
Peer to Peer (P2P) Peer to Peer (P2P) 
NetworkingNetworking

What is peer to peer
P2P structures
seti@home
Napster
Gnutella
Pastry
Freenet
BitTorrent
JXTA Distributed Systems  © M.  Sloman1P2P

References References 
Chapter 10 Coulouris
Peer to Peer: Harnessing the Benefits of Disruptive Technologies, ed. By 
A. Oram, O’Reilly & Associates, 2001
P2P Networking: An Information Sharing Alternative, M Parameswaran, 
A. Susarla,  A Whinston, IEEE computer, July 2001 pp31-38
Pastry http://research.microsoft.com/~antr/Pastry/
BitTorrent:   http://www.bittorrent.com/
Project JXTA  www.jxta.org
www.openp2p.com

Distributed Systems  © M.  Sloman2P2P

What is Peer to Peer Networking?What is Peer to Peer Networking?
A wide-area, resource sharing network for sharing 

Processing, files, storage
All nodes are considered ‘equal’ – as opposed to client-server
Autodiscovery of peers
Resources at edge of network (in homes & offices) rather than centralised
managed servers. 

Users contribute resources
Must cater for intermittent availability of resources
‘Anti-establishment’ philosophy for some of the applications

Free music rather than pay for expensive CDs
Emphasis on anonymous users to prevent them being traced

Efficient algorithms needed for data placement across many nodes and 
subsequent access to data

Distributed Systems  © M.  Sloman3P2P

P2P P2P vsvs Distributed ProcessingDistributed Processing
Peer to Peer

Millions of nodes cooperate to 
achieve a common goal
Distribution of  resources are 
usually explicit but location not 
known
WAN based 
Home rather than enterprise based 
resource servers
No overall management – insecure 
resources
Intermittent connectivity –
probabilistic access
Application level protocols

Distributed Processing
Smaller numbers of nodes 
cooperate 
May provide a single virtual 
machine concept with transparent 
distribution
Mostly LAN based
Within a single or a few enterprises

Managed system – resources can 
be more trusted
Tries to provide deterministic 
access to resources
Middleware protocols supporting 
application level interactionNo fundamental difference 



Distributed Systems  © M.  Sloman4P2P

Overlay NetworksOverlay Networks

overlay edge

Distributed Systems  © M.  Sloman5P2P

Application Level Routing OverlayApplication Level Routing Overlay
Link = TCP or IP connection to ‘neighbour’
Neighbours may be chosen based on topology e.g. minimum delay 
(physical hop count)  
Globally Unique identifiers ( GUID) for nodes and stored objects

e.g. 128 bit  hash of object value by using SHA-1
Not limited by IP address space – GUID name space > 2 128

Object location randomised and divorced from network topology
Routing table updates can be synchronous or asynchronous with delays 
< 1 sec
Routes and objects can be replicated
Requests can be routed to find any replica
Used for DNS, Content distribution networks (CDN), application layer 
mutlicast and P2P applications

Distributed Systems  © M.  Sloman6P2P

P2P StructuresP2P Structures
Standard client-server - not P2P 

Server maintains 
data + directory

Centralised directory,  distributed data
eg Napster 

Decentralised directory + data
eg Gnutella, 
instant messaging 

Publish and query to 
directory.

Get data from peers 

Directory is 
point of 

vulnerability –
failure, attack, 

shut down

Where is the 
directory? 

Hard to find 
information

Distributed Systems  © M.  Sloman7P2P

Seti@HomeSeti@Home 11

http://setiathome.berkeley.edu/



Distributed Systems  © M.  Sloman8P2P

SETI@home 2SETI@home 2
Sharing of idle processors in home/work machines to analyse 
signals received from radio telescope
Works units of about 350Kb distributed redundantly to 3-4 
PCs to guard against failures and malicious nodes
Search for predefined patterns; signals that exceed a 
threshold are marked and stored in server database
Download application from centralised SETI server at Berkley
Request data and return results to server
> 5.2 m participants

Distributed Systems  © M.  Sloman9P2P

File Lookup ProblemFile Lookup Problem

Join: how to begin participating?
Broadcast a request
Well known site

Publish: how to advertise a file?
Centralised/ Replicated server
Local content list

Search: how to find a file?
Centralised/ Replicated directory
Broadcast request 
Distributed e.g. hash tables

Fetch: how to retrieve a file?
Point-to-point FTP
Distributed segment download

Distributed Systems  © M.  Sloman10P2P

Napster Napster 
‘Sharing’ of music – in reality an application for finding and downloading 
free MP3 versions of CD tracks 

