
Wired Geometric Routing

Jonathan Ledlie, Michael Mitzenmacher, Margo Seltzer
Harvard University

{jonathan,michaelm,margo}@eecs.harvard.edu

Peter Pietzuch
Imperial College London

prp@doc.ic.ac.uk

Abstract
Routing substrates for overlay networks are an important build-
ing block for large distributed applications. Many existing sub-
strates are based on a random identifier space and therefore do
not respect node locality when routing data. This can lead to
lower performance for locality-sensitive applications, such as
web caching, distributed gaming, and resource discovery.

This paper examines the problem of building a locality-aware
routing substrate on top of a locality-based coordinate system,
where the distance between coordinates approximates network
latencies. As a starting point we take the scaled θ-routing pro-
posal for geometric routing in a Euclidean space. We address
the practical problems of forming routing tables with imperfect
node knowledge and churn and examine query performance on
non-Euclidean data sets.

1 Introduction
Routing is a basic primitive that must be addressed in any dis-
tributed system. Over the previous decade, overlay networks
based on the random key paradigm (e.g. [22]) have become ubiq-
uitous; they have moved from the research playground to being
the core of several systems with millions of users (e.g. [2, 5]).
Routing with random keys is simple: destinations are defined in
the same key namespace as nodes; each node stores routing en-
tries that refer to other nodes across the key space; and nodes
forward messages to the neighbor whose key is closest to the
target key.

However, the performance of applications, such as distributed
web caching, scalable anycast, and resource discovery, often de-
pends on the latency and reliability of the paths taken by mes-
sages. For example, in a distributed multi-player game, it is im-
portant to host the game server at a node close to the centroid
of all client locations to ensure fairness in access latency. Sim-
ilarly, a web caching infrastructure will exhibit lowest latency
when client requests are routed to the closest existing cache.

While the random key paradigm has many intrinsic benefits,
such as load-balancing and resilience to churn, by its very nature
it does not respect physical geography or location of nodes when
routing data. To be sure, there exist techniques for augmenting
random key routing schemes with a limited degree of proxim-
ity (e.g. [20]), but random key routing destroys locality between
nodes when building routing tables.

In contrast to this dominant body of work on random key
routing, a series of theoretical papers have begun to examine
routing schemes for wired networks explicitly based on the
underlying physical topology [1, 9, 12]. Instead of assign-
ing random keys to nodes, these proposals assume that each
node has a d-dimensional network coordinate and that the
set of coordinates encode the positions of nodes in the net-
work [4, 18, 19, 21, 23]. Previous work made the assumption
that a coordinate substrate existed and asked: what algorithms
route on top of such a substrate efficiently? This paper begins
where this more theoretical research leaves off.

In this paper, we take a first look at both the practical prob-
lems associated with coordinate-based routing and the perfor-
mance one could expect from deployment on a distributed sys-
tem. In particular, we examine the challenges of (a) forming
and maintaining locality-aware routing tables, (b) routing to the
node nearest a coordinate (the analog of finding the root for
a distributed hash table query), and (c) the primary parameter
tradeoffs in coordinate-based routing.

The rest of the paper is organized as follows. We introduce
the problem of overlay routing in wired overlay networks in
Section 2. We describe proposals for Euclidean plane routing
algorithms in Section 3. In Section 4, we address the central
challenges for this work to be applicable in a real network set-
ting, for example, by proposing a construction for routing tables
through a join protocol and background gossip. In Section 5,
we evaluate the performance of routing in a d-dimensional co-
ordinate space using simulation; in particular, we analyze the
state-accuracy trade-off and accuracy under churn. We discuss
related work in Section 6 and conclude in Section 7.

2 Background
Routing techniques that take advantage of network geometry
first arose in the context of wireless networks [3, 6, 10, 15]. In
a wireless network, deployed nodes are capable of communicat-
ing directly with only those nodes in their vicinity through ra-
dio communication. Taking advantage of a node’s local knowl-
edge of its neighbors and a “sense of direction” for routing de-
cisions results in efficient routing algorithms. Fundamentally,
such wireless geometric routing is locality-preserving because
the network does not permit long-distance hops due to the lim-
ited range of radio links.

