
Object InteractionObject Interaction

Object interaction vs RPC
Java Remote Method Invocation (RMI)
RMI Registry
Security Manager

Distributed Systems © M. Sloman1Object Interaction

IntroductionIntroduction
Objective
To support interoperability and portability of distributed OO applications
by provision of enabling technology

References
Latest Java documentation from http://java.sun.com/
Java Remote Method Invocation Specification JDK 1.4
Tutorials:

http://java.sun.com/docs/books/tutorial/rmi/index.html
http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html

Couloris ch. 5, Boger ch. 4, Tanenbaum 2.3

Distributed Systems © M. Sloman2Object Interaction

Object Interaction vs. Object Interaction vs. RPCsRPCs
Encapsulation via fine to medium grained objects
(e.g. threads or C++ objects)
Data and state only accessible via defined interface operations
RPC based systems encapsulation via OS processes
Portability of objects between platforms
RPC clients and servers are not usually portable

Typed interfaces
Object references typed by interface bind time checking
RPC interfaces often used in languages which do not support type checking

Object can support multiple interfaces (depending on platform)
RPC components have single interface

Support for inheritance of interfaces
Use inheritance to extend, evolve, specialise behaviour.
New server objects with extended functionality (subtypes) can replace existing
object and still be compatible with clients.
RPC replacements must have identical interface

usually no inheritance.
Distributed Systems © M. Sloman3Object Interaction

Object Interaction vs. Object Interaction vs. RPCsRPCs (2)(2)
Interaction Types
Two-way synchronous invocation c.f. RPC – Java

Pass objects as invocation parameters (Java only)

Parameterised invocation exceptions Simpler error handling

Location transparency
Service use orthogonal to service location

Access transparency
Remote and co-located services accessed by same method invocation.
RPC only used for remote access.

Use invocations to create/destroy objects
RPC systems (often) use OS calls to create/destroy processes

Distributed Systems © M. Sloman4Object Interaction

InternetSend and receive
messages

Transport
Layer

Transport
Layer

TCP/IP

Java RMI ArchitectureJava RMI Architecture

See http://java.sun.com/docs/books/tutorial/rmi/index.html

Remote Reference
Layer

Translate local reference
to stub into remote
reference to object on
local or remote server,
e.g. unicast

or multicasts to replicas

Remote Reference
Layer

Stub

Marshall & unmarshall
parameters – serialisation

Skeleton

Client
Program

Server
Program

Logical
Interaction

Distributed Systems © M. Sloman5Object Interaction

Server

Interface

Client
Invocation

Host

Local

Server

Interface
Invocation

Host

Remote

Transparent InvocationTransparent Invocation

Pass objects by reference or
by value as parameters
Download code required for
remote invocation
– dynamic stub

Distributed Systems © M. Sloman6Object Interaction

Java InterfacesJava Interfaces
Java is a class-based OO programming language
Supports single inheritance
A Java interface is essentially an abstract class and defines a
new type

a collection of methods (and constant definitions)
methods and constants declared in an interface are
implicitly public

An interface may be derived from one or more further
interfaces
A class can implement one or more interfaces

as well as being derived from at most one other class

Distributed Systems © M. Sloman7Object Interaction

Remote Interface 1Remote Interface 1
A type whose interfaces may be invoked remotely is defined as a
remote interface
A remote interface extends the java.rmi.Remote and must be public
The methods of a remote interface must be defined to throw the
exception java.rmi.RemoteException for comms failures

import java.rmi.*
public interface Calculator extends Remote {

public long add(long a, long b)
throws RemoteException;

public long sub(long a, long b)
throws RemoteException;

public long mul(long a, long b)
throws RemoteException;

public long div(long a, long b)
throws RemoteException;

}

Distributed Systems © M. Sloman8Object Interaction

Client Server InteractionClient Server Interaction

calc Client Registry

calcStub.
class

Skeleton

calcImpl.class

Client Server

Lookup(“rmi://…../calculator”)

Stub address
Get stub

Stub Stub
Invoke method

calc Response

Note: skeleton not needed in later versions of Java

Distributed Systems © M. Sloman9Object Interaction

Remote ObjectsRemote Objects
Remote objects are instances of classes that implement remote
interfaces eg. CalculatorImpl implements Calculator
Coulouris calls them servants
A remote object class simply implements the methods defined in the
remote interface
Remote objects execute within a server which may contain multiple
remote objects
An object is implicitly exported if its class derives from
java.rmi.server.UnicastRemoteObject
Note operations invoked on remote objects, not on server containing
them.

Distributed Systems © M. Sloman10Object Interaction

Remote Object ImplementationRemote Object Implementation
import javarmi.*
public class CalculatorImpl

extends UnicastRemoteObject
implements Calculator {

public CalculatorImpl() throws RemoteException {
super();

}

public long add(long a, long b) throws RemoteException {
return a + b;

}
public long sub(long a, long b) throws RemoteException {

return a - b;
}

. . .
}

UnicastRemoteObject constructor
exports the object as single server
– not replicated

Call to super activates code in
UnicastRemoteObject
for RMI linking & object initialisation

Distributed Systems © M. Sloman11Object Interaction

Server ImplementationServer Implementation
A server program creates one or more remote objects as part of mainline
code. For simple single object applications it is possible to combine
server and object implementation.
A server may advertise references to objects it hosts via the local RMI
registry
Registry allows a binding between a URL and an object reference to be
made and subsequently queried by potential clients
The server listens for incoming invocation requests which are dispatched
to appropriate object.

