Interaction Implementation

——

> Message passing
> RPC implementation
+ Binding
+ Concurrency
+ Error Control
> Heterogeneity
+ External Representations
+ Transformations

Implementing Asynchronous Send

Message

Interaction Implementation 1 Distributed Systems © M. Sloman

Implementing Synchronous Send

Message

Clear is a runtime system message — not sent by application process

Interaction Implementation 2 Distributed Systems © M. Sloman

Exercise

> Modify the synchronous protocol to cater for a timeout on the send
ie.
send msg delay (t).

> The sender continues after the timeout if the message has not yet been
received — this implies the receiver should not get the message if the
timeout expires

> Show the message exchanges that would occur:

i) if the sender’s timeout expires
i) if the sender’s timeout does not expire.

Interaction Implementation 3 Distributed Systems © M. Sloman

Binding

> Binding is the assignment of a reference value (e.g. address or object
reference) to a placeholder (e.g. message port or object reference
variable).

> Itis similar to opening a connection in the communication system or
opening a file in an OS.

First Party Binding
> Client initiates binding as in Java and Corba

Interaction Implementation 4 Distributed Systems © M. Sloman

Third Party Binding

> Binding performed within a configuration language or by an external
agent
> Needs explicit “requires” interface on client

Configuration independent
components

Structure defined explicitly

Permits transparent dynamic
rebinding for fault recovery
and server migration

Needed for multimedia streams

bind M.out -- out Internal object to component interface
forall i:1..3 bind WIJi].z --in[i] (provide to provide or requires to requires)

forall i:1..3 bind WI[i].x -- M.y Interconnection of internal object interfaces

Interaction Implementation 5 Distributed Systems © M. Sloman

Interface Type Checking

> Client interface must be type compatible with server interface i.e.
same interactions and signatures (set of parameters + data
types).

> Client and server likely to be compiled independently and at
different times

O Use same interface type definition to generate client and server
interface.
+ Client and server hold identity of interface derived from
interface definition module.
+ Generate Interface identity by
checksum over source
name + timestamp of last modification or compilation
+ At bind time, check type identities are equal
+ Strong type compatibility

Interaction Implementation 6 Distributed Systems © M. Sloman

Interface Type Checking

® Permit server to be subtype of client interface
i.e. provides additional operations which are not used by client, but
must not extend operations in original interface.

© Maintain run-time representation of interface and check for
structural compatibility at bind time
Weak type compatibility.
eg. the following two interfaces are structurally equivalent.

interface A { interface B {
opal (in string al, opb1l (in string b1,
in short a2, out long a4); in short b2, out long b3);
opa2 (in string a4); opb2 (in string b4)
} }
Interaction Implementation 7 Distributed Systems © M. Sloman

Remote Procedure Call

4 Client Station Network Server Station N
Client Client Transport Transport Server Server
Process Stub Layer Layer Stub Process
call
local —, pack —— geng receive unpack args.__execute

call arguments

local call call

dispatcher

- Why Needed?

blocked dispatcher
continue :
. unpack) reply pack local
reply receive send reply return
local return
\ I No timeout /

At most once semantics
client receives reply =» procedure executed exactly once
on failure i.e. no reply received = don’t know

Interaction Implementation 8 Distributed Systems © M. Sloman

RPC Binding

A name server registers exported interfaces and is queried to locate a
server when an interface is imported.
Server
+ Calls EXPORT (interface type, server name, nameserver)
+ Dispatcher address added by stub and passed to Transport
Server's Transport
+ Generates unique exportid & sends a register message to name
server containing type, name, exportid.
Client
+ Calls IMPORT (interface type, server name, nameserver)
+ Dispatcher address added by stub and passed to Transport
Client Transport:

+ Send query message with type & name to nameserver;
Reply contains type and address of server instance;

+ Query server to check validity of type, name and exportid;
Return interface reference (address) or error

Interaction Implementation 9 Distributed Systems © M. Sloman

Failures

Server Failure

> Use exportid to detect failed server

> On restart — exports interface again
=>generates a new exportid

> All messages to server include exportid

> Dispatcher aborts calls with incorrect exportid

Client Failure

> Orphans — client fails after making call but before receiving response
> No ack to response

> Server either implements a form of ‘rollback’ or does nothing

Interaction Implementation 10 Distributed Systems © M. Sloman

Client Threads

> In a single-threaded 4 _ _ I
program which does Single-threaded RC;fnt o
RPCs to different +Request _iRequest

servers, the RPCs must| Process A L

be done serially.
> Each RPC blocks the

program for at least 2 * Multi-threaded Client RPC ot

the network delay.

