Wireless Sensor Networks: Research Challenges

Anandha Gopalan 09/12/11

Data Storage

- What data needs to be stored ?
 - About the environment being monitored
 - Events generated
 - Generally application specific
- Where should it be stored ?
- Nodes in the network
- Base station
- How long should it be stored ?
 - Depends on how "fresh" the data needs to be
 - Directly proportional to how often new data is generated

Lecture 2: Outline

• Research Challenges

- Data Storage
- Data Dissemination
- Power Management
- Conclusion

Data Storage

- Base Station Storage
 - Events are sent to base stations where queries are issued and evaluated
 - Best suited for continuous queries
- In-Network Storage (INS)
 - Events are stored in the sensor nodes
 - Best suited for ad-hoc queries
 - Most INS schemes are Data-Centric Storage (DCS) schemes
 - Event data are "named" and stored by name

In-Network Storage

- Treat sensor network as distributed database
 - Use a simple SQL-like language to query the WSN (e.g.: TinyDB/TinySQL)
 - Allows for efficient in-network aggregation and retrieval of query results
- Examples include:
 - Geographic Hash Table (GHT)
 - Distributed Index for Multi-Dimensional data in Sensor Networks (DIM)
 - Spatio-Temporal Data-Centric Storage for Real-Time Sensornet applications (STDCS)

5

GHT

• Two operations:

- Put(k, v) stores value v (observed data) according to key k (associated with the name of the data)
- Get(k) retrieves stored value associated with key k
- Hash key k into geo coordinates
 - Store and retrieve events for that key at the sensor closest to the *location*
 - Spreads key space storage load evenly across network

GHT

- Hashes event names to a unique geographic location for storage and retrieval
- Built on geographic routing

GHT

- Uses GPSR (Greedy Perimeter Stateless Routing) as its underlying routing algorithm
 - Geographic routing protocol
 - Packets are addressed to a particular location
 - Greedy forwarding
 - Forward packets to nodes that are always progressively closer to the destination

GHT

Shortcomings

• GHT

- Hot-spots
 - A large percentage of events is mapped to few sensor nodes

STDCS

Goal of STDCS

 Load-Balancing of storage load among sensors

Features

- Temporally evolving spatial indexing scheme to balance query load among sensors
- Dynamic query hotspot detection and decomposition

STDCS

- Network is divided into zones
 - Each node is mapped to one zone
- Multi-dimensional ranges are hashed to a unique binary code
 - Binary codes are mapped to unique geographic zones for storage and retrieval

STDCS

STDCS

- Allows for switching the zones based on the formation of hotspots
 - Continuously keeping track of hotspots using the Average Querying Frequency (AQF) metric

14

Shortcomings

STDCS

 Overkill, if there does not seem any reason for a hot-spot

Data Dissemination

Requirements

- Application specific
- Data centric
- Capable of aggregating data
- Energy efficient

Data dissemination - Classification

Directed Diffusion

- Data is *named* using attribute-value pairs
- Interests are disseminated throughout the WSN
 - Sets up gradients to "draw" events from sources to sinks along multiple paths

Directed Diffusion

- Sink may *reinforce* one particular neighbour
 - For higher data rate
 - Shown as the data path in the previous slide
- Negative reinforcement to "repair" degraded links
 - Re-sending interest with lower data rate

21

Motivation

- Idle energy dominated energy consumption
- Solution
 - Put redundant nodes in sleep mode by using a virtual grid
 - Divide network into small virtual grids using location information
 - At any time only one device per grid is active
 - All nodes in adjacent grids can communicate with each other

Data Dissemination Drawbacks

Directed Diffusion

- High communication cost
- Reinforcement may lead to many high quality paths (not needed)
- High cost of set-up if interests change frequently
 Real-time sensornets
- GAF
 - Duty cycle is based on application and system-level information
 - GAF decision to turn radio on/off is independent of routing protocols
 - Packet loss
 - GAF can inform routing protocol of impending suspension
 - What if the only node in a grid dies ?

Conclusion

- Focussed on Research Challenges
 - Data Storage
 - Data Dissemination
- Focus of next lecture
 - Power management
 - Further discussion about current research and a look at future direction and challenges

26