Centralised, replicated Directory 
Napster provided directory of what users were providing + information on 
connectivity. Made money from advertising.
Users provided file storage and bandwidth
Direct file transfer between users > 60M users
Napster aided the infringement of copyright laws, although they did not 
store or copy the music files – eventually shut down 

Distributed Systems  © M.  Sloman11P2P

Gnutella 1Gnutella 1
Gnutella is a file sharing network with a decentralised index
See http://www.gnutelliums.com/
To join a Gnutella network, locate a suitable node by word of mouth or via 
various well know servers published on the web.
Each node maintains a list of other nodes it knows about (neighbours to 
which it has open TCP connections) - number of connections is a 
configuration option
Ping message are used to find out about neighbours and Query
messages to search for files
When a node receives a ping or query message it is multicast to all 
neighbours, except the one from which it received the message. 



Distributed Systems  © M.  Sloman12P2P

Gnutella 2 Gnutella 2 
Responses to ping and query return along the path by which they were 
generated.  
Every message has a 16 byte unique ID, and a node discards a message 
already forwarded. Node remembers message ID 
Node also remembers source from which request was received in order 
to route response which has same ID as request
Messages have a maximum Time to live (TTL) count of 7, decremented 
each time it is forwarded, to limit maximum propagation of multicast. 
When client gets responses to a query it chooses which to retrieve and 
then retrieves data directly from data source node using an HTTP get. 

Distributed Systems  © M.  Sloman13P2P

Gnutella MessagesGnutella Messages

Ping: used to join network and query for neighbours.  No  payload.
Any node receiving a Ping, multicasts it to its neighbours
Pong: response to a Ping. Payload contains IP address, port, number of 
files, size of files.  A Pong may be returned by nodes receiving the 
multicast ping.  
Query: used to locate resources. Payload = minimum link data-rate (2), 
and a variable length search criteria eg file name – can include wildcard 
characters *
Query_Hit: response to Query only generated by nodes where the query 
was successful. Payload = number of hits (1), IP/Port (6), link data-rate,(4), 
node identifier (16), list of hits consisting of index (4), file size (4).  It 
traverses the reverse path taken by the query 

Message
UUID

16

Function

1

TTL

1

Hops

1

Payload
length

4

Payload

variable Byte 
length

Distributed Systems  © M.  Sloman14P2P

The Gnutella The Gnutella ““algorithmalgorithm””

Really inefficient

Graph structure is transient

Distributed Systems  © M.  Sloman15P2P

Gnutella EvaluationGnutella Evaluation
High data-rate nodes tend to have more connections and act as a 
backbone
TTL limits scope of a search and number of visible nodes – gives 
scalability
Multicast Ping and Query generate very large traffic.  Could use caching 
from previous results to  reduce traffic.
Gnutella Pseudoanonymity

Ping and Query contain no addresses, but Pong and Query-hit do. 
Routes are only maintained for the time it takes for a query to ripple 
out and get responses.  Very difficult to trace who is searching for files.  
File store addresses are known and server nodes could log who is
accessing file – requires cooperation of server.
Needs distributed monitoring – difficult in large network

Multicast generates high bandwidth usage – very inefficient



Distributed Systems  © M.  Sloman16P2P

PastryPastry
Nodes & objects assigned 128 bit GUID computed by applying Secure 
Hash Algorithm to node’s public key or object’s name or stored state.

GUIDs randomly distributed in range 0 to 2128 -1
Provide no clue to value from which computed
Clashes between GUIDs for different nodes are unlikely

If GUID  identifies node currently active, message delivered to it else to 
node whose GUID is numerically closest
Delivery in O(log N) steps
Routing uses underlying transport to transfer message to node closer to 
destination (may involve many IP hops)
Pastry uses locality metric based on hop count or delay in underlying 
network to select appropriate neighbours when setting up routing tables

Distributed Systems  © M.  Sloman17P2P

Distributed Object Location and Routing in TapestryDistributed Object Location and Routing in Tapestry

publish(GUID) 
GUID can be computed from the object (or some part of it, e.g. its name). 
This function makes the node performing a publish operation the host for 
the object corresponding to GUID.

unpublish(GUID)
Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])
Following the object-oriented paradigm, an invocation message is sent to 
an object in order to access it. This might be a request to open a TCP 
connection for data transfer or to return a message containing all or part 
of the object’s state. The final optional parameter [n], if present, requests 
the delivery of the same message to n replicas of the object.

