
Interaction ImplementationInteraction Implementation

Message passing
RPC implementation

Binding
Concurrency
Error Control

Heterogeneity
External Representations
Transformations

Distributed Systems  © M.  Sloman1Interaction Implementation

Implementing Asynchronous SendImplementing Asynchronous Send

SenderSender Receiver

Send Message
Continue

Receive
Blocked

continue

Distributed Systems  © M.  Sloman2Interaction Implementation

Implementing Synchronous SendImplementing Synchronous Send

SenderSender Receiver

Continue

Send  msg Message

Blocked

Receive  msg

Blocked

Clear is a runtime system message – not sent by application process

clear

Continue

Distributed Systems  © M.  Sloman3Interaction Implementation

ExerciseExercise
Modify the synchronous protocol to cater for a timeout on the send  
i.e. 

send msg delay (t).  

The sender continues after the timeout if the message has not yet been 
received – this implies the receiver should not get the message if the 
timeout expires

Show the message exchanges that would occur: 

i) if the sender’s timeout expires
ii) if the sender’s timeout does not expire.



Distributed Systems  © M.  Sloman4Interaction Implementation

BindingBinding
Binding is the assignment of a reference value ( e.g. address or object 
reference) to a placeholder (e.g. message port or object reference 
variable).

It is similar to opening a connection in the communication system or 
opening a file in an OS.

First Party Binding
Client initiates binding as in Java and Corba

Distributed Systems  © M.  Sloman5Interaction Implementation

Third Party BindingThird Party Binding
Binding performed within a configuration language or by an external 
agent
Needs explicit “requires” interface on client

System

M W[1]
out

in[3]

in[2]

in[1]

out xy z

bind M.out  -- out Internal object to component interface
forall i:1..3 bind W[i].z  -- in[i]    (provide to provide or requires to requires)

forall i:1..3 bind W[i].x  -- M.y    Interconnection of internal object interfaces

Configuration independent 
components

Structure defined explicitly
Permits transparent dynamic 

rebinding for fault recovery 
and server migration

Needed for multimedia streams

Distributed Systems  © M.  Sloman6Interaction Implementation

Interface Type CheckingInterface Type Checking
Client interface must be type compatible with server interface i.e. 
same interactions and signatures ( set of parameters  + data 
types).
Client and server likely to be compiled independently and at 
different times

Use same interface type definition to generate client and server 
interface.  

Client and server hold identity of interface derived from 
interface definition module. 
Generate Interface identity by

checksum over source 
name + timestamp of last modification or compilation 

At bind time, check type identities are equal 
Strong type compatibility

Distributed Systems  © M.  Sloman7Interaction Implementation

Interface Type CheckingInterface Type Checking
Permit server to be subtype of client interface 
i.e. provides additional operations which are not used by client, but 
must not extend operations in original interface.

Maintain run-time representation of interface and check for 
structural compatibility at bind time
Weak type compatibility.
eg. the following two interfaces are structurally equivalent.

interface A { 
opa1 (in string a1, 

in short a2 , out long a4);
opa2 (in string a4);

} 

interface B {
opb1 (in string b1, 

in short b2 , out long b3);
opb2 (in string b4)

} 



Distributed Systems  © M.  Sloman8Interaction Implementation

Client Station Server StationNetwork

local
return

unpack args.
local call

local
call

pack 
arguments

send

Remote Procedure CallRemote Procedure Call

Client
Process Stub

Client Transport
Layer

Server
Process

Server
Stub

Transport
Layer

receive

dispatcher

pack 
replysend

reply

dispatcher

receive
unpack 
reply

local return

blocked

continue

call
execute

call

No timeout

At most once semantics
client receives reply procedure executed exactly once
on failure i.e. no reply received don’t know

Why Needed?

Distributed Systems  © M.  Sloman9Interaction Implementation

RPC BindingRPC Binding
A name server registers exported interfaces and is queried to locate a 
server when an interface is imported.  
Server

Calls EXPORT (interface type, server name, nameserver)
Dispatcher address added by stub and passed to Transport

Server's Transport
Generates unique exportid & sends a register message to name 
server containing type, name, exportid.