Throughput is adversely

ThreadAl —t:\““““m —
affected. /

. Process A
> Using threads, remote \ RPC

invocations (RPC or Izl
object invocation) may

ThreadA2 L —
be performed

concurrently by a single Time >
client process. _ Y,
Interaction Implementation 11 Distributed Systems © M. Sloman

Server Concurrency

> Multi-threading can improve server responsiveness since if requests
are processed concurrently, long requests will not bIock short requests.

.Cllent 1 Client n E]
\0 :/'
& Reply

Dispatcher

P/ Req}.\
Server E’

\. J

Reply

Interaction Implementation 12 Distributed Systems © M. Sloman

Client Concurrency

No dead-locks with callbacks if client multi-threaded

Client A Server B

=

Call Back

Interaction Implementation 13 Distributed Systems © M. Sloman

Dispatcher

o Server needs dispatcher to map incoming calls onto relevant procedure.

« Dispatcher in client passes incoming reply message to relevant stub
procedure.

« Interface compiler generates a number (or name) for each procedure in
interface — inserted into call message by client stub procedure.

« Dispatcher at server receives all call messages and uses procedure
number (name) to identify called procedure.

Interaction Implementation 14 Distributed Systems © M. Sloman

RMI DISPATCHER

> Recent Java uses reflection and a generic dispatcher so no need for
skeletons

> Client proxy(stub) includes information about a method in request
message, by creating instances of Method class containing

+ class, types of arguments, type of return value, type of exceptions

+ Proxy marshalls object of class method, array of argument objects
> Dispatcher receives request,

+ unmarshalls method object,

+ uses method information to unmarshall arguments

+ converts remote object reference to local object reference

+ calls method object’s invoke method supplying local object reference
and arguments

+ when method executed, marshalls result or exceptions into reply
message and sends it back to client

> See http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Method.html

Interaction Implementation 15 Distributed Systems © M. Sloman

Server Implementation Options

1 Server is single active process

Dispatches processes one request at a time and calls the relevant
stub procedure which calls the actual procedure
=>» Problems?

2 Thread-per-Request
Dispatcher creates a new thread to handle each request
=>»Problems?

3 Thread Pool

A fixed number of threads are generated at start-up and free threads
are allocated to requests by the dispatcher

=» Concurrency but lower creation overheads
4 Thread-per-Session

A thread is created at connection set up to process all requests from
the particular client

= Problems?

Interaction Implementation 16 Distributed Systems © M. Sloman

RPC Error Control

ERROR CONTROL
> After sending message set
Client “ Server timeout
« > Retransmit if no ACK
> Save reply until ACK received in
case call repeated.

How can this be optimised?

Must also cater for long parameters requiring
multiple messages to transfer

Interaction Implementation 17 Distributed Systems © M. Sloman

RPC Implementation

r CLIENT STATION R NETWORK (SERVER STATION R
CLIENT CLIENT TRANSPORT TRﬁ,§$PORT SERVER SERVER
PROCESS

STUB LAYER Call (TID, sn=0, ack, params.)) STUB PROCESS
call-pp marshall-p= send call msg. receive, g unpack
arguments wait for ack transfer arguments
. Ack (TID, sn=0) arguments,
marshall «a— "€C€lve ;Z?Id Ack,
arguments in
next message Data (TID, sn=1, no ack, params
—a send Data & £ J receive —#> unpack
wait for arguments
reply invoke call \
i execute
bidcked tlmeoutl) Data (TID, sn=1, ack, params) . call
retransmit receive
wait for ack
. Ack (TID, sn=1)
receive send Ack marshalle=—— return
wait for reply / reply
I . Reply (TID, sn=2, no ack, params) d |
unpack -~ receive Se'_Wt ffeP Yy 0
reply, wait for next cal
timeout
- return Reply (TID, sn=2, ack, params) .
continue receive retransmit
wait for ack
Ack (TID, sh =2 X
send Ack (W) discard reply
buffer

\ / S %

RPC parameters.

