Wireless Sensor Networks: Background and Introduction

Anandha Gopalan 01/12/08

Lecture 1: Outline

- Basic background
- A deeper look
 - Sensor node hardware
 - Example devices
 - Sensor node software
 - Operating system
 - Programming language
- Research challenges
- Conclusion

Outline

- Lecture 1
 - Basic background and Introduction
- Lecture 2
 - Where are we now ? A look at some current research
- Lecture 3
 - Further discussion about current research and a look at future direction and challenges

2

Overview

- What are wireless sensor networks (WSNs) ?
 - A WSN is a network consisting of a large number of low-cost, low-power multifunctional sensor nodes
 - Densely deployed to monitor a specific state of the environment
 - Sensor node has a wireless link, an on-board processor for basic computation and a sensor

Goals

- Provide a link between the physical world and data networks
- An ability to
 - Access sensors deeply embedded in the environment
 - Observe previously unobservable environmental states

Characteristics

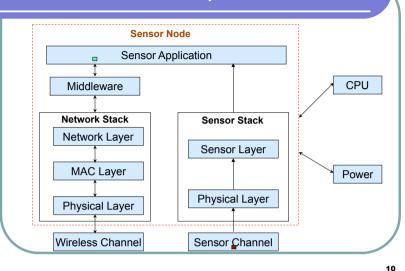
- Distributed
- Quickly deployable and disposable
- Scalable, rapidly configurable
- Coordinated and synchronized
- Affordable and cost-effective

5

WSNs vs. Ad hoc networks

		WSNs		Ad hoc Networks
		lreds of sands of nodes	•	Tens to hundreds of nodes
	 Dens 	ely deployed	•	Not densely deployed
	powe mem		•	Limited with respect to the capability of the machine being used
	 Generally stationary after deployment 		•	Nodes are usually fully mobile
	 Deployed for a specific reason Can optimise by choosing the corr set of sensors to 		•	Networks are created on the fly

Applications

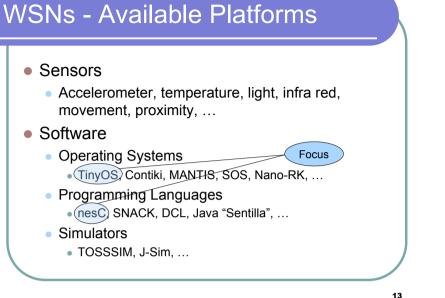

- Home automation (smart homes)
- Environmental monitoring (air, water, surveillance)
- Habitat monitoring
- Seismic monitoring
- Military applications
- Traffic control
- Emergency response
- Building climate control

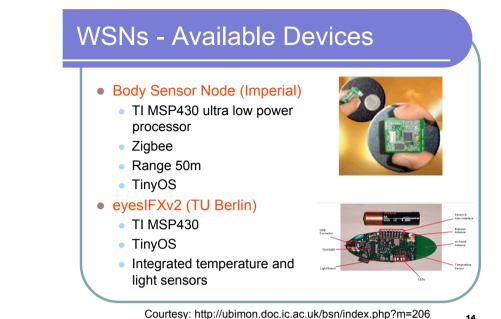
Lecture 1: Outline

Basic background

- A deeper look
 - Sensor node hardware
 - Example devices
 - Sensor node software
 - Operating system
 - Programming language
- Research challenges
- Conclusion

Sensor Node Components




WSNs - Available Platforms

- Wireless Network
 - Zigbee
 - WirelessHART
 - Extension of the HART protocol suite
 - 6lowpan
 - ISA100
 - New standard under development, to be finished in 2009
 - All of the above are based on the IEEE 802.15.4 standard

IEEE 802.15.4 Standard

- 16 channels in the 2450 MHz band, 10 channels in the 915 MHz band, and 1 channel in the 868 MHz band
- Over-the-air data rates of 250 kbps, 40kbps and 20 kbps
- Allocated 16 bit short or 64 bit extended addresses
- CSMA/CA channel access
- Energy detection and link quality indication

15

WSNs - Available Devices

Parasitic node (MIT)

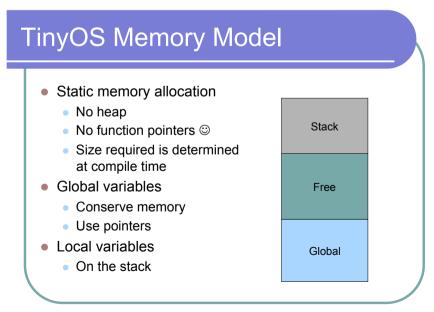
- Silicon Labs C8051F311 microcontroller
- 2 axis accelerometer. microphone, active IR proximity sensor. temperature, light sensor ...
- Motorola FS OnCOre single chip GPS module
- iMote (Intel)
 - ARM core
 - Bluetooth
 - Zeevo module