Distributed Systems  © M.  Sloman18P2P

Distributed Hash Table API in PastryDistributed Hash Table API in Pastry

put(GUID, data) 
The data is stored in replicas at all nodes responsible for the object 
identified by GUID.

remove(GUID)
Deletes all references to GUID and the associated data.

value = get(GUID)
The data associated with GUID is retrieved from one of the nodes 
responsible for it. 

Distributed Systems  © M.  Sloman19P2P

Simple Pastry Routing AlgorithmSimple Pastry Routing Algorithm
Each node stores leaf set –
vector L  (of size 2l) containing 
GUIDs and IP addresses of l 
nearest nodes above and l below 
its GUID
GUID space is circular:  0’s 
neighbour is 2128 -1
The dots depict live nodes.
The diagram illustrates the 
routing of a message from node 
65A1FC to D46A1C using leaf set 
information alone, assuming leaf 
sets of size 8 (l = 4). 
This is a degenerate type of 
routing that would scale very 
poorly; it is not used in practice. 

65A1FC
D13DA3

D467C4

D471F1

D46A1C

0 FFFF….F (2128-1) 



Distributed Systems  © M.  Sloman20P2P

Efficient Pastry Routing AlgorithmEfficient Pastry Routing Algorithm

Each Pastry node maintains a tree structured routing table  
giving GUIDs and IP addresses for a set of nodes spread 
throughout the entire range of 2128 possible values with 
increased density of coverage for GUIDs numerically close to 
its own.
For GUIDs represented as hexadecimal numbers, routing 
table has as many rows as hex digits in a GUID  = 128/4 = 32 
rows
Any row has 15 entries  - one for each possible value of  the 
nth hex digit excluding the value in the local node’s GUID
Each entry in table points to one of the potentially many 
nodes whose GUIDs have relevant prefix

Distributed Systems  © M.  Sloman21P2P

First 4 Rows of a Pastry Routing Table First 4 Rows of a Pastry Routing Table 

The n’s represent

Distributed Systems  © M.  Sloman22P2P

Pastry Routing AlgorithmPastry Routing Algorithm
if (destination is within range of our leaf set) 

forward to numerically closest member
else

if (there is a longer prefix match in table)
forward to node with longest match

else
forward to node in table which 
(a) shares at least as long a prefix
(b) is numerically closer than this node

Distributed Systems  © M.  Sloman23P2P

New Node JoinsNew Node Joins
Compute GUID = SHA (node public key) =X
Find a nearby pastry node & measure round trip delay to all its leaf 
nodes.  Choose one with lowest delay as nearest neighbour = A.
Send join (X) to A.  A routes this to Z which is numerically closest to X.
A, Z and any intermediate nodes (B, C, D etc) via which the message has 
passed, send the relevant parts of their routing tables and leaf node set to 
X.
X constructs routing table: 

First row = A’s first row but A & X will probably have different first digit
B has same first digit as X so use it’s second row, similarly 3rd row 
from C. 
Use Z’s leaf set, which should differ by only 1 member from Xs so can 
be used for initial value of leaf set.

X sends its routing table and leaf set to all nodes in the leaf set



Distributed Systems  © M.  Sloman24P2P

Locality SelectionLocality Selection
Pastry routing is highly redundant with many routes between a pair of 
nodes.
Entry in row i gives 16 nodes with i-1 initial hex digits that match the 
node’s GUID.  Received information from other nodes should give more 
than 16 candidate entries.   Measure delay to candidates and choose  
ones with lowest delay (or hop count).
Does not produce optimal routing table but simulations show only 30-50% 
longer than optimum.   

Distributed Systems  © M.  Sloman25P2P

Node Leaves or FailsNode Leaves or Fails
Node fails when immediate GUID neighbours cannot communicate with it.
Node detecting failure in its leaf set, finds another node closest to failed 
one, and requests a copy of its leaf set.  This will contain a partial overlap 
with the requesting node’s leaf set, so it finds one with a suitable value to 
replace the failed node.  
Reports failure to all neighbours in leaf set which perform similar update
Guarantees leaf set repair unless all fail simultaneously

Nodes send heartbeat messages at regular intervals to neighbouring  
nodes in leaf set – can be used to detect failure
Reliable message forwarding using timeouts and retransmissions also 
detects failures of nodes.  Failed nodes are replaced in table. 
For randomly selected small proportion of cases,  route to nodes with 
common prefix less than maximum length – bypasses malicious nodes 
giving incorrect routing information

Distributed Systems  © M.  Sloman26P2P

Pastry Performance Pastry Performance 
Simulation and Implementation on network of 52 nodes
Loss of 1.5in 100K messages assuming no IP losses due to non 
availability of destination
Loss of 3.3 in 100K message with IP loss rate of 5%
Delay increase in delivery time compared to normal UDP/IP delivery = 
80% for zero IP loss and 120% for 5% network IP  loss 
Overheads due to control and update traffic < 2 message per minute 
although much more for short sessions.

