nicely with the traditional load-balancing ap-
proach to deployment of large-scale Web 2.0 applications. In particular, a load balancer
could be used to repeatedly direct the same user to the server where both its replica and
the corresponding server threads run. Currently, this functionality is implemented in
the RIPLEY checker, which looks up the appropriate APPDOMAIN for a user session.
Moreover, to save memory, both the server thread and the replica can be serialized on
high server load for long-running sessions and then brought back from disk.
Dependency analysis. An important observation is that not the entire client-side code
base has to be included in the replica. In particular, display code does not need to be
executed because the replica is essentially “headless” — there is no user to see the GUI.
To reduce the amount of code the replica must run, we can use a slicing analysis [39]
to only include portion of the client-side code that contribute to values included into
RPCs.

6 Related Work
The security of the web infrastructure has been a subject of much previous work. The
various approaches to solving the problem can be categorized roughly along four lines
of inquiry. A sizable body of literature has focused on the static analysis of web ap-
plications using techniques such as taint-checking. Runtime monitoring of web appli-
cations has also proved to be effective. Others have addressed the problem at a higher
level by developing a cleaner and more secure programming model, often erasing the
boundaries between various tiers. Recent work has also developed techniques to pro-
tect against untrusted clients in a networked environment. Finally, the idea of security
through replication has also been well studied in earlier work. We elaborate further on
each of these.

6.1 Analysis and Monitoring
There has been a great deal of interest in static and runtime protection techniques to
improve the security posture of traditional “Web 1.0” applications. Static analysis al-
lows the developer to avoid issues such as cross-site scripting before the application
goes into production. Runtime analysis allows exploit prevention and recovery.

The WebSSARI project pioneered this line of research. WebSSARI uses combined
unsound static and dynamic analysis in the context of analyzing PHP programs [16].
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WebSSARI has successfully been applied to find many SQL injection and cross-site
scripting vulnerabilities in PHP code. Several projects that came after WebSSARI
improve on the quality of static analysis for PHP [19, 40]. The Griffin project proposes
a scalable and precise sound static and runtime analysis techniques for finding security
vulnerabilities in large Java applications [25, 28]. Based on a vulnerability description,
both a static checker and a runtime instrumentation is generated. Static analysis is
also used to drastically the runtime overhead in most cases. The runtime system allows
vulnerability recovery by applying user-provided sanitizers on execution paths that lack
them. Several other runtime systems for taint tracking have been proposed as well,
including Haldar et al. for Java [11] and Pietraszek et al. [33] and Nguyen-Tuong et
al. for PHP [31].

While server-side enforcement mechanisms are applicable for traditional Web ap-
plications that are composed entirely on the server side [19, 25, 40], Web 2.0 appli-
cations that make use of AJAX often fetch both data and JavaScript code from many
sources, with the entire final HTML only available within the browser, making runtime
client-side enforcement a natural choice. Recently, there has been a number of propos-
als for runtime enforcement mechanisms to ensure that security properties of interest
hold for rich-client applications executing within the browser [7, 15, 18, 44]. Erlings-
son et al. make an end-to-end argument for the client-side enforcement of security poli-
cies that apply to client behavior [7]. Their proposed mechanisms use server-specified,
programmatic security policies that allow for flexible client-side enforcement, even to
the point of runtime data tainting. Unlike RIPLEY, their technique can enforce some
necessary, but not sufficient conditions for establishing distributed application integrity.

6.2 Web Programming Models
Tier-splitting has been proposed in setting other than Volta as a way to program distrib-
uted Web applications. Popular systems in this space include the GWT [10], Links [8],
Hop [36], Hilda [42], etc. To the best of our knowledge, RIPLEY is the first realistic
security solution for these kinds of frameworks.

BASS is a recent attempt to build security into a declarative high-level web pro-
gramming model, working on the observation that security issues are often orthogonal
to the main Web application logic [43]. It enables the programmer to specify the busi-
ness logic of the application without needing to write the security related logic. Ab-
stractions for common operations, such as form input, are baked into the model. Secure
coding practices that prevent common attacks such as CSRF, XSS and session fixation
are applied by the language compiler. A prototype implementation of the translation
exists, but no applications seem to have been written in BASS. Ripley, on the other
hand, is a realistic programming model integrated with a full-fledged Volta compiler
being used for numerous real-world applications. Instead of protecting only against
common exploits, Ripley defends against any client attack that attempts to compromise
application integrity. BASS does not deal with client-side scripting at all, whereas Rip-
ley works in a model where a significant portion of the application is run on the client
for enhanced responsiveness.
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6.3 Untrusted Clients
Protection against untrusted clients and eavesdropping over the network has received
much attention, especially in the context of online gaming [14, 41]. In a distributed
online game, part of the application workload is typically delegated to the clients and
the server keeps track of only an abstract state of the game environment. As a result,
the game is rendered vulnerable to malicious clients compromising the physical and
logical rules governing the simulation in the game. Hacking popular online games is a
financially viable undertaking as game “items” can be converted to real-world currency
or sold on eBay.

Jha et al. propose a solution to the distributed online game integrity problem by per-
forming random audits of the client state verifying that the client has not manipulated
its state in violation of the semantic rules of the game [17]. Our approach, in contrast,
provides a non-probabilistic guarantee of integrity at a potentially higher cost. In par-
ticular, if the client-side computation is highly CPU-intenstive, as ray-tracing in games
tends to be, despite replying on an emulator and running in a faster .NET environment,
with sufficiently many connected clients, the RIPLEY server might eventually become
overwhelmed.

6.4 Replication for Security
Replication is a well-known way to increase security assurance, studies in file sys-
tems and replicated state machines [2, 26, 35, 37]. The work closest to ours is that of
Zheng et al. [45, 46]. In many ways a precursor to SWIFT [5, 6], this work focuses
on splitting programs while conforming to a set of integrity and privacy policies. The
latter are addressed by computing in the hash space, not unlike our Quiz application in
Section 4.

A high-level difference in philosophy with our work is that we avoid using annota-
tions, believing that having to write annotations places an undue burden on the devel-
oper. For example, Zheng et al. report having about 3 annotations per line of code. In-
stead, we “blindly” replicate the entire client-side portion of the program on the trusted
server tier, using runtime optimizations to make this approach scalable. Beyond our
focus on computational integrity violations caused by malicious users, we also address
the situation of a “malicious environment”, such as a propagating JavaScript worm.

7 Conclusions
This paper presents RIPLEY, the first fully automated approach to ensuring integrity
of distributed Web applications. To demonstrate the efficacy of RIPLEY in practice,
we have applied the RIPLEY to five realistic AJAX applications. The performance
overhead introduced by RIPLEY was minimal, in terms of CPU, memory, and network
overhead. We have also formalized the approach taken by RIPLEY and proved that
a RIPLEY-protected application has the same integrity properties as a non-distributed
one. While we have demonstrated our ideas in the context of the Volta compiler, the
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ideas of code replication can be easily extended to other runtime environments such as
Silverlight or server-side JavaScript.

Our work closely follows the secure-by-construction philosophy of building appli-
cation software. In particular, we envision RIPLEY becoming an integral part of the
next generation of application servers. All the application developer will have to do
in order to obtain the integrity-preservation benefits of RIPLEY, is to “drop” their Web
application into the application server, with automatic replication becoming part of the
deployment process.
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