TinyOS

- Event based operating environment designed for use with embedded networked sensors
- Open source
- Programming language is nesC
- http://www.tinyos.net

TinyOS

Characteristics


- Small footprint
- Low system overhead
- Low power consumption
- Only one process at a time
- Single linear address space
- No dynamic memory allocation

Lecture 1: Outline

- Basic background
- A deeper look
 - Sensor node hardware
 - Example devices
 - Sensor node software
 - Operating system
 - Programming language
- Research challenges
- Conclusion

18

17

TinyOS Communication Model

• Uses Active Messaging (AM)

- Light weight architecture
- Each Active Message contains
 - User-level handler to be invoked on arrival
 - Data payload passed as argument
- Event-centric nature
 - Enables network communication to overlap with sensorinteraction
- Handler functions
 - Extract message quickly from network
 - Provide data for computation/forward data
 - Prevent network congestion

21

nesC

- Programming language for networked embedded systems
- Extends a subset of C
- "Static" language
 - No dynamic memory allocation
 - Call-graph is fully known at compile-time
- Supports and reflects TinyOS's design
- nesC applications are built out of *components* with well-defined, bidirectional *interfaces*

TinyOS Communication Model

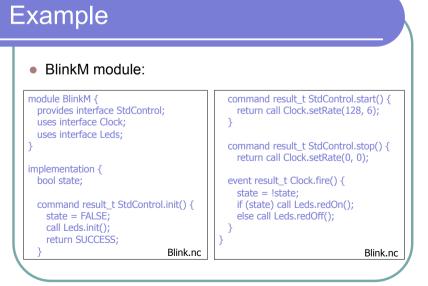
AM Component

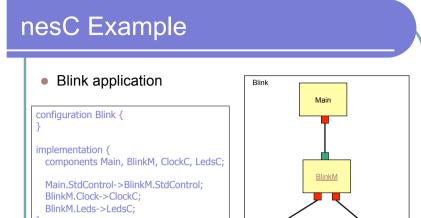
- Accepts commands from application
- Fires events to message handlers
- Event to signal completion of transmission
- Send command includes
 - Destination Address, Handler ID, Message body
- Address checking and dispatching
- Relies on components for packet transmission
- Radio Packet
 - 30 Byte fixed length packet
 - 16-bit CRC check

22

nesC Components

- nesC applications are built by writing and assembling components
- Two types: modules and configurations
 - Modules
 - Provide application code, implementing one or more interfaces
 - Configurations
 - Used to wire other components together, connecting interfaces used by components to interfaces provided by others.
 - Every nesC application is described by a *top-level configuration* that wires together the components used
- Contains frame (internal state), functions (implementation of commands, events and tasks)
- Provides and uses interfaces

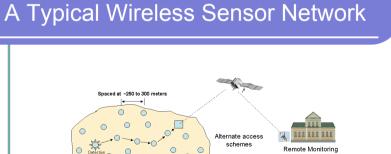

nesC

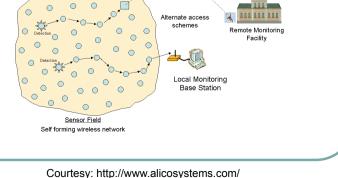

Interfaces

- Are bi-directional
- Define interaction boundary between components
- Declare a set of functions
 - Commands (call down): implemented by provider
 - Events (call up): implemented by user
- A single component may use of provide multiple interfaces
 - Can also have multiple instances of the same interface
- For a component to call a command in an interface, it must implement the events of that interface

25

27


Courtesy: Radu Stoleru, University of Virginia


ClockC

Blink.nc

26

LedsC

Lecture 1: Outline

Basic background A deeper look Sensor node hardware Example devices Sensor node software Operating system Programming language Research challenges Conclusion

29

Conclusion

- Wireless sensor networks are an emerging technology with enormous potential
- As well as being implemented and used in various areas, they have found a niche in research as well
- Some sample of current research will be covered in the next lecture

Image: Contract of the second system Image: Contract of the seco

- Data Storage
- Data Dissemination
- Power Management
- Fault tolerance
- Scalability
- Network Topology
- Security

32

30