Distributed Systems  © M.  Sloman27P2P

Squirrel Web Cache Using PastrySquirrel Web Cache Using Pastry
Browsers can use centralised proxies to cache frequently accessed web 
pages.  Squirrel uses small part of resources of client workstations to do 
the same.
SHA function applied to URL to produce 128 bit GUID.  Node with closest 
GUID becomes object’s home node and caches copy of the object.  
Clients have a local Squirrel proxy process which manages local cache.  
If object is not in local cache a get is sent to home node, which may 
return a fresh copy or request one from the origin server
Evaluation showed 30-38% hit ratio but delay overheads in LAN based 
systems make it too slow.  However works well for WAN based server 
access.  Very low proportion of system resources used:  0.31 requests 
per min average per node.  



Distributed Systems  © M.  Sloman28P2P

FreenetFreenet
Used to store documents and offers anonymity to both publishers and 
clients accessing documents for freedom of information
Anonymous and survivable information storage
Clients must offer storage as well as using Freenet to store files 
Redundant storage  prevents loss of data due to attacks or failure
Files have a globally unique ID key (16bytes) – used for routing to find 
file. 
Files may be encrypted using different key
Privacy

Messages routed via chains not directly from source to recipient
Cannot tell whether neighbour in chain is intermediate or 
recipient/source.
Messages are encrypted and padded to standard length

See http://freenet.sourceforge.net/

Distributed Systems  © M.  Sloman29P2P

FreenetFreenet Requesting FilesRequesting Files
Node maintains routing table of subset of other nodes with keys it thinks it 
holds.
Node receives query and first checks own store for key.  If found returns 
file with tag identifying itself as source.  If not found it looks up 
numerically-closest key in its table and forwards request.  This node 
repeats actions.  If request eventually succeeds, the file is sent back 
along the reverse of the query path. Nodes along the path may cache a 
copy depending on its distance from the source.
Queries have a TTL count, decremented at each node.  If it reaches zero 
the query fails and an error message is returned.  If a query loops back it 
is rejected, and the sender tries the next-closest key.  If all keys fail it 
reports failure to its predecessor in the query chain which tries its next 
closest key and so on.
Requests home in closer until key is found.  Subsequent queries will 
follow the path taken by first query but may be satisfied by a cached copy 
along the way & queries for similar keys will also go to nodes which have 
successfully supplied data.

Distributed Systems  © M.  Sloman30P2P

FreenetFreenet -- Example QueryExample Query

Nodes that reliably answer queries gain routing table entries along all 
nodes in the chain and are contacted more often than nodes that do not
Graph structure adaptively evolves over time

new links form between nodes
files migrate through network

Anonymity through request chains

A

F E
D

C

B

1
3

7
6 5

4

2

8 10

11

12

query

No key, 
no other nodes,

reject
Detect loop, 

reject Key found,
return data

data

9

reject

Distributed Systems  © M.  Sloman31P2P

FreenetFreenet -- File InsertFile Insert
User assigns GUID Key and sends insert message with Key and TTL 
field indicating number of copies to be stored.
Node receiving insert checks if key already exists, if so returns files and 
insert fails, so user must choose another key and try again. If key not 
found, then node looks up closest key and forwards insert to 
corresponding node as for queries.
If an insert fails with a file returned, it is treated as the return from a query. 
Routing table is updated, file may be cached and forwarded upstream.
If TTL expires, without collision, an all-clear is returned upstream along 
the reverse path of the insert.  The user then send the file along the same 
path as the initial insert. Each node along the path updates its routing 
table setting the source of the data as the furthest downstream node in 
the chain where the insert message exceeded TTL.  
An insert follows the same path, updates routing tables, and stores files in 
the same nodes as a successful query.
Inserts of similar keys follow the same paths so similar keys cluster in 
nodes in those paths



Distributed Systems  © M.  Sloman32P2P

Signed Subspace KeySigned Subspace Key
Signed Subspacekey (SSK): personal namespace which can only be 
written by owner.  
User creates a subspace by generating a public/private key pair to 
identify it.  
Choose a short text description eg politics/us/bombings. 
Hash public key.  Hash text description, concatenate and hash again 

SSK ie SSK = H( H(text) + H(Kp) )
Private key used to sign file
To retrieve file you need public key and text description to generate SSK
Adding or updating file needs private key all files in a signed subspace 
are generated by same person ie owner of private key.

