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ABSTRACT
Overlay broker networks are an important part of an event-
based middleware. In this paper, we investigate the re-
quirements of overlay broker networks and argue that using
peer-to-peer techniques for their creation and the content-
based routing of events has many advantages. We support
our claims with an experimental evaluation of Hermes, an
event-based middleware architecture that uses a peer-to-
peer routing substrate, in comparison with a standard pub-
lish/subscribe system that has a simple, predefined overlay
topology. The results reveal that Hermes has better routing
efficiency and keeps less routing state at the event brokers.

Keywords
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1. INTRODUCTION
Publish/subscribe communication [7] is becoming increas-

ingly important in the development of large-scale distributed
systems. Almost all traditional synchronous, request/reply
middleware platforms that are used today also provide some
form of asynchronous messaging that helps to build systems
out of loosely-coupled components following the publish/
subscribe paradigm. Other middleware platforms, such as
JMS [15], Gryphon [1], and web services are strongly based
on asynchronous messaging and will be the building blocks
for the next generation of internet-wide, ubiquitous applica-
tions. In such a world, scalability is paramount and must be
ensured at all layers of the system. A messaging middleware
may potentially have millions of dynamic clients and, there-
fore, must itself be implemented in a distributed fashion.

Content-based routing has been established as a powerful
concept to disseminate messages, or events, from publish-
ers to subscribers. Most event-based middleware architec-
tures employ an overlay network of event brokers. These
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brokers then perform content-based routing of events at the
application-level since content-based routing at the network-
level, such as provided by certain reliable multicast proto-
cols, is not widely deployed yet and often complex to imple-
ment in routers.

However, application-level overlay networks face the well-
known problem of mapping the logical overlay network onto
the physical network topology [4]. An overlay network of
event brokers that does not reflect the underlying physical
network topology will result in poor performance and lit-
tle fault-tolerance when disseminating events. So far, this
problem has largely been neglected in the context of event-
based middlewares. Previous work considered the overlay
network topology to be static and left the task of specifying
logical connectivity between event brokers to the deployer.
This is clearly not a feasible approach when a large-scale
system may involve thousands of event brokers running at
geographically dispersed sites throughout the Internet. Fol-
lowing recent trends in autonomic, ubiquitous, and peer-to-
peer computing, it would be desirable to have self-managing
overlay networks of event brokers that are highly scalable
and at the same time give good performance in terms of
minimising (1) physical network utilisation, (2) event dis-
semination latency, and (3) routing state kept at brokers.

In this paper, we evaluate the performance of Hermes [12],
a distributed, event-based middleware that uses peer-to-peer
techniques to build and maintain a scalable overlay network
of event brokers for event dissemination. We argue that
building this network of event brokers on top of a peer-to-
peer routing substrate results in several desirable properties
for publish/subscribe systems. We formalise the content-
based routing algorithm used by Hermes with pseudo code
and give details of our Hermes implementation and the im-
plementation of the peer-to-peer routing substrate that it
uses (called Pan). In addition, we define several metrics
that can be used to evaluate the efficiency of event-based
middleware architectures. We then compare Hermes with an
implementation of a standard Siena-like [3] event dissemina-
tion architecture (called CovAdv) that uses advertisements
and subscriptions and computes covering relations between
them. To verify our scalability and efficiency claims of Her-
mes, we decided to implement both systems in a discrete
event simulator (called DSSim) that enables us to set up
experiments with realistic physical network topologies fol-
lowing the transit-stub model [16] and a large number of
event brokers and clients. To our knowledge, this is the first
comparison of peer-to-peer overlay networks to traditional
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Figure 1: An overlay broker network with 5 brokers
mapped onto a physical network topology with 10
nodes

approaches in the area of publish/subscribe systems.
The paper is organised as follows: In Sect. 2, we dis-

cuss overlay broker networks in publish/subscribe systems
in more detail, in particular, addressing scalability issues
and the relation to peer-to-peer systems. Section 3 provides
a brief overview of the routing algorithms used by Hermes
and CovAdv, focusing on Hermes’ type- and attribute-based
routing approach. After that, we introduce the implemen-
tation of our simulator (DSSim), the peer-to-peer routing
layer (Pan), Hermes, and CovAdv (Sect. 4). The main part
of the paper presents our evaluation approach and discusses
the experimental results comparing Hermes with CovAdv in
Sect. 5. The paper finishes with an overview of related work
(Sect. 6) and a conclusion (Sect. 7).

