
Interaction PrimitivesInteraction Primitives

Message passing
send & receive primitives
synchronisation
naming

Remote procedure call
IDL
semantics

Object invocation (in next section)
Distributed Systems © M. Sloman1Interaction Primitives

IntroductionIntroduction
♦ Components of a distributed system communicate in order to

cooperate and synchronise their actions.

♦ A distributed system must make use of message passing as
a basic mechanism supported by the communication system
as there is no shared memory.

♦ OS primitives low level + untyped data

♦ Language primitives higher level + typed data

♦ It is feasible to support shared memory abstractions such as
shared objects or Linda tuple spaces implemented above
message passing

Distributed Systems © M. Sloman2Interaction Primitives

Inter Process Communication (IPC)Inter Process Communication (IPC)

Host
Node

Host
Node

Logical
Inter Process

Communication

Communications System

Communication Network

Distributed Systems © M. Sloman3Interaction Primitives

Communication Service CharacteristicsCommunication Service Characteristics

Connectionless (Datagram)
“Send and pray” message could be lost, duplicated or
delivered out-of-sequence. User not told.
Potentially broadcast or multidestination
Maintains no state information cannot detect lost,
duplicate or out-of-sequence messages.
Each message contains full source & destination
address
May discard messages which are corrupted or because
of congestion No error correction

The underlying communication service can be based on
connectionless or connection oriented protocols

Distributed Systems © M. Sloman4Interaction Primitives

Communication Service 2Communication Service 2
Connection Service

Reliable, in-sequence delivery of messages
Performs error and flow control errors reported to both ends
Overheads:

Time: establishment and termination of connection,
error control protocol overheads.

Space: state information maintained at both ends:
unacknowledged messages
remote entity address
message sequence numbers
flow control information

Different primitives require different services
TCP or UDP

Distributed Systems © M. Sloman5Interaction Primitives

Message PassingMessage Passing

Naming
Both sender and receiver directly name each other in their programs

* What are the disadvantages?
* What are the alternatives?

send
(Y, Msg)

receive
(X, Msg)

Process X Process Y

Machine L Machine M

Receive - receives a
message from X into a
local variable Msg.

Send - transmits a chunk
of data (record) denoted
by Msg to process Y

Which
communication
service does
this map onto?

Distributed Systems © M. Sloman6Interaction Primitives

Communication PatternsCommunication Patterns

S1

S2

Sn

R

Many - to - One
Many sender processes
S1,…,Sn may send to a single
receiver. The receiver R receives
the messages one at a time
from a message queue.
Typical client-server

R1

R2

Rn

S

One - to - many
A single sender S sends the
message to many receivers
R1,…,Rn.
LANs such as ethernet provide
hardware support for broadcast
(all) and multicast (subset)).

Distributed Systems © M. Sloman7Interaction Primitives

Message Receive PrimitiveMessage Receive Primitive

Variations:
Timeout – specify a limit on the amount of time prepared to wait for a
message, otherwise take an alternative action.
Conditional receipt – the receive returns an indication of whether a
message was received (e.g. true or false) and the process continues. A
non-blocking receive lets a process check if a message is waiting from
different clients (cf. Polling)
* What additional blocking primitive is needed for a server receiving from
multiple different clients?

receive
(p, Msg)

Blocked receive - The destination process blocks if no message is
available, and receives it into a target variable
when it is available.
•Ada ACCEPT p (mess: IN)
• CSP source? msg { direct naming }
• Unix size = recvfrom(socket, buffer, from)

Distributed Systems © M. Sloman8Interaction Primitives

Asynchronous SendAsynchronous Send
Asynchronous send is an unblocked send, where the sender continues
processing once the message has been copied out of its address space.

Characteristics:
Mostly used with blocking receive
Underlying system must provide buffering (usually at the receive end)
since many messages may be sent before the first is received
Loose coupling between sender and receiver(s)
Readily usable for multicast
Efficient implementation

send
(Y, Msg)

receive
(X, Msg)

Distributed Systems © M. Sloman9Interaction Primitives

Asynchronous SendAsynchronous Send
Problems:
• Buffer exhaustion (no flow control)

* What should happen if the destination runs out of buffers?
• Error reporting of lost messages is not sensible

(difficult for sender to match error report with affected message)
• Verification is more difficult

(as need to account for the state of the buffers)

Maps closely onto connectionless communication service but
can be implemented via a reliable connection service.