Distributed Systems  © M.  Sloman33P2P

Content Hash Key (CHK)Content Hash Key (CHK)
CHK = Hash (file contents)
Unique identifier, easy to authenticate.
Can easily identify  identical copies  of files  – same CHK
Need CHK to retrieve file not easy to retrieve files inserted by others. 
Combine SSK and CHK using indirect reference

Insert file using CHK
Insert indirect file containing CHK using a text description under SSK
Others can retrieve file knowing public key and text description
Original file can be updated which results in a new CHK which must be 
used for updating indirect file under SSK

SSK Key 

CHK key Actual File

Distributed Systems  © M.  Sloman34P2P

BitTorrentBitTorrent
Multimedia Content Distribution

Large files such as movies, clips etc.  - 25% internet traffic!
Focused on efficient fetching, not searching

Distribute the same file to all peers
Single publisher, multiple downloaders
Downloaders share downloaded segments

Motivation:
Popularity exhibits temporal locality (Flash Crowds)
CNN on 9/11, new movie/game release
Slashdot effect – popular website links to a smaller website within a 
news story

Employ “Tit-for-tat” sharing strategy
“I’ll share with you if you share with me”
Be optimistic: occasionally let freeloaders download
Necessary for starting download process

Distributed Systems  © M.  Sloman35P2P

BitTorrentBitTorrent OverviewOverview
1. Locate metadatafile called file.torrent e.g. via Google

Contains length, name, hash, URL of tracker
2. Query Tracker – join a torrent
3. Tracker provides randomly selected list of peers downloading:

Seeds: have entire file
Leechers: still downloading

4. Contact peers from list  to request data
5. Peers form P2P network

new leecher

4 data
request

3 peer list

1 metadata file

2 join

seed/leecher

website

tracker



Distributed Systems  © M.  Sloman36P2P

BitTorrentBitTorrent PiecesPieces
File is broken into pieces

Typically piece is 256 Kbytes – can have 16Kbyte sub-pieces
Download pieces in parallel
Advertise received pieces to peer list
Upload pieces while downloading pieces

Piece selection
At download start, select random pieces
Select rarest piece, so that available to others

Upload (Unchoke) Selection
Periodically calculate download rate
Select up to 4 peers for uploading that download at the highest rates

Optimistic Upload
Periodically (30sec) select a peer at random and upload to it
Continuously look for the fastest partners

Distributed Systems  © M.  Sloman37P2P

BitTorrentBitTorrent SummarySummary

Pros:
Works reasonably well in practice
Gives peers incentive to share resources
Avoids freeloaders

Cons:
Central tracker server needed to bootstrap swarm

Distributed Systems  © M.  Sloman38P2P

JXTA ToolsJXTA Tools
Java based toolset for implementing P2P applications
See www.jxta.org

Distributed Systems  © M.  Sloman39P2P

JXTA TechnologyJXTA Technology
Advertisement: XML description of peer, group, pipe or service
Asynchronous messages over UDP
Pipes are asynchronous, unidirectional channels for sending & receiving 
messages

Point-to-point connecting 2 peer endpoints
Propagate: one-to-many
Pipes can be bound to different peers at different times cf Unix pipes

Peer Discovery – finds advertisements via multicasts, references in 
messages, cascaded via intermediaries, using rendezvous points (peers 
holding information on other peers eg web site) 
Peer resolver: searches peers which have data repositories
Security via crypto library, authentication, peer group access control , 
SSL



Distributed Systems  © M.  Sloman40P2P

SummarySummary
P2P is essentially distributed resource sharing + hype
Home rather than enterprise based resources
Large-scale resource searching and download strategy are the most 
interesting aspects
Initial emphasis on ‘anti-establishment’ applications eg free MP3 music 
and freedom of information
Recent interest in commercial applications

Parallel processing using idle workstation within enterprise or on the 
net eg United devices Grid solution
Replicating file stores eg OceanStore
Distributed content management – searchable data distributed on user 
machines 
Instant messaging and VOIP
Collaboration based on ad hoc groups eg Groove