To apply similar ideas to wired overlay networks, nodes must
obtain knowledge of their location within the network. For the
reminder of this paper, we define node locations based on com-
munication latencies between nodes, as opposed to geographic
location. This is because one metric for routing efficiency is
the delay caused by message routing. Wired overlay networks
support long-distance hops for direct communication between
nodes outside of each others’ vicinities. Both the lack of knowl-
edge of one’s immediate neighbors and the potential for intelli-
gently placed long-distance edges make routing in the wired and
wireless domains significantly distinct.

There exist several proposals for assigning coordinates to
nodes so that the distance between two coordinates estimates
communication latency [4, 18, 19, 21, 23]. These embeddings
of inter-node latencies into a Euclidean space are imprecise be-
cause Internet routing often violates the triangle inequality [16].
However, for many practical purposes it is possible to achieve
adequate accuracy [14]. Originally conceived as a way to reduce
the overhead of latency measurements [7], network coordinates
make it possible to apply geometric routing techniques to wired
overlay networks.

We consider the problem of wired geometric routing as fol-
lows. Given (1) that nodes have coordinates that encode their
location and (2) each node has a routing table containing a small
set of other nodes, we want an efficient method to (a) setup rout-
ing tables and (b) route messages to a target location via multi-
ple hops. A target location may be either the exact coordinate a
node or a coordinate for which the (approximate) closest node
should be found. This approximate nearest neighbor routing
facilitates the implementation of many locality-dependent appli-
cations, such as a distributed web cache, where a client request
for an external web page is routed to the closest existing web
cache in the network.

The recent theoretical work on Euclidean routing algo-
rithms described in the next section provides the foundation for
coordinate-based routing. However, given that we can now con-
struct coordinate systems of low dimensionality that are accurate
on many networks, a number of interesting questions remain
to be resolved: (1) how can routing tables be constructed in a
decentralized manner? (2) how can they be maintained under
churn? (3) how do the existing methods need to change to sup-
port nearest neighbor queries? (4) how does the error inherent
in network coordinates affect the utility of routing results? We
build on this prior work by highlighting the practical problems
with wired geometric routing and examine what can be expected
of its performance in realistic settings.

3 Scaled θ-routing
There exist several proposals for efficient geometric routing in a
two-dimensional Euclidean plane [1, 9, 12]. We focus on scaled
θ-routing because its assumptions make it directly applicable to
wired overlay networks with network coordinates. In particular,

S0

S7

S1
S2

S3

S4

S5 S6

src

dst

S1

S1

hop

Routing Tables Routing

R0

R1

R2

Figure 1: θ̂-routing subdivides the coordinate space into 2π
θ

sectors
and r rings. We show how a node selects its closest neighbors in sector
S0 for rings R0 and R1 in a network where θ = π

4
and r = 3. Nodes

route to destinations by (a) calculating the zone of the destination and
(b) greedily forwarding the message to the furthest hop does not exceed
the target’s zone.

it assumes that (1) each node has a coordinate in a Euclidean
space and (2) nodes do not have a maximum communication
range: any node may connect with any other.

Scaled θ-routing is based on Keil and Gutwin’s θ-
routing [11]. θ-routing takes advantage of the “sense of direc-
tion” in a Euclidean plane by routing “towards” a given target,
and is based on the construction of a θ-graph spanner. Such
a graph has the property that each pair of nodes are connected
by a “short” path. More formally, for any two nodes n1 and
n2, the length of the routing path (n1, n2) is no more than a
constant factor times the Euclidean distance | n1n2 |. The con-
struction of a two-dimensional θ-graph spanner is simple. Each
node subdivides the area around it into 2π

θ sectors of angle θ.
For each sector, it inserts the nearest neighbor into its routing
table. Messages are forwarded by sending them to the neighbor
in the same sector as the target location. The advantages of θ-
routing are that the routing table size is small and routing paths
have low delay stretch, which is the relative penalty of the route
taken compared to direct IP routing (because they hold closely
to the line between the source and the target). However, it suf-
fers from a linear hop count that is proportional to the diameter
of the network.