2. OVERLAY BROKER NETWORKS
Application-level event brokers are usually deployed in a

network with full IP connectivity. However, for scalability
reasons and in order to do content-based routing, an event
broker only needs to know about a subset of all brokers in
the system. Every event broker has such a set of neighbour-
ing brokers and it chooses a next hop from this set when
it is making a content-based routing decision. The graph
formed by the event brokers and the neighbouring relation
between them is called the overlay broker network. Links
to neighbouring brokers have different costs associated with
them because a single hop in the overlay network may re-
sult in multiple hops (via several IP routers) in the underly-
ing physical network topology with the physical link latency
varying from fast LAN links to relatively slow WAN links.
Figure 1 shows an overlay broker network on top of a phys-
ical network topology. In this example, Broker B4 has a
neighbouring Broker B5 in the overlay network that is geo-
graphically far away in the physical network — the shortest
path in the physical network is 6 hops long. Any communi-
cation between these two brokers will be expensive in terms
of network utilisation.

2.1 Cost Metrics
It is obvious that the efficiency of event dissemination in

the event-based middleware is governed by the quality of
the mapping between the overlay and the physical network.
Content-based routing of events is the process of finding the
“best” event dissemination tree in the overlay network that
includes all interested subscribers. Even if routing in the
overlay network is perfect, it will never be able to do better
than the shortest route in the underlying physical network.
Various cost metrics can be defined to measure the quality

of an event dissemination tree in the overlay network:
(1) Latency. Many applications require an event dissem-

ination tree that minimises the time until all interested sub-
scribers have received a particular event. Therefore, routing
paths in the overlay network should only add a small latency
penalty compared to routing in the physical network.

(2) Hop Count. Since content-based routing is done
by application-level brokers, an increased hop count can be
expensive in terms of (1) the delay experienced due to event
processing at the brokers, (2) the required processing power
at brokers, and (3) the increased likelihood of broker failure.
Minimising the number of event brokers involved in an event
dissemination tree may therefore be desirable.

(3) Bandwidth. The advantage of overlay networks is
that they can share a physical network with other applica-
tions. This means that an event dissemination tree should
use as little bandwidth as possible leaving more bandwidth
for other applications. Especially if the bandwidth of phys-
ical links differs, the event dissemination tree should prefer
high bandwidth links.

Often, a combination of the previous metrics is used to
determine the cost of a route in the overlay network. For
instance, the total latency may be the sum of the physical
link latencies and broker processing delays introduced at
each hop. A bandwidth-oriented metric may prefer physical
links that are currently not congested. In the experimental
evaluation in Sect. 5, we consider the three simple metrics
outlined above.

2.2 Current Approaches
Even though most distributed publish/subscribe systems

rely on an overlay broker network, little effort has been spent
on deciding how they are created at deployment time.

In Siena [3], a server topology determines the interconnec-
tions between event brokers in the overlay network. Three
different distributed server topologies are given: (1) A hier-
archical topology is a tree with a root broker. Since there
are no redundant paths, each broker is a single point of fail-
ure. In addition, the root broker has to cope with a higher
amount of traffic limiting the scalability of this topology.
(2) The acyclic peer-to-peer topology interconnects event
brokers forming an acyclic undirected graph. Again, no re-
dundancy is available. (3) In the generic peer-to-peer topol-
ogy, cycles are permitted giving multiple paths to a destina-
tion. However, Siena’s content-based routing algorithm first
executes a distance-vector protocol to create a spanning tree
before routing events. It is unclear how this will cope with
dynamic topology changes and link failures. The CovAdv
implementation that we use for comparison against Hermes
follows Siena’s approach of an acyclic peer-to-peer topology.

The Gryphon messaging middleware [1, 2] has a multi-
broker topology with clusters of event brokers called cells.
Redundant link bundles connect cells with each other form-
ing a generic graph. Although the topology can dynamically
evolve over time to a certain extent, the overlay broker net-
work needs to be explicitly specified at deployment time.

The same is true for the JEDI system [5] and the Rebeca
project [9]. Both systems have predefined hierarchical tree
topologies that are not influenced by the underlying physical
network.