* How can 2 processes use async send and blocking-
receive, synchronise to perform an action at the same
time?

Distributed Systems © M. Sloman10Interaction Primitives

Synchronous SendSynchronous Send
Synchronous send is a blocked send, where the sender is held up until
actual receipt of the message by the destination. It provides a
synchronisation point for the sender and receiver (cf. handshaking).
CSP: clock! start

Characteristics:
• Tight coupling between sender and receiver (tends to restrict parallelism)
• For looser coupling, use explicit buffer processes
• Generally easier to reason about synchronous systems
Problems:
• Failures and indefinite delays indefinitely blocked ?

create a thread to delegate the send responsibility
• No multidestination
• Implementation more complex (especially if include timeout)

Communication Service expected is “reliable”.

Distributed Systems © M. Sloman11Interaction Primitives

Unix Socket InterfaceUnix Socket Interface
Internet Addresses

Messages in the Internet (IP packets) are sent to addresses which
consist of three components: (Netid, Hostid, Portid)

The network identifier and host identifier take up 32 bits divided up
according to the class of the address (A,B,C). The port identifier is a 16
bit number significant only within a single host.
(By convention port numbers 0..511 are reserved and are used for well
known services e.g. telnet).

Sockets
Sockets are the programming abstraction provided by Unix to give access
to transport protocols or for local IPC. A socket provides a file descriptor
at each end of the communication link.

Distributed Systems © M. Sloman12Interaction Primitives

Java API for UDP Java API for UDP DatagramsDatagrams
Two Java classes:
DatagramPacket
Provides a constructor to make a UDP packet from an array of bytes

Another constructor is used when receiving a message. Methods
getData getPort, getAddress can be used to retrieve fields of
DatagramPacket
DatagramSocket
Methods send and receive for transmitting datagramPacket between
sockets. setSoTimeout for a receive to limit how long it blocks. If the
timeout expires it throws an interruptedIOException.
Tutorial http://java.sun.com/docs/books/tutorial/networking/sockets/
Coulouris Ch. 4

Bytes in Message Length of
message

Internet
address

Port
number

Distributed Systems © M. Sloman13Interaction Primitives

UDP ClientUDP Client
import java.net.*;
import java.io.*;
public class UDPClient{

public static void main(String args[]){ // args give message contents & destination hostname
DatagramSocket aSocket = null;
try { aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]); //convert name to IP addr.
int serverPort = 6789;
DatagramPacket request =

new DatagramPacket(m, args[0].length(), aHost, serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply);
System.out.println("Reply: " + new String(reply.getData()));

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());

} }

Distributed Systems © M. Sloman14Interaction Primitives

UDP ServerUDP Server
import java.net.*;
import java.io.*;
public class UDPServer { // echoes received data

public static void main(String args[]){
DatagramSocket aSocket = null;
try{

aSocket = new DatagramSocket(6789); // create socket at agreed port
byte[] buffer = new byte[1000];
while(true){

DatagramPacket request = new DatagramPacket(buffer, buffer.length);
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);

}
}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e) {System.out.println("IO: " + e.getMessage());

} }

Distributed Systems © M. Sloman15Interaction Primitives

Client Process X ServerProcess Y

send (Y,request)

receive (r,reply)

src = receiveany (request)
reply =

service(request.data)

send (src, reply)

request

reply

Client Server InteractionsClient Server Interactions

Request-reply is used to implement client - server communication
The Process Y address must be known to all client processes. This is
usually achieved by publishing it in a nameserver.
E.g. HTTP GET and POST

Assuming blocking receive, how many message buffers required at the
server for N clients?

Distributed Systems © M. Sloman16Interaction Primitives

Message Passing SummaryMessage Passing Summary
Although message passing systems encourage encapsulation and information
hiding, OS level message interaction primitives e.g., sockets are considered
as the assembly language level of distributed systems. They are considered
too low-level an abstraction to be productively used by programmers.

◊ Message passing systems do not deal with the problems of marshalling a
set of data values into a single contiguous chunk of memory which can be
sent as a message.

◊ Data types are represented in memory in different ways by different
machines and by different compilers. Message passing does not address
this heterogeneity.