> TID = Transaction identifier plus interface export identifier.
> sh = message sequence number

> ack = please acknowledge message

> no ack = no acknowledgement expected

> params = in or out parameters

Interaction Implementation 19 Distributed Systems © M. Sloman

Processor Heterogeneity

Computers differ in representation of: (Vo s Q , 3 bytes
+ Characters - Ascii, Ebcdic, graphics......
* Integers - 1 or 2's complement . T 5

+ length

+ Reals: mantissa & exponent length,

format, base 2, 16 ...

+ Bit and byte addressing within a word

Need to transform representations when transferring data

N * (N-1) translators

for N machines

What can be done
about this?

Interaction Implementation

P

20 Distributed Systems © M. Sloman

Standard Ext. Data Representation

Application
Entity

[llocall]
[Representation| |

Presentation

Standard external

[llocall]

Application
Entity

Representation| |

Presentation

Entity

representation

Entity

> Standard network wide external data
representation (XDR) reduces number

of translators =» 2N translators

different machine types
» Transformation must:

+ resolve syntax differences

Interaction Implementation

> Each Machine knows only about its
own data representation and
external representation

(to and from external standard) for N » Overhead of conversion when

communicating between machines
of same type
+ preserve meaning — can be difficult > What to do if only a few different
machines?

21

Distributed Systems © M. Sloman

Language Heterogeneity

Fortran
analytical
model

A

~

Java
_ user
interface

A

\

s)
C real-time
controllers

-

Prolog or Lisp Cobol

Al Accounting
Components System

> Data structure representation differences:
+ Array implementation
+ Record implementation
+ Alignment of bytes on words etc.

+ No equivalent
eg no records

data structure
in Fortran, no lists in C

» What can be done about this?

Interaction Implementation

22 Distributed Systems © M. Sloman

XDR Characteristics

> Variable length

Eg. strings of printable characters to represent numbers

+ Requires length indicator or end delimiter

+ No value limitation

+ Inefficient 6 bytes for 16 bit integer.

+ Packed binary = discard leading 0's

+ Length field usually fixed length or extensible in bytes
e most significant bit set = another byte follows

> Fixed Length
+ 16 or 32 bit integers

* more efficient transformation
+ maximum value limitation =» truncation

Interaction Implementation

23

length value length value
010 11 100 1010
2 3 4 10

Distributed Systems © M. Sloman

XDR Characteristics (2)

> Explicit Tag or Type Identifier
+ Increased overheads
+ Information to perform transformation is self contained in message
+ Position independent
+ Needed for variant types
+ Can perform dynamic type checking ‘ |Typeid | Length | Value | ’

> Implicit Type
+ Types must be known in advance at receiver
e.g. ports, object method parameters
+ Fewer overheads

Interaction Implementation 24 Distributed Systems © M. Sloman

Extensible Markup Language (XML)

Text based, explicit tags = human readable
Very verbose, not human friendly = really aimed at machine processing
Data items tagged with ‘markup’ strings describing logical structure

Extensible — users can define own tags

>

>

>

> Use start and end tags rather than length

>

> Used for internet interactions and data storage e.g. XML databases
>

Very inefficient encoding but can be compressed.

Interaction Implementation 25 Distributed Systems © M. Sloman

XML Elements and Attributes

Element: container for data — enclosed by start and end tag
Attribute: used to label data — usually name/value
<person id="123456789"> <«—— Attribute ~
<name>Smith</name>
<place>London</place> Place element
Person

<year>1934</year> Element

<l-- a comment -->

</person >

Interaction Implementation 26 Distributed Systems © M. Sloman

XML Namespace

> Namespcae used to scope hames

> A set of names for a collection of element types and attributes
> Referenced by a url

> Specify namespace by a xmins attribute

> Can use namespace name a prefix for names

<person pers:id="123456789" xmins:pers = "http://www.cdk4.net/person">
<pers:name> Smith </pers:name>
Namespace
<pers:place> London </pers:place > attribute

<pers:year> 1934 </pers:year>

</person>

Interaction Implementation 27 Distributed Systems © M. Sloman

XML Schema

> Defines elements and attributes that can appear in a document

> Defines element nesting, number, ordering, whether empty or can
include text

> For each element defines type and default value

<xsd:schema xmins:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />
<xsd:complexType name="personType">
<xsd:sequence>
<xsd:element name = "name" type="xs:string"/>
<xsd:element name = "place" type="xs:string"/>
<xsd:element name = "year" type="xs:positivelnteger"/>
</xsd:sequence>
<xsd:attribute name="id" type = "xs:positivelnteger"/>
</xsd:complexType>
</xsd:schema>

Interaction Implementation 28 Distributed Systems © M. Sloman

Representation Transformation

objA :IT-A objB :IT-B
Encode Decode]
msg : XT Transmit msg : XT

» What problems could occur when doing transformations
eg with numbers?