Hassin and Peleg [9] improve on the linear hop count of θ-
routing by adding long-distance links to traverse large distances
in a single hop. In scaled θ-routing, abbreviated as θ̂-routing,
the θ-graph spanner is augmented with exponentially expanding
rings. To create its routing tables, each node partitions the space
around it into 2π

θ sectors and r rings. The areas obtained through
the intersection of sectors and rings are called zones. Nodes keep
as neighbors the nearest node that they know in each zone. We il-
lustrate θ̂-routing in Figure 1. Compared to θ-routing, θ̂-routing
reduces the hop count to logarithmic complexity, but increases
the amount of routing state each node maintains.

4 Practical Wired Geometric Routing

Given Hassin and Peleg’s algorithm and given the ability to con-
struct stable and accurate live network coordinate systems [14],
we needed to address numerous practical barriers that apply to
θ̂-routing and other geometric routing proposals. In this section,
we highlight three main challenges to coordinate-based routing
and our initial proposals for how to address them. The chal-
lenges are: (a) mapping nodes to zones when d > 2, (b) effi-
ciently learning neighbors, and (c) performing nearest neighbor
queries instead of ones with a known target coordinate.

4.1 Zone Assignment

As illustrated in Figure 1, the process of assigning neighbors to
sectors is intuitive in two dimensions: given the angle θi of the
neighbor i and a set of rays each θ degrees apart, we simply
find between which rays θi lies. However, this process proved
surprisingly challenging in three or more dimensions.

A straightforward example in more than two dimensions is
the three dimensional case when θ = π

2 . Here, one can readily
visualize that there are 8 sectors with the axes acting as the rays
that divide each sector. In addition, the assignment of neighbors
to zones is fairly intuitive: we can find the spherical coordinates
θ and φ and perform essentially the same method of assignment
as we did in two dimensions. Note that one of the two angles will
range from (−π . . . π) and the other from (0 . . . π); one com-
pletes the full circle but the other needs to traverse only half that
to cover all possible directions. Each angle can then be dealt
with separately, resulting in four possible sectors from the angle
with the larger domain and two from the one with the smaller.

While harder to visualize, this method generalizes to an arbi-
trary number of dimensions. It is simpler to operate on Cartesian
coordinates for network coordinate refinement processes such
as Vivaldi [4]. For zone assignment, however, we convert the
d-dimensional vectors from nodes to their neighbors into a set
of hyperspherical coordinates φ0, . . . , φd−1, again with the pro-
viso that one angle completes the full circle. Because each addi-
tional dimension effectively “slices” the sectors of prior dimen-
sions, the total number of sectors increases exponentially with
the number of dimensions 2 × s × sd−2, where s is the number
of sectors per standard dimension.

The second component of zone assignment is determining
the neighbor’s ring. With simple Euclidean coordinates, the L2

norm defines distance and therefore the appropriate ring. How-
ever, some schemes redefine distance using height to capture ac-
cess link latencies: the delay that all communication must incur.
In that case, the distances between the vector components re-
main Euclidean, but including the height component, they are
not. Because height captures delay “above” not “across” a net-
work, we only use the non-height component of our coordinates
for ring assignment.

4.2 Maintenance Protocol

The routing algorithms described in Section 3 make greedy rout-
ing decisions by nature — that is, without global knowledge or
knowledge of the prior path of the query — but rely on omni-
scient assignment of neighbors to routing tables. This assump-
tion of global knowledge needs to be removed for use in a dis-
tributed setting.

In addition, we are not aware of any work on the resilience
of coordinate-based routing schemes to imperfect knowledge of
the network. This imperfect knowledge leads to incomplete or
imperfect routing tables. For θ̂-routing, there are three possi-
ble error conditions for a given zone: (1) a neighbor is not the
truly nearest node in that zone, (2) a neighbor has failed, or
(3) there is not an entry for a neighbor when one exists. Intu-
itively, the most important entries in the routing table are the
nearest nodes in each sector. With only these edges, routing pro-
ceeds correctly, just with a higher hop count. This has an analog
in one-dimensional DHT routing: routing succeeds as long as
every node knows its direct successor in the namespace. Thus,
acquiring and maintaining this local knowledge first and then
optimizing long-range links second seems a sensible approach
to constructing neighbor tables for θ̂-routing.

