
Morris Sloman
Room 572

Architecture Distributed Systems © M. Sloman 1

Architecture Distributed Systems © M. Sloman 2

What is a distributed system?

How does it provide these
advantages?

How can one construct or use
such a system?

What are the design issues?

Architecture Distributed Systems © M. Sloman 3

1.  Overview of Distributed System Architecture

2.  Distributed Components and their Interaction

3.  RPC and Remote Invocation Implementation

4.  Security

Architecture Distributed Systems © M. Sloman 4

!  Distributed Systems: Concepts
and Design
G.Coulouris, J.Dollimore,
T.Kindberg Addison Wesley 2005
(4th ed).

!  Distributed Systems: Principles
and Paradigms 2nd edition,
A.S. Tanenbaum, M. Steen,
Pearson, 2006. (A)

!  Java in Distributed Systems, M.
Boger, Wiley 2001

! Cryptography & Network
Security 4th. ed. , Stallings,
Prentice-Hall, 2006

! Network and Distributed
Systems Management.
ed. Morris Sloman
Addison Wesley 1994

! What are distributed systems?
! Characteristics and benefits
! Where are they used?
! Basic software structure –“layers”
! Client Server Architectures
! What are the main design issues?

Definition

Applications

Architecture Distributed Systems © M. Sloman 6

!  A distributed system
consists of a collection of
autonomous computers
interconnected by a
computer network and
equipped with distributed
system software to form an
integrated computing facility.

Processes and Databases interact in order to cooperate to
achieve a common goal.

Processes co-ordinate their activities and exchange
information by means of messages transferred over a
communication network.

Communication
Network

Architecture Distributed Systems © M. Sloman 7

Distributed computer systems are critical for
functioning of many organisations:

Banks Transport Telecommunications

Architecture Distributed Systems © M. Sloman 8

!  Resource sharing " remote access to shared facilities
!  Fault tolerance " replication can remove single failure points
!  Concurrency " reduce response time by local processing

 " improve throughput by parallelism
!  Openness " vendor independence via clearly defined interfaces

 and use of standards
!  Scalability via multiple processors and multiple networks
!  Incremental extensibility
!  Modularity " simpler design, installation & maintenance
!  Flexibility " incremental change of function & adaptation to new

 requirements
!  Reflect application distribution
!  But no global time " difficult to support causality and consistency

Architecture Distributed Systems © M. Sloman 9

Required Functionality
Selective viewing of market data
Fast display management
Fast processing capabilities
Networking for intercommunication
Link between accounting & financial dealing
Risk management & hedging strategies
Use market data directly in analysis packages
Automatic record and bookkeeping

Required Properties
integrity " don’t lose data
reliability " don’t go down
speed " old news is not news
extensibility/scalability " system matches the business

Architecture Distributed Systems © M. Sloman 10

!  Integrated digital and video
!  Integrated data and news
!  Links to positions, clearing

and accounting
!  Paperless trading
!  Powerful workstations...

#  Colour charts, graphics,
#  Realtime analysis
#  Expert systems

Trader Workstations

Mainframe

Information
sources

Tokyo
New York
Hong Kong

Quote Server

DataBase !
Server

Printer Service

Architectural Approach
Data Broadcast and filtering
– tagged messages
“Clients” register interest in
particular kinds of data.
Receive relevant data when
broadcast, and filter out
other data.

Architecture Distributed Systems © M. Sloman 11

!  Very large scale – potentially millions of users
!  Share processing eg Seti@home, United Devices, Avaki, Akamai
!  ‘Share’ music files eg Gnutella, Kazaa
!  Collaboration e.g. Groove
!  Main problem is locating resources without centralised directory

Where is the
directory?

Hard to find
information

Publish and query to directory.

Get data from peers

Architecture Distributed Systems © M. Sloman 12

applications
Open (distributed) services

computer and network hardware
Operating system kernel services

Distributed Programming - middleware

Architecture Distributed Systems © M. Sloman 13

!  Open services:
#  support the introduction of new services
#  provide access to distributed services, including the coordination

required for remote resource use (sharing, protection, synchronisation,
recovery....)

#  e.g. Jini resource discovery,

!  Distributed programming support:
#  supports interaction (such as remote procedure call) for conventional

languages and support for special purpose languages.
#  e.g. Java RMI, RPC

Architecture Distributed Systems © M. Sloman 14

Viewpoint = abstract representation of a system
 NOT phases in lifecycle model

Enterprise Viewpoint
• Overall goals, policies & organisational structure
• Roles & activities within organisation(s)
• Policies & constraints regarding inter-organisation interactions
• Community: configuration of objects established to meet an objective

– specifies roles, relationships and policies
Information Viewpoint

• Modelling of information structures, information flows and knowledge
representation

• Includes constraints on data
• No distinction between manual & automated information processing

Architecture Distributed Systems © M. Sloman 15

Computational Viewpoint
• Programming functions – IPC, object interfaces
• Application program structuring – independent of computer system on

which it will run
• No distinction between processing & storage objects
• Includes configuration – object instantiation and bindings.

Engineering Viewpoint
• OS, communication system, database – implementation issues
• Provision of transparency mechanisms – fault tolerance, persistence

etc.
• Processors & networks are visible

Technology Viewpoint
• Realised components from which distributed systems are built.
• Particular OS (Unix, Windows), protocols (FTP, TCP/IP), processors

(Intel, sparc, ARM)

Architecture Distributed Systems © M. Sloman 16

Once start has been enabled by a command from the surface, the pump
runs automatically controlled by the water level as sensed by the high
and low level detectors. Detection of high level causes the pump to run
until low level is reached. The surface may deactivate the pump with a
stop command, and also query the status of the pump.

The pump is situated underground in a coal mine, and so for safety
reasons it must not be started or continue running when the percentage
of methane in the atmosphere exceeds a set safety limit. The pump
controller obtains information on methane levels by communicating with
a nearby environment monitoring station. As well as methane, this
station also monitors carbon monoxide and airflow velocity. The
environment monitoring station provides information to the surface and
other plant controllers as well as to the pump controller.

Architecture Distributed Systems © M. Sloman 17

Architecture Distributed Systems © M. Sloman 18

Data Flow Diagrams

Component Processes
describe the functions
of the system

Data flows = data type
 + direction

Architecture Distributed Systems © M. Sloman 19

pump cmd = (on, off)
level = (high, low)
methane = real
airflow = real
alarm = signal

environ status = methane + airflow + CO

operator cmd = (start, stop, status)

pump status = (stopped, lowstop, methanestop, running)

Architecture Distributed Systems © M. Sloman 20

Enterprise View
#  Specify requirements and identify interactions with the environment
#  Identify main processing components – processes or threads of control
#  Assume 1 process per device

Information View
#  Identify data flows – direction and data types (dictionary)
#  Ignore how interactions are initiated or types of interaction primitives

Computation View
#  Decide on interaction primitives
#  Decide on control flow i.e. whether data is pushed or pulled
#  e.g. whether controllers are polled or event driven
#  Specify component interfaces
 = interactions + signatures (parameter types)
#  Specify component functions in terms of outline code and data structures

Engineering View
#  Optimise and allocate to physical nodes

Architecture Distributed Systems © M. Sloman 21

The following design issues will be addressed in this course:

!  Communication: process interaction and synchronisation paradigms

!  Distributed system service provision

!  Security to maintain confidentiality and protect against unauthorised
access.

Architecture Distributed Systems © M. Sloman 22

! What are distributed systems – definition
! Why are they of interest – potential benefits
! Where are they used – applications

! Architecture
# Basic software structure “layers”
# Viewpoint decomposition

! The main design issues