2.3 Requirements
Most of the current approaches for building overlay bro-



ker networks like the ones mentioned above have in common
that they require the administrator to explicitly provide a
(static) list of neighbouring event brokers for each broker.
However, this is not realistic in a large-scale deployment of a
middleware: (1) An administrator responsible for the event
brokers running at a particular site may not be aware of all
brokers in the entire system. This makes it hard to choose
an optimal set of neighbouring brokers with respect to one
of the above cost metrics. (2) It is difficult to ensure global
properties of the overlay broker network such as acyclic-
ity, a certain amount of redundancy, or being a minimum
spanning tree. Calculating a minimum spanning tree for a
large network can be an expensive operation. (3) During
the life-time of the system, it may be necessary to change
the overlay broker network. This may be because additional
event brokers are added in order to improve performance or
reliability of the publish/subscribe system, or because the
cost of links in the physical network has changed.

Therefore, we propose the following requirements for over-
lay broker networks in an event-based middleware:

(1) Efficiency. The overlay broker network should en-
courage the creation of event dissemination trees that are
efficient when evaluated under one of the previously intro-
duced cost metrics. If two brokers are equivalent from the
perspective of the content-based routing algorithm, the bro-
ker with the lower cost metric should be included in the
neighbouring broker set.

(2) Redundancy. The overlay broker network should
include redundant paths between event brokers to cope with
failures of physical links or brokers. Using a spanning tree
for an overlay broker network should therefore be avoided
and the content-based routing algorithm should be able to
handle cycles in the overlay network.

(3) Single Bootstrap Broker. Ideally, when a new
event broker is added to the system, it should only be nec-
essary to provide a single address of an already existing bro-
ker. The new event broker will then use this broker to boot-
strap its set of neighbouring brokers according to the other
requirements listed here. This bootstrap broker will not
necessarily become part of the neighbouring broker set.

(4) Scalability. The management of the overlay bro-
ker network should be scalable so that a large number of
event brokers can be supported. The algorithms for adding
and removing event brokers from the overlay broker network
should only require the participation of a modest subset of
all brokers existing in the system. We discuss other scalabil-
ity requirements that relate to overlay broker networks and
content-based routing in Sect. 2.5.

(5) Dynamic Topology. The topology of the overlay
broker network should be dynamic instead of static. This
means that the content-based routing algorithm has to han-
dle the addition and failure of brokers in the overlay.

In the next section, we show how a peer-to-peer rout-
ing substrate creates an overlay network with these desired
properties. Our experiments in Sect. 5 will then demonstrate
how Hermes benefits from this compared to a conventional
content-based routing scheme.

2.4 Peer-to-Peer Overlay Techniques
Recently, distributed hash tables have been adopted to

create peer-to-peer overlay networks in distributed systems.
Hermes’ content-based routing algorithm is built on top of
Pan, an implementation of a Pastry-like [13] peer-to-peer

routing substrate. Here, we briefly sketch Pastry’s routing
algorithm — a complete description of Pastry and a discus-
sion of its properties can be found in [13].

Each Pan node has a unique node identifier. The main
operation provided by the routing layer is route(message,

nodeId) which routes a message to a node with a particu-
lar nodeId. Each node keeps a routing table and a leaf set.
The routing table contains entries for nodes whose nodeIds
match the first d digits of the current nodeId and then differ
afterwards. Routing can be seen as a generalisation of prefix
routing by always sending a message to a node that shares
a larger nodeId prefix with the destination nodeId than the
current node. The leaf set contains the k nodeIds that are
numerically closest to the current node’s nodeId. If the des-
tination nodeId falls within the range of the leaf set, the
message is directly sent to the numerically closest nodeId.
This ensures that if the destination nodeId does not exist in
the system, the message will be delivered to the node with
the numerically closest nodeId instead.