Client
Calls IMPORT (interface type, server name, nameserver)
Dispatcher address added by stub and passed to Transport

Client Transport:
Send query message with type & name to nameserver; 
Reply contains type and address of server instance;  
Query server to check validity of type, name and exportid;   
Return interface reference (address) or error

Distributed Systems  © M.  Sloman10Interaction Implementation

FailuresFailures
Server FailureServer Failure

Use exportid to detect failed server
On restart – exports interface again 

generates a new exportid
All messages to server include exportid
Dispatcher aborts calls with incorrect exportid

Client Failure
Orphans – client fails after making call but before receiving response
No ack to response
Server either implements a form of ‘rollback’ or does nothing

Distributed Systems  © M.  Sloman11Interaction Implementation

Client ThreadsClient Threads
In a  single-threaded 
program which does 
RPCs to different 
servers, the RPCs must 
be done serially.
Each RPC blocks the 
program for at least 2 * 
the  network delay. 
Throughput is adversely 
affected.
Using threads, remote 
invocations (RPC or 
object invocation) may 
be performed 
concurrently by a single 
client process.

Process A

RPC 
Request

Time

RPC 
Request

Server Server

RPC 
Request

RPC 
Request

Server

Server

ThreadA1

ThreadA2

Process A

Single-threaded Client

Multi-threaded Client



Distributed Systems  © M.  Sloman12Interaction Implementation

Client Client 1 n

Server

Server ConcurrencyServer Concurrency
Multi-threading can improve server responsiveness since if requests 
are processed concurrently, long requests will not block short requests.

Request

Reply

Reply

Dispatcher

Distributed Systems  © M.  Sloman13Interaction Implementation

Client ConcurrencyClient Concurrency
No dead-locks with callbacks if client multi-threaded

Client A Server B

Call Back

Distributed Systems  © M.  Sloman14Interaction Implementation

DispatcherDispatcher

• Server needs dispatcher to map incoming calls onto relevant procedure.  

• Dispatcher in client passes incoming reply message to relevant stub 
procedure.

• Interface compiler generates a number (or name) for each procedure in 
interface – inserted into call message by client stub procedure.

• Dispatcher at server receives all call messages and uses procedure 
number (name) to identify called procedure.

Distributed Systems  © M.  Sloman15Interaction Implementation

RMI DISPATCHERRMI DISPATCHER
Recent Java uses reflection and a generic dispatcher so no need for 
skeletons
Client proxy(stub) includes information about a method in request 
message, by creating instances of Method class containing 

class, types of arguments, type of return value, type of exceptions
Proxy marshalls object of class method, array of argument objects

Dispatcher receives request, 
unmarshalls method object,
uses method information to unmarshall arguments
converts remote object reference to local object reference
calls method object’s invoke method supplying local object reference 
and arguments
when method executed, marshalls result or exceptions into reply 
message and sends it back to client

See http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Method.html



Distributed Systems  © M.  Sloman16Interaction Implementation

Server Implementation OptionsServer Implementation Options
1 Server is single active process

Dispatches processes one request at a time  and calls the relevant 
stub procedure which calls the actual procedure

Problems?
2 Thread-per-Request

Dispatcher creates a new thread to handle each request
Problems?

3 Thread Pool
A fixed number of threads are generated at start-up and free threads 
are allocated to requests by the dispatcher

Concurrency but lower creation overheads
4 Thread-per-Session

A thread is created at connection set up to process all requests from 
the particular client

Problems?

Distributed Systems  © M.  Sloman17Interaction Implementation

RPC Error ControlRPC Error Control

Client Server

ERROR CONTROL
After sending message set 
timeout
Retransmit if no ACK
Save reply until ACK received in 
case call repeated.

Call

ACK
Reply

ACK

How can this be optimised?

Must also cater for long parameters requiring 
multiple messages to transfer

Distributed Systems  © M.  Sloman18Interaction Implementation

RPC ImplementationRPC Implementation
SERVER  STATION

unpack
arguments

receive,
transfer
arguments,
send Ack,
wait

NETWORK
CLIENT
PROCESS

TRANSPORT
LAYER Call (TID, sn=0, ack, params.)
send call msg.
wait for ack

CLIENT    STATION
CLIENT
STUB

call

blocked

unpack
reply,
return

continue

marshall
arguments

TRANSPORT    SERVER
LAYER STUB

SERVER
PROCESS

Ack (TID, sn=0)
receive

Data (TID, sn=1, no ack, params)

marshall
arguments in
next  message

send Data
wait for
reply

send Ack

receive
Data (TID, sn=1, ack, params)

Ack (TID, sn=1)

timeout
retransmit

wait for ack

wait for reply
receive

execute

return

call

receive unpack
arguments

invoke call

send reply
wait for next call
timeout

marshall
reply

Reply (TID, sn=2, no ack, params)
receive

retransmit
wait for ack

discard reply
buffer

Reply (TID, sn=2, ack, params)

Ack (TID, sn =2)
send Ack

receive

Distributed Systems  © M.  Sloman19Interaction Implementation

RPC parameters.RPC parameters.