Note: there may be multiple servers and multiple clients within an
application
Client is not created within a server.

Distributed Systems © M. Sloman12Object Interaction

Server Mainline codeServer Mainline code
import java.rmi.Naming;
public class CalculatorServer {
public static void main(String args[]) {

if System.getSecurityManager() == null {
System.setSecurityManager (new RMIsecurityManager ());

}
try {
Calculator c = new CalculatorImpl();
Naming.rebind("rmi://localhost/CalcService", c);
}
catch (Exception e) {
System.out.println("Trouble: " + e);

}
}

}

Create server object

Register it with the local registry: URL-reference binding

Create security manager

Distributed Systems © M. Sloman13Object Interaction

Calculator Client ImplementationCalculator Client Implementation
import java.rmi.*;
import Calculator;
public class CalculatorClient {

public static void main(String[] args) {
try {

if System.getSecurityManager() == null {
System.setSecurityManager (new RMIsecurityManager ());
Calculator c = (Calculator) Naming.lookup(
"rmi://remotehost/CalcService");

System.out.println(c.sub(4, 3));

. . . other calls ;
} catch (RemoteException e) {
System.out.println(“ Exception:“ + e);

}
}

Get ref to CalcServer stub from remote registry

Invoke sub operation on remote calculator

Distributed Systems © M. Sloman14Object Interaction

RMIRegistryRMIRegistry
Must run on every server computer hosting remote objects
Advertises availability of Server’s remote objects
name is a URL formatted string of form //host:port/name
Both host and port are optional
lookup (String name) called by a remote client. Returns remote
object bound to name
bind(String name Remote obj) Called by a server – binds name to
remote object obj
Exception if name exists
rebind(String name Remote obj) binds name to object obj
discards previous binding of name (safer than bind)
String [] list() returns an array of strings of names in registry
unbind(String name) removes a name from the registry

Distributed Systems © M. Sloman15Object Interaction

Using RegistryUsing Registry
Server remote object making itself available
Registry r = Locateregistry.getRegistry();
r.rebind (“myname”, this)

Remote client locating the remote object
Registry r =
LocateRegistry.getRegistry(“thehost.site.ac.uk”);

RemObjInterface remobj =
(RemObjInterface) r.lookup (“myname”);

remobj.invokemethod ();

Distributed Systems © M. Sloman16Object Interaction

RMI Security ManagerRMI Security Manager
Single constructor with no arguments
System.setSecurityManager(new RMISecurityManager());
Needed in server and in client if stub is loaded from server
Checks various operations performed by a stub to see whether they are
allowed eg

Access to communications, files, link to dynamic libraries,
control virtual machine, manipulate threads etc.

In RMI applications, if no security manager is set, stubs and classes can
only be loaded from local classpath – protect application from
downloaded code

Distributed Systems © M. Sloman17Object Interaction

Parameter PassingParameter Passing
Clients always refer to remote object via remote interface type not
implementation class type
A reference to a remote object can be passed as a parameter or returned
as a result of any method invocation
Remote objects passed by reference – stub for remote object is passed
Given two references, r1 and r2, to a remote object (transmitted in
different invocations):

r1 == r2 is false different stubs
r1.equals (r2) is true stubs for same remote object

Parameters can be of any Java type that is serializable
primitive types, remote objects or objects implementing
java.io.serializable
Non-remote objects can also be passed and returned
by value i.e. a copy of the object is passed
new object created for each invocation

Distributed Systems © M. Sloman18Object Interaction

Garbage Collection of Remote ObjectsGarbage Collection of Remote Objects
RMI runtime system automatically deletes objects no longer
referenced by a client
When live reference enters Java VM, its reference count is
incremented
First reference sends “referenced” message to server
After last reference discarded in client “unreferenced”
message sent to server.
Remote object removed when no more local or remote
references exist.
Network partition may result in server discarding object when
still referenced by client, as it thinks client crashed

Distributed Systems © M. Sloman19Object Interaction

Dynamic InvocationDynamic Invocation
Single method interface
Invocation identifies method to be called + parameters
User programs marshalls/demarshalls parameters
Optional invocation primitive for object environments such as CORBA
and for Web services.

public byte[] doOperation (RemoteObjectRef o,
int methodId, byte[] arguments)

Sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked
and the arguments of that method.
Server has to decode request and call method

Distributed Systems © M. Sloman20Object Interaction

SummarySummary
RMI provides access transparency, object oriented concepts for IDL
specification, object invocations and portability.
Inheritance supports reuse high level programming concepts
High implementation overheads due to

Byte code interpretation in Java
Marshalling/Demarshalling of parameters
Data copying
Memory management for buffers etc.
Demultiplexing and operation dispatching