◊ Programming paradigms such as client-server is cumbersome.
◊ Component interface is not explicit – many different types of messages

may be received by a process into a single message variable
However

• Asynchronous message passing permits parallelism
• Message passing is the fundamental means of interacting in distributed

systems and can be used to implement higher level primitives such as
Remote Procedure Call or Object invocation

Distributed Systems © M. Sloman17Interaction Primitives

Remote Procedure Call (RPC)Remote Procedure Call (RPC)
Basic message passing leaves a lot of work for the programmer when
implementing client-server interactions e.g. constructing messages,
transforming data types for heterogeneous systems, RPC is a technique
which helps to reduce the effort required to program such interactions.
Essentially, an attempt is made to make a call to a remote service look
the same as a call to a local procedure. The parameters to the call are
carried in a request message and the results returned in a reply message.
Since all imperative languages have a procedure calling mechanism,
RPC integrates well with conventional programming languages.
Of course since calls to procedures implemented remotely can fail in
different ways to procedures implemented locally, the semantics of an
RPC are different from those of a local procedure.
Birrel A.D. and Nelson B.J. (1984). Implementing remote procedure calls.
ACM Transactions on Computer Systems, vol. 2, pp. 39-59.

Distributed Systems © M. Sloman18Interaction Primitives

Node A Node B

RPC InteractionsRPC Interactions

Client is suspended until the call completes.
Parameters must be passed by value since Client and Server
processes do not share memory and consequently Client pointers
have no meaning in Server address space.

mult(a,b,Res)

suspended

continues

Client Process ServerProcess

request(a,b)

reply(Res)

mult(a,b,Res)
Res = a* b

return

Distributed Systems © M. Sloman19Interaction Primitives

RPC InteractionsRPC Interactions
Stub Procedures

Client has a local stub for every remote procedure it can call
Server has local stub (skeleton) for every procedure which can be called
by a remote client.
These can be generated automatically from the interface specification.

Performs:
Parameter marshalling (packing) - assemble parameters in
communication system messages
Unpacking received messages and assigning values to parameters.
Transform data representations if necessary
Access communication primitives to send/receive messages.

What failures must RPCs cope with?

Distributed Systems © M. Sloman20Interaction Primitives

Interface Definition Language (IDL)Interface Definition Language (IDL)
IDL is a data typing language used to specify the interface operations and
their parameters.
The following Pseudocode example shows how RPC is used

interface calc
{

void mult ([in] float a, [in] float b, [out] float Res);
void square ([in] float a, [out] float Res);

}

The IDL compiler uses this interface definition to generate the code for
both client and server stubs in calc.idl.
The above assumes multiple in and out parameters but Sun RPC is more
primitive and allows only a single input parameter and a single result
although these may be complex data structures.

Distributed Systems © M. Sloman21Interaction Primitives

Nameserver

Server S

export
“Calculator”

Server exports a
reference to the interface
to a nameserver .

Client
import

“Calculator”

Client imports reference
from the nameserver.

BindingBinding
Binding maps an RPC interface used by a client to the implementation of
that interface provided by a server.

* How do you bind to the nameserver?

Distributed Systems © M. Sloman22Interaction Primitives

Calculator Client CodeCalculator Client Code
The following shows fragments of client code using the calc interface

#include “calc.idl”
void main() {

status = import (calc c, “calculator”, nameserverAddress);

c.mult(1.2, 5.6, Res);

Print (Res);
}

Lookup calculator in nameserver and bind to c

Use remote procedure reference c
to invoke mult operation

Distributed Systems © M. Sloman23Interaction Primitives

Calculator Server CodeCalculator Server Code
The following shows fragments of server code using the calc interface.

#include “calc.idl”

void main() {
status = Export (calc, “calculator”, nameserverAddress);
status = RpcServerListen ();
//tells runtime system that server is ready to receive calls.

}

// implementation for interface procedures
Void mult (float a, float b, float Res) {

Res = a * b;
}

void square (float a, float Res) {
Res = a * a;

}

Distributed Systems © M. Sloman24Interaction Primitives

RPC Election Service RPC Election Service
Specify an RPC interface to an Election Service which
allows a client to both query the current number of
votes for a specified candidates and vote for one of
the set of candidates. Each client has a voter number
used for identification in requests and candidates are
identified by a string name.

Distributed Systems © M. Sloman26Interaction Primitives

RPC FailuresRPC Failures
Remote procedure calls differ from local procedure calls in the ways

that they can fail.