TID = Transaction identifier plus interface export identifier.
sn = message sequence number
ack =  please acknowledge message
no ack = no acknowledgement  expected 
params = in or out parameters



Distributed Systems  © M.  Sloman20Interaction Implementation

Processor HeterogeneityProcessor Heterogeneity
Computers differ in representation of:

Characters - Ascii, Ebcdic, graphics……
Integers - 1 or 2's complement
length
Reals: mantissa & exponent length, 
format, base 2, 16 …
Bit and byte addressing within a word

Word n 
0 1 2 3

0123

bytes

0, 1 . . . . 7

7 . . . . . . 0

bits
Byte x  

Need to transform representations when transferring data

N * (N-1) translators 

for N machines

What can be done 
about this?

Distributed Systems  © M.  Sloman21Interaction Implementation

Standard Ext. Data RepresentationStandard Ext. Data Representation

Standard network wide external data 
representation  (XDR) reduces number 
of translators 2N  translators 
(to and from external standard) for N 
different machine types
Transformation must:

preserve meaning – can be difficult
resolve syntax differences

Application 
Entity

Application 
Entity

Presentation 
Entity

Presentation 
Entity

Local 
Representation

Local 
Representation

Standard external

representation

Each Machine knows only about its 
own data representation and 
external representation
Overhead of conversion when 
communicating between machines 
of same type
What to do if only a few different 
machines?

Distributed Systems  © M.  Sloman22Interaction Implementation

Language HeterogeneityLanguage Heterogeneity

Data structure representation differences: 
Array implementation
Record implementation
Alignment of bytes on words etc.
No equivalent data structure 
eg no records in Fortran, no lists in C

What can be done about this?

Java
user  

interface

C real-time  
controllers

Prolog or Lisp 
A I 

Components

Fortran 
analytical 

model

Cobol 
Accounting 

System

Distributed Systems  © M.  Sloman23Interaction Implementation

XDR CharacteristicsXDR Characteristics
Variable length
Eg. strings of printable characters to represent numbers

Requires length indicator or end delimiter
No value limitation
Inefficient 6 bytes for 16 bit integer.
Packed binary discard leading 0's
Length field usually fixed length or extensible in bytes

most significant bit set another byte follows

Fixed Length
16 or 32 bit integers
more efficient transformation
maximum value limitation truncation

length 

0 1 0 1 1

value

2 3

length value

1 0 0 1 0 1 0

4 10



Distributed Systems  © M.  Sloman24Interaction Implementation

XDR Characteristics (2)XDR Characteristics (2)
Explicit Tag or Type Identifier

Increased overheads
Information to perform  transformation is self contained in message
Position independent
Needed for variant types
Can perform dynamic type checking

Implicit Type
Types must be known in advance at receiver 
e.g. ports, object method parameters
Fewer overheads

Type id Length Value

Distributed Systems  © M.  Sloman25Interaction Implementation

Extensible Extensible MarkupMarkup Language ( XML)Language ( XML)

Text based, explicit tags human readable

Very verbose, not human friendly really aimed at machine processing

Data items tagged with ‘markup’ strings describing logical structure

Use start and end tags rather than length

Extensible – users can define own tags

Used for internet interactions and data storage e.g. XML databases

Very inefficient encoding but can be compressed. 

Distributed Systems  © M.  Sloman26Interaction Implementation

XML Elements and AttributesXML Elements and Attributes
Element: container for data – enclosed by start and end tag

Attribute:  used to label data – usually name/value 

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1934</year>

<!-- a comment -->

</person >

Person
Element

Attribute

Place element

Distributed Systems  © M.  Sloman27Interaction Implementation

XML NamespaceXML Namespace
Namespcae used to scope names
A set of names for a collection of element types and attributes
Referenced by a url
Specify namespace by a xmlns attribute
Can use namespace name a prefix for names

<person pers:id="123456789" xmlns:pers = "http://www.cdk4.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1934 </pers:year>

</person>

Namespace 
attribute



Distributed Systems  © M.  Sloman28Interaction Implementation

XML SchemaXML Schema
Defines elements and attributes that can appear in a document 
Defines element nesting, number, ordering,  whether empty or can
include text
For each element defines type and default value

<xsd:schema xmlns:xsd = URL of XML schema definitions  >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">
<xsd:sequence>

<xsd:element name = "name"  type="xs:string"/> 
<xsd:element name = "place"  type="xs:string"/> 
<xsd:element name = "year"  type="xs:positiveInteger"/> 