We assume a simple periodic gossip mechanism exists that
allows nodes to exchange routing tables. Performed at random
using an existing neighbor from the table, this strategy eventu-
ally leads to knowledge of one’s local neighbors given enough
time and limited churn. We assume that each node bootstraps
into the system with a single randomly chosen neighbor. We fur-
ther assume that dead nodes are discovered through failed routes
or failed gossip.

Given the benefit of focusing on local neighbors primarily, we
borrow a simple technique from Pastry [20]: instead of exchang-
ing routing tables with a bootstrap neighbor, a node performs a
query for its own coordinate using this neighbor. This special
query is flagged so that each node on the path adds its routing
table to the message. When the message is eventually delivered
to the node, it is likely to contain at least one nearby neighbor,
whose routing table will be similar to what the new routing table
should be.

We define the performance metric local knowledge to be the
fraction of sectors for which each node has correctly identified
its nearest nodes, averaged over all nodes. We have found ex-
perimentally that this metric is strongly correlated with routing
results, that is, correctly reaching a target. One could imagine
a more complex metric of weighted local knowledge for which
a gossip strategy could optimize: instead of attempting to learn
only of the nearest nodes in each sector, the strategy would aim
to learn of the larger vicinity, but give more weight to a node’s
immediate locality. Both metrics could be refined based on the
number of sectors and the distance of each neighbor.

Known Coordinate Nearest Neighbor

source s
target t

a

b

c

d

source s target t
x

a

b

p

q
|at| < |ab|

target
sector

Figure 2: Local minima with Greedy-by-Distance occur even with
“optimal” routing tables, where each node links to the nearest node in
each of its zones. In the Known Coordinate case (left), with a source s

and a target t, the path halts at a because it is nearer to the target than
any of its neighbors (θ = π

2
). The query for the nearest neighbor t

(right) halts in a similar situation: at s when, in fact, x is the nearest
node. Even if s stored its neighbors’ routing tables (as in [17]), it would
remain stuck assuming ‖st‖ ≤ {‖at‖, ‖bt‖, ‖pt‖, ‖qt‖}. Greedy-by-
sector routing finds the correct target in both cases.

4.3 Known Coordinate vs. Nearest Neighbor
Euclidean routing algorithms make an assumption that is impos-
sible to attain in a dynamic distributed system: that the source
of each query knows precisely the target node’s current coordi-
nate. Because node locations change and coordinates are thus
constantly under adjustment, one cannot assume that a target
node’s coordinate remains unchanged even over short periods
of time. In a real-world scenario, without perfect knowledge, a
natural basis for routing lies in using nearest neighbor queries.
As mentioned in Section 2, nearest neighbor queries also aid in
the discovery of computed target positions and are important for
many locality-aware applications.

An obvious optimization to θ̂-routing frequently foundered
on nearest neighbor queries. θ̂-routing is intended to operate
greedily on sectors; that is, we forward to the neighbor that cov-
ers the maximum distance to the target while remaining in that
sector. There may exist a node, not in the same sector as the tar-
get, but much closer to it than the in-sector node. This greedy-
by-distance routing, however, leads to local minima as we il-
lustrate in Figure 2. Because greedy-by-sector routing can also
fail to find the exact nearest neighbor and because all queries in
this context are forms of finding the nearest neighbor to a tar-
get point, we encourage theoretical work in this direction. In
practice, we only used greedy-by-distance routing if no neigh-
bor existed in the target’s sector.

5 Results
We began our investigation of geometric routing by understand-
ing the parameter space tradeoffs and expected routing perfor-
mance. In particular, we explored the sector and ring parame-
ter space, implemented and tested nearest neighbor routing with
network coordinates derived from a real world data set, and ex-

1.00
1.10
1.20
1.30
1.40
1.50

Number of Sectors

N
um

be
r

of
 R

in
gs

Delay Stretch

 4 6 8 10 12 14 16

 2

 4

 6

 8

 10

 12

 0
 5
 10
 15
 20
 25
 30
 35

Number of Sectors
N

um
be

r
of

 R
in

gs

Hop Count

 4 6 8 10 12 14 16

 2

 4

 6

 8

 10

 12

Figure 3: For two-dimensional routing with “perfect” routing ta-
bles, far reaching rings and few angles result in queries that zig-zag
across the coordinate space. Additionally, ring radii need to be tuned to
the size and shape of the network to reduce hop count.

amined how the maintenance method we proposed in Section 4.2
performed under churn. The main results from our experimen-
tation are:
• The benefit of each additional ring is closely tied to the base

of the ring radius compared to the network diameter; rings of
wrong radii offer little benefit.