Client machine
may crash
during call

Server machine
may crash before
request is received
or during execution
before reply is sent.

Duplicates or
messages may be
lost as a result
of comms failure
or corruption

call

return

Client

procedure
execution

Server
request

reply

Name server failure - cannot locate server

Distributed Systems © M. Sloman27Interaction Primitives

RPC FailuresRPC Failures

A server may also fail and quickly recover in-between client calls without
the client knowing, but this may result in loss of state information
pertaining to the client interaction - so the client needs to know about
server epochs.

Orphan executions – result from a client crashing while the server is
executing the procedure. For long running procedures, to avoid wasting
resources, the server may wish to be informed of client crashes so that it
can abort orphan executions.

A number of different call semantics are possible depending on the fault-
tolerance measures taken to overcome these failures.

Distributed Systems © M. Sloman28Interaction Primitives

Maybe (BestMaybe (Best--Efforts) Call SemanticsEfforts) Call Semantics
bool call (request, reply) {

send(request);
return receive(reply,T) // return false if timeout; }

No fault tolerance measures!! If the call fails after timeout, the caller
cannot tell whether the procedure was executed or whether the request
message was lost or the server crashed. On the other hand the call
may have been executed and the reply message lost.
This is known as maybe call semantics because if the call fails the
client cannot tell for sure whether the remote procedure has been called
or not. If the call succeeds, the procedure will have been executed
exactly once if using a communication service which does not generate
duplicate messages.
Lightweight but leaves issues of state consistency of the server, with
respect to the client, up to the application programmer.

What applications can this be used for?

Distributed Systems © M. Sloman29Interaction Primitives

AtAt--LeastLeast--Once Call SemanticsOnce Call Semantics
bool call (request, reply) {

int retries = n;
while(retries--) {

send(request);
if (receive(reply,T)) return true; }

return false; // return false if timeout; }

Retries up to n times – if the call succeeds then procedure has been executed
one or more times as duplicate messages may have been generated.
If the call fails, a permanent communication failure (e.g., network partition) or
server crash is a probability.
Useful for idempotent server operations i.e they may be executed many times
and have the same effect on server state as a single execution.
Sun RPC supports this semantic since it was originally designed for NFS in
which the file operations are idempotent and servers record no client state. A call
may thus succeed if the server has crashed and recovered within time n * T.

Distributed Systems © M. Sloman30Interaction Primitives

AtAt--MostMost--Once Call SemanticsOnce Call Semantics

This guarantees that the remote procedure is either never executed
or executed partially (due to a server crash) or once. To do this, the
server must keep track of request identifiers and discard
retransmitted requests that have not completed execution. On the
other hand, the server must buffer replies and retransmit until
acknowledged by the client.
Most RPC systems guarantee at-most-once semantics in the
absence of server crashes.

Why in the absence of server crashes?

Distributed Systems © M. Sloman31Interaction Primitives

Transactional Call SemanticsTransactional Call Semantics
(Zero or Once)

This guarantees that either the procedure is completely executed or it is
not executed at all. To ensure this, the server must implement an atomic
transaction for each RPC i.e., either the state data in the server is
updated permanently by an operation taking it from one consistent state
to another or it is left in its original state, if the call is aborted or a failure
occurs. This requires two phase commit type of protocol.

Distributed Systems © M. Sloman32Interaction Primitives

Election Service ImplementationElection Service Implementation

Give a pseudocode implementation for the Election Service
(server only) which would permit the interface to be invoked
using an RPC mechanism. The RPC implementation supports
at-least-once calling semantics but clients must only vote
once.

Distributed Systems © M. Sloman34Interaction Primitives

RPC SummaryRPC Summary
Interaction primitive similar to but not the same as well known procedure
call

different local and remote primitives
cannot move co-located components after compilation

May result in deadlock

call (B, ..)
Process A Process B

call (A, ..)

Distributed Systems © M. Sloman35Interaction Primitives

RPC SummaryRPC Summary
◊ Often specific to a particular programming language or operating

system
◊ RPC calls suspend client for

network roundtrip delay + procedure execution time
◊ Not suitable for multimedia streams or bulk data transfer
◊ Not easy to use
◊ No reuse of interface specifications
◊ Servers are usually a heavyweight OS process.