Event brokers are then installed at Pan nodes and com-
municate using the peer-to-peer routing layer. Their neigh-
bouring broker set is the union of the Pan node’s routing
table and its leaf set. From the perspective of overlay net-
works for an event-based middleware, this satisfies the re-
quirements from the previous section: (1) Routing messages
in the peer-to-peer layer is efficient because a node’s routing
table is filled with entries that are close to it in the physi-
cal topology with respect to the cost metric. Messages take
O(log N) hops on average where N is the number of nodes.
(2) The overlay topology can handle failures — if the next
hop is not responding, a (longer) route via a different node
is tried. (3) The protocol for joining new nodes only requires
the address of a single existing node. At the end of the join,
the new node will have a new routing table and leaf set and
all other nodes that need to know about the new node will
have updated their data structures. (4) The cost of joining
new nodes is small in terms of the number of involved nodes
and message exchanges. The overlay network can consists
of a large number of nodes. (5) The entries in the routing
tables and leaf sets can evolve over time.

2.5 Scalability
One-to-many communication schemes have the advantage

of being very scalable since the sender does not need to
know the identities of all recipients. However, care must
be taken that no layer in the event-based middleware limits
the scalability of the entire system. A problem with many
content-based routing algorithms that exist today is that
they require the broadcast of messages to all event brokers
in the publish/subscribe system in order to create common
state. For example, an advertisement message in Siena will
be routed to all brokers if it is not covered by any already ex-
isting advertisement. This defeats scalability because it in-
troduces a potentially unknown delay until the message has
been successfully processed by all event brokers. This delay
depends on the number of brokers in the system. Moreover,
these broadcasts limit the robustness of the event-based mid-
dleware since a single broker failure will cause the entire
application-level broadcast to fail. Therefore, Hermes does
not rely on global propagation of information through its
overlay broker network.

Another important aspect of scalability is the amount of
routing state created in event brokers. Broadcasts tend to



create routing state at distant brokers that should ideally
not get involved. This is especially true when all the publish-
ers and subscribers that are part of an event dissemination
tree are local within a site. In that case, all communication
should remain local to that site and no other state at distant
brokers should be necessary. In Sect 5, we evaluate the space
complexity and distribution of Hermes’ routing approach.

3. EVENT-BASED MIDDLEWARE
In this section, we briefly describe Hermes and its content-

based routing algorithm. A more detailed explanation can
be found in [12]. As a new contribution, we show how type-
based routing and type- and attribute-based routing, which
are the two flavours of content-based routing used by Her-
mes, can be integrated in a single system. A pseudo code
representation formalises this.

3.1 Hermes
A system built using Hermes [12] consists of two types of

components: event brokers and event clients. Event bro-
kers form the overlay broker network and implement all
the functionality of Hermes. Event clients can be either
publishers that produce events or subscribers that consume
them. They are light-weight and need to connect to an
event broker before using any of the services provided by
the event-based middleware. An event broker that main-
tains client connections is called a local event broker and
can be publisher-hosting, subscriber-hosting, or both. Her-
mes supports proper event typing so that every published
event is an instance of an event type. An event type has a
type name and a list of attributes. All event types are organ-
ised in an inheritance hierarchy and events are type-checked
at publication time.

Event brokers communicate with four major kinds of mes-
sages: (1) Type messages set up rendezvous nodes in the
broker network which are event brokers responsible for cer-
tain event types as outlined below. (2) Advertisements de-
note a publisher’s desire to publish events of a certain type.
(3) Subscriptions are used by subscribers to express their
interest in publications. Finally, (4) Publications contain
event instances published by publishers. Note that Hermes
uses Siena’s notion of coverage between advertisements and
subscriptions, as introduced in [3].

3.1.1 Type- and Attribute-Based Routing
Hermes supports two variants of content-based routing:

In the type-based (t-based) routing algorithm, subscribers
receive all events of a certain type (or any of its subtypes),
whereas type- and attribute-based (t/a-based) routing allows
subscribers to further filter on the event type’s attributes.
As a result, t/a-based routing creates more filtering state in
the system, but has the advantage that published events are
not forced to flow via rendezvous nodes. When both routing
mechanisms are used together, care has to be taken that the
same event is not delivered more than once to an interested
subscriber. Figure 2 shows the processing logic for messages
at the event brokers in pseudo code that achieves this.

