
 1

RPC Based Election Service

Specify an RPC interface to an Election Service which allows a client to both query the
current number of votes for a specified candidates and vote for one of the set of candidates.
Each client has a voter number used for identification in requests and candidates are
identified by a string name.

Give a pseudocode implementation for the Election Service (server only) which would permit
the interface to be invoked using an RPC mechanism. The RPC implementation supports at-
least-once calling semantics but clients must only vote once. Explain the implications of the
RPC semantics on your implementation of the election server.

Election Service

interface election {

void vote (in int voterid, in char* candidate);
void query (in char* candidate, out int votecount); }

include election.idl

void main () {

 status = export (election, “electserver”, docnameserver);
 status = RPCServerListen ();

voted: array of booleans indexed by voterid of clients indicating
whether they have voted (could be a list);

votes: array of votes ‘indexed’ by candidate name

vote (voterid, candidate) {
 if not (voted [voterid]) {
 voted [voterid] := true;
 votes [candidate]++
 } else do nothing as candidate has voted }

query (candidates, votecount) {
 votecount := votes [candidate]; }

Both of these operations are idempotent in that one or more execution have the same effect,
so they can be repeated. Consequently they can be used with at-least-once semantics