• Finding the true nearest neighbor to a node (in terms of la-
tency) is almost entirely dependent on the accuracy of the un-
derlying network coordinates; any improvement to these in
turn will directly improve nearest neighbor accuracy.

• There exists a very strong correlation between knowing nodes
in the local vicinity (the local knowledge metric) and finding
the correct nearest neighbor under churn. Our join technique
works well under high churn (when nodes are using it fre-
quently), but a method to maintain strong local knowledge is
needed.
We implemented θ̂-routing in a simulator that allowed us to

easily vary its central parameters, inter-node latencies, and sets
of network coordinates. We assume there is no message loss and
that inter-node latencies are static during the experiments.

5.1 Sector and Ring Parameters
Hop count and delay stretch are important metrics for any over-
lay routing strategy. We set up an experiment that captured

the theoretical model for θ̂-routing: “perfect” routing tables and
queries were for a participant’s true coordinate. We show results
from the two-dimensional case where 1024 coordinates were
chosen from a unit square in Figure 3. The sector and ring pa-
rameters have distinct, interesting effects.

The data show that with long edges (large r) available from
only a few sectors, routes zig-zag towards the target, resulting in
a high delay stretch. As the number of sectors increases, each
hop veers less from the direct line between the source and the
target, diminishing stretch. But because increasing the number
of sectors increases state exponentially, a decision to use small
angles with d > 2 can cause high overhead. Because the di-
mensionality of network coordinates tends to range from three
to about seven, very small angles may not be a practical option.

A base b determines the exponentially-increasing radius of
each ring. With a unit square, a base of 1

1000 expands to cover
the network after twelve rings, but because the average distance
between nodes is 1

3 , nearby rings are of little benefit (if they
contain any nodes at all).

A further complication with choosing a good sector, angle,
and base is the shape of the network. We have found that, in
network coordinate systems composed of Internet nodes, one or
two dimensions are dominant; they capture the physical distance
across the Earth’s surface while remaining dimensions serve as
“wiggle room” that minimizes error [13]. A good parameter
choice in one dimension may not be appropriate across all; de-
signing asymmetric systems may be appropriate in practice and
is an issue for future work.

5.2 Nearest Neighbors with Network Coordinates
While the performance of θ̂-routing routing on a hypercube con-
firms our intuition on the roles of different parameters, it does
not illuminate what to expect from wired geometric routing
on network coordinates derived from the Internet. In addition,
the previous experiment does not suggest how nearest neighbor
queries — not queries for active participants — would perform.

To distinguish between the exigencies brought about by real
network coordinates and those brought about by churn and other
causes of partial network knowledge, in this experiment nodes
are again assigned their “perfect” routing tables. We created
a low-error (median ≈ 6%), four-dimensions-plus-height em-
bedding from the inter-DNS server trace from Dabek et al. [4]
gathered with the King method [8]. Here the average latency be-
tween two nodes is 180ms and the network diameter is 800ms.
We performed nearest neighbor queries by designating 10% of
the 1740 nodes as non-participant targets. We let r = 8, b = 4,
and s = 6. Experimenting with this system, we found that, al-
though all queries found the nearest or second nearest node, this
node was often not the truly closest node to the target in terms
of latency. Because queries were finding the node with the cor-
rect coordinate, almost all of the latency penalty an application
would experience using that node instead of the true nearest was
due to the error inherent in the embedding process. Because

queries took on average 4.18 hops, a simple, inexpensive opti-
mization to this process was for each node on the routing path to
measure its latency to the target and then to report the node with
the lowest latency as the nearest node at the end of the query. We
plot the results from 50k queries in Figure 4 (top). The results
show that this technique reduced the absolute latency penalty
by 43% at the median (to 7ms). Because the latency penalty
is so dependent on the embedding error, we anticipate that any
improvement in coordinate accuracy will further improve these
results (see Zhang et al. for a more theoretical discussion on
nearest network coordinates [26]).