Interaction Implementation 29 Distributed Systems © M. Sloman

Semantics of Representation

> Two representations can have similar syntax but different meaning
+ eg. complex numbers -
(float x,y) = rectangular or polar coordinates
=> transformation is application dependent
> Type may have no meaning outside own context
+ eg. pointer, file name
»> Procedures passed as parameters
+ Cannot transfer code to different computer for execution.

» What should be done?

Interaction Implementation 30 Distributed Systems © M. Sloman

Example of Use of Encode

struct rec {

int a;
boolean b;
h
struct form {
int x;
float y;
rec z [3]; /* assume 3 elements */
2

form obj = (5, 23.75, 10, true, 5, false, 7, true)

= can be “flattened” for transfer: FI BI B IB
where | = int, F = float, B = boolean >|/ "

I
I
X 3 elements of z

Interaction Implementation 31 Distributed Systems © M. Sloman

Structural Information

> Structural information must be maintained
+ Structural information represented internally by pointers (addresses)
—>must be flattened into a linear message

4 N
TREE A
N e I
clofo[[|o[ofo] [r[ofo]]
Recursively Flattened Tree
{{0,0, value C}{0,0 value D} value B} {0{0,0 value F}value E} value A}/

Interaction Implementation 32 Distributed Systems © M. Sloman

Transferring Cyclic Structures

> Use Encode and Decode procedures provided by Presentation Layer for
primitive types and simple constructed types

> Structural information must be flattened:
* Number sub-objects
+ Transform pointers into handles (ie. number) of sub object.

Sub object 1

Handle 2 Eg. Linked List
Null 1 2 3 4
21+—w| 3—1—®| 4 1T—»| 0
Contents 0 | 1 |- 2 |- 3
Sub object 2
Handle 3
Handle 1
Contents
Sub object 3 Sub object 4
Handle 4 Null
Handle 2 Handle 3
Contents Contents
Interaction Implementation 33 Distributed Systems © M. Sloman

Java Object Serialization

> Java objects can be passed as arguments and results in RMI
> Object is an instance of a Java serializable classs
Public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person (String aName, String aPlace, int aYear)
{ name = aName;
place = aPlace;
year = aYear;

// methods for accessing instance variables
Interaction Implementation 34 Distributed Systems © M. Sloman

Java Object Serialization (2)

> Java objects can contain references to other objects
> All referenced objects are serialized together

> References are converted to handles ie internal references to object
within the serialized form

> Each object is serialized only once — detect multiple references to same
object.

> Serialization:
+ Write class information
+ Write types and names of instance variables
+ If instance variables are of a new class, then write their class
information followed by types and names of instance variables.
+ Uses reflection — ability to enquire about properties of a class eg
names and types of instance variables and methods

Interaction Implementation 35 Distributed Systems © M. Sloman

Synchronous Send With Timeout (1)

> Sender timeout expires:

Message

Accept? & No are sent by runtime system, not application processes

Interaction Implementation 36 Distributed Systems © M. Sloman

Synchronous Send With Timeout (2)

> Sender timeout does not expire:

Message

Accept?

Accept? & Yes are sent by runtime system, not application processes

Interaction Implementation 37 Distributed Systems © M. Sloman

Summary

> Message passing systems map closely onto the underlying
communication services, however RPCs and Object invocation are more
complex to implement.

> They require binding implementation and have to cater for failures of
client, server, name servers or communication system.

» RPCs and invocations can either be implemented by an optimised special
purpose protocol or by a general purpose Transport protocol such as
TCP.

> Translation to a standard external representation should be optional to
avoid unnecessary overheads

> Typed interfaces do not need explicit tags in the XDR

Some types cannot be transferred e.g. memory addresses

» Complex data types must be “flattened” for transfer to a remote machine
(or to disc store) and addresses transformed to local references (e.g.
array index)

\4

Interaction Implementation 38 Distributed Systems © M. Sloman