</xsd:sequence>
<xsd:attribute name= "id"   type = "xs:positiveInteger"/>

</xsd:complexType>
</xsd:schema>

Distributed Systems  © M.  Sloman29Interaction Implementation

Representation TransformationRepresentation Transformation

What problems could occur when doing transformations
eg with numbers? 

objA : IT-A objB : IT-B 

msg : XT msg : XT

Encode

Transmit

Decode

Distributed Systems  © M.  Sloman30Interaction Implementation

Semantics of RepresentationSemantics of Representation
Two representations can have similar syntax but different meaning

eg. complex numbers -
(float x,y ) = rectangular or polar coordinates

transformation is application dependent
Type may have no meaning outside own context

eg. pointer, file name
Procedures passed as parameters

Cannot transfer code to different computer for execution.

What should be done?

Distributed Systems  © M.  Sloman31Interaction Implementation

Example of Use of EncodeExample of Use of Encode
struct rec {

int a;
boolean b;

};
struct form {

int x;
float y;
rec z [ 3];  /* assume 3 elements */
};

form obj = (5, 23.75, 10, true, 5, false, 7, true)

⇒ can be “flattened” for transfer:
where I = int, F = float, B = boolean

I   F   I   B   I   B   I   B    

x  y    3 elements of z



Distributed Systems  © M.  Sloman32Interaction Implementation

Structural InformationStructural Information
Structural information must be maintained

Structural information represented internally by pointers (addresses)
⇒must be flattened into a linear message

Recursively Flattened  Tree

0

TREE A

D

B

C

E

0 00 0 0F0

value A}value B}{0,0 value D}{ {0,0, value C} {0{0,0 value F}value E}

Distributed Systems  © M.  Sloman33Interaction Implementation

Transferring Cyclic StructuresTransferring Cyclic Structures
Use Encode and Decode procedures provided by Presentation Layer for 
primitive types and simple constructed types 
Structural information must be flattened:

Number sub-objects
Transform pointers into handles (ie. number) of sub object.

0 2
0

1 2 3 4
Eg. Linked List

2 3 4
31

Sub object 1
Handle 2
Null
Contents

Sub object 2
Handle 3
Handle 1
Contents

Sub object 3
Handle 4
Handle 2
Contents

Sub object 4
Null
Handle 3
Contents

Distributed Systems  © M.  Sloman34Interaction Implementation

Java Object SerializationJava Object Serialization
Java objects can be passed as arguments and results in RMI
Object is an instance of a Java serializable classs

Public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person (String aName, String aPlace, int aYear)
{ name = aName;

place = aPlace;
year = aYear;

}
// methods for accessing instance variables

}

Distributed Systems  © M.  Sloman35Interaction Implementation

Java Object Serialization (2)Java Object Serialization (2)
Java objects can contain references to other objects
All referenced objects are serialized together
References are converted to handles ie internal references to object 
within the serialized form
Each object is serialized only once – detect multiple references to same 
object.
Serialization:

Write class information
Write types and names of instance variables
If instance variables are of a new class, then write their class
information followed by types and names of instance variables.
Uses reflection – ability to enquire  about properties of a class eg
names and types of instance variables and methods 



Distributed Systems  © M.  Sloman36Interaction Implementation

SenderSender Receiver

Synchronous Send With Timeout (1)Synchronous Send With Timeout (1)
Sender timeout expires:

send  msg timeout (t) Message

receive msgAccept?

Continue BlockedNo

Discard
message

Blocked    t

Accept? & No are sent by runtime system, not application processes
Distributed Systems  © M.  Sloman37Interaction Implementation

SenderSender Receiver

Synchronous Send With Timeout (2)Synchronous Send With Timeout (2)
Sender timeout does not expire:

Send  msg timeout (t) Message

receive msgAccept?

Continue,
cancel
timeout

Blocked

Blocked    t

Yes
Accept
message,
continue

Accept? & Yes are sent by runtime system, not application processes

Distributed Systems  © M.  Sloman38Interaction Implementation

SummarySummary
Message passing systems map closely onto the underlying 
communication services, however RPCs and Object invocation are more 
complex to implement.  
They require binding implementation and have to cater for failures of 
client, server, name servers or communication system.  
RPCs and invocations can either be implemented by an optimised special 
purpose protocol or by a general purpose Transport protocol such as 
TCP.
Translation to a standard external representation should be optional to 
avoid unnecessary overheads
Typed interfaces do not need explicit tags in the XDR
Some types cannot be transferred e.g. memory addresses 
Complex data types must be “flattened” for transfer to a remote machine 
(or to disc store) and addresses transformed to local references (e.g. 
array index) 