5.3 Finding Nearest Neighbors under Churn
Our final question was whether this process of finding nearby
neighbors could be created and sustained under the more realis-
tic setting of node arrival and departure. To simulate churn, we
set nodes’ lifetimes to a Poisson-distributed random variable and
varied the mean. We assumed nodes gossipped with a neighbor
from their routing table once every five minutes and let them ei-
ther bootstrap using a random node or follow the Pastry-like join
mechanism described in Section 4.2. In Figure 4 (bottom), we
show the 80th percentile absolute latency penalty (again com-
pared to the node with the lowest latency to the target). The
data exhibit two interesting characteristics. First, the join pro-
tocol reduces the latency penalty by 34% at the highest level
of churn. Routing succeeds at this churn rate because nodes
typically have knowledge of 54% of their immediate neighbors
(their local knowledge). Second, as the churn rate falls, the join
technique lessens in importance; again this is reflected in their
local knowledge metric: it falls to 36% with average lifetimes
of two hours. In fact, we found a very strong correlation be-
tween this metric and the latency penalty (R2 = 0.87). Together
these characteristics suggest the routing table state may be sig-
nificantly optimized with little or no loss in accuracy as long as
a strong set of links to immediate neighbors is kept.

6 Related Work
In this section we provide a brief overview of other efforts to
build locality-aware overlay networks and of other geometric
routing strategies. To the best of our knowledge, none of the pre-
vious approaches have attempted to directly leverage theoretical
work on routing in Euclidean spaces to build a general-purpose
routing substrate. Instead, they were built with a specific appli-
cation in mind.

The closest work to ours is Mithos [24], a locality-aware rout-
ing substrate on top of virtually assigned coordinates. Each node
calculates a static coordinate depending on network locality and
then maintains links to its immediate neighbors in each quadrant.
It can thus be expressed as θ-routing with θ = π/2. Messages
are routed greedily towards a target. Since routing tables do not
contain long-distance links, hop count is linear unless a space
with high dimensionality (and overhead) is used. Also, the coor-
dinates are not updated dynamically to adapt to latency changes.

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50

C
D

F

Absolute Latency Penalty

Pick Node on Path with...
Nearest Latency
Nearest Distance

 0

 5

 10

 15

 20

 25

 30

7.5 15 30 60 120 240

A
bs

ol
ut

e
L

at
en

cy
 P

en
al

ty
 (

80
th

 p
ct

l.)

Churn (avg. lifetime in minutes)

Lower Bound (No Churn)

Random
Join + Random

Figure 4: Wired geometric routing on real-world network coor-
dinates performs approximate nearest neighbor queries without churn
(top) and with it (bottom). Even with churn, the node with the nearest
coordinate is typically found; the figures show the latency of the node
returned relative to the node with the true lowest latency.

At the other end of the spectrum, Meridian [25] is special-
ized, locality-aware overlay that aims at providing a network
location service. Neighbors are organized in concentric, non-
overlapping rings with a fixed number of nodes per ring. As
such, it can be regarded as a θ̂-routing scheme with θ = 2π,
where several nodes per zone are used. Routing to a target lo-
cation proceeds by taking repeated latency probes to the target
from neighbors in the associated ring and forwarding the request
to the closest neighbor. In contrast to coordinate-based schemes,
the active measurement approach results in higher accuracy but
also in an increase in measurement overhead.

We picked θ̂-routing as the basic algorithm for a practical
locality-aware routing substrate because of its good complexity
properties and simple algorithmic construction. However, more
intricate algorithms with better complexity exist. For example,
compact routing proposed by Abraham and Malkhi [1] comes
close to optimal space. However, this improvement in per-node
state is balanced by a more complex construction that only amor-
tizes for very large networks.

7 Conclusion
In this paper, we presented a practical locality-aware routing
substrate that takes advantages of recent advances in algorithms
for routing in a Euclidean plane. We addressed important
challenges, such as routing table construction under imperfect

knowledge, maintenance protocols for new nodes, and the sup-
port for nearest neighbor queries.

We believe that a geometric interpretation of wired routing
problems opens up new avenues for solving many problems in
distributed applications. As future work, we will explore the
space of locality-aware, coordinate-based overlays more fully
and expect that they will prove useful building blocks, similar to
random key-based overlays. As a next step, we plan to analyze
the properties of the set of routing hops taken in wired geometric
routing. Some applications may depend on characteristics of the
routing path, such as quick path convergence or uniform hop
spread. For instance, in a web caching application, data may be
stored at hops along the routing path to a target web server for
faster future retrieval.

References
[1] I. Abraham and D. Malkhi. Compact routing on euclidian metrics.

In PODC, July 2004.
[2] Azureus BitTorrent Client. azureus.sourceforce.net.
[3] P. Bose, P. Morin, et al. Routing with guaranteed delivery in ad

hoc wireless networks. Wireless Networks, 7(6), 2001.
[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decen-

tralized Network Coordinate System. In SIGCOMM, Aug. 2004.
[5] eMule File Sharing Client. emule-project.net/.
[6] G. Finn. Routing and addressing problems in large metropolitan-

scale internetworks. Tech. Report RR-87-180, ISI/USC, 1987.
[7] P. Francis et al. IDMaps: a global internet host distance estimation

service. IEEE/ACM Trans. Networking, 9(5), 2001.
[8] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating

Lat. between Arbitrary Internet End Hosts. In IMW, Nov. 2002.
[9] Y. Hassin and D. Peleg. Sparse Communication Networks and

Efficient Routing in the Plane. In PODC, July 2000.
[10] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Rout-

ing for Wireless Networks. In MobiCom, Aug. 2000.
[11] J. M. Keil and C. A. Gutwin. Classes of Graphs Which Approx.

the Complete Eucl. Graph. Discrete & Comp. Geom., 7(1), 1992.
[12] J. Kleinberg. The Small-World Phenomenon: An Algorithmic

Perspective. In STOC, May 2000.
[13] J. Ledlie, P. Gardner, and M. Seltzer. Network Coordinates in the

Wild. Technical report, Harvard University, Oct. 2006.
[14] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and Accurate Net-

work Coordinates. In ICDCS, July 2006.
[15] B. Leong, B. Liskov, and R. Morris. Geographic Routing without

Planarization. In NSDI, May 2006.
[16] E. K. Lua, T. Griffin, M. Pias, et al. On the Accuracy of Embed-

dings for Internet Coordinate Systems. In IMC, Oct. 2005.
[17] M. Naor and U. Wieder. Know thy Neighbor’s Neighbor: Better

Routing for Skip-Graphs and Small Worlds. In IPTPS, Feb. 2004.
[18] T. S. E. Ng and H. Zhang. Predicting Internet Network Distance

with Coordinates-Based Approaches. In INFOCOM, June 2002.
[19] M. Pias, J. Crowcroft, S. Wilbur, et al. Lighthouses for Scalable

Distributed Location. In IPTPS, February 2003.
[20] A. Rowstron and P. Druschel. Pastry: Scalable, DOLR for Large-

Scale P2P Systems. In Middleware, Nov. 2001.
[21] Y. Shavitt and T. Tankel. Big-Bang Simulation for embedding

network distances in Euclidean space. In INFOCOM, June 2003.
[22] I. Stoica, R. Morris, et al. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications. In SIGCOMM, Aug. 2001.
[23] L. Tang and M. Crovella. Virtual Landmarks for the Internet. In

IMC, Oct. 2003.
[24] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay

network. SIGCOMM Comput. Commun. Rev., 33(1), 2003.
[25] B. Wong et al. Meridian: A Lightweight Network Location Ser-

vice without Virtual Coordinates. In SIGCOMM, Aug. 2005.
[26] R. Zhang et al. Impact of the Inaccuracy of Distance Prediction

Algorithms on Internet Applications. In INFOCOM, Apr. 2006.