Before an event type can be used for the first time, a
type message is sent to the event broker whose nodeId is
the hash of the event type name. This broker then becomes
the rendezvous node (RN) for this type. Rendezvous nodes
ensure that flows of advertisements and subscriptions meet
in the system. Before a publisher can publish events, an

1 processAdvertisement(advMsg):
2 advRT.From ← advRT.From ∪ (advMsg,advMsg.lastNode)
3 IF (advRT.To.covered(advMsg) = ∅) THEN
4 advRT.To ← advRT.To ∪ (advMsg,advMsg.nextNode)
5 ELSE
6 advMsg.nextNode ← null

7 processSubscriptionType(subMsg):
8 [in an analogous manner to processAdvertisement]

9 processSubscriptionTypeAttr(subMsg):
10 processSubscriptionType(subMsg)
11 ∀node IN advRT.From.match(subMsg)
12 IF (node /∈ subRT.To.covered(subMsg)) THEN
13 subRT.To ← subRT.To ∪ (subMsg,node)
14 send(subMsg,node)

15 processPublication(eventMsg):
16 nodeSetType ← advRT.To.match(eventMsg)
17 ∪ subRT.From.match(eventMsg)
18 nodeSetTypeAttr ← subRT.From.match(eventMsg)
19 IF (eventMsg.type) THEN
20 ∀node IN nodeSetType
21 eventTypeMsg ← eventMsg
22 eventTypeMsg.typeAttr ← (node∈ nodeSetTypeAttr)
23 nodeSetTypeAttr ← nodeSetTypeAttr\ node
24 send(eventTypeMsg,node)
25 IF (eventMsg.typeAttr) THEN
26 eventMsg.type ← false
27 ∀node IN nodeSetTypeAttr
28 send(eventMsg,node)

Figure 2: Pseudo code for handling advertisements,
subscriptions, and publications in Hermes for type-
based and type- and attribute-based routing

advertisement is routed towards this RN via the peer-to-
peer routing substrate. At each broker along the path to the
RN, the advertisement is processed (line 1). A new entry
in the advertisement routing table (advRT) is created that
records the advertisement and the node where it came from
(line 2). If the advertisement is not covered by an earlier
one (line 3), it continues to be forwarded to the next event
broker on path and this is recorded in the advRT (line 4),
otherwise it is dropped (line 6).

T-based subscriptions (line 7) are processed in a simi-
lar way except that information about them is stored in
the subscription routing table (subRT) instead. T/A-based
subscriptions (line 9) are first processed like t-based ones
(line 10) but then they need to set up filtering state as
close to the publishers as possible. Thus, the subscription
must follow the reverse path of all matching advertisements
(line 11) unless it is already covered by a previous subscrip-
tion (line 12). If the subscription is sent to a node, a new
entry in the subRT is created (line 13). Note that t-based
and t/a-based subscriptions do not cover each other.

Publications (line 15) need to be routed differently de-
pending on whether they satisfy t-based or t/a-based sub-
scriptions: In the former case, they follow the forward path
of advertisements and the reverse path of subscriptions, in
the latter case, they just follow the reverse path of subscrip-
tions and get filtered along the way. A publication has two
flags (type and typeAttr) that indicate whether it was being
routed according to t-based or t/a-based semantics.

When a publication is processed, the two sets of matching
nodes for each of the two cases are calculated (lines 16–
18). If the current publication was coming along a t-based
flow (line 19), it continues to be routed this way (lines 24).
However, it is removed from the t/a-based destination set
and its flag is set accordingly if it is on a t/a-based flow,



connectPublisherToBroker(publisher,creds)
connectSubscriberToBroker(subscriber,creds)
addEventType(typeowner,creds,eventType)
subscribeType(subscriber,creds,eventType,callback)
subscribeTypeAttr(subscriber,creds,eventType,
filter,callback)

advertise(publisher,creds,eventType)
publish(publisher,creds,event)
...

Figure 3: The public API of a Hermes event broker

as well, in order to avoid duplicate transmission (line 22–
23). After that, the publication is sent to the remaining
t/a-based destinations (lines 25–28).

4. IMPLEMENTATION
For the experimental evaluation, we implemented Hermes

and CovAdv in a distributed systems simulator. In the fol-
lowing, we give details of our implementations and show the
Hermes API. We decided to implement our own simulator
and not to use a standard network simulator such as ns-2
because we found the scalability of network simulators to
be inadequate. In addition, we felt that a more realistic
network model would only have complicated our simulation
as our evaluation involved rather high-level metrics such as
message counts and hop counts.

4.1 Distributed Systems Simulator (DSSim)
Our distributed systems simulator, DSSim, is implemented

in Java as a standard discrete event simulator. It distin-
guishes between a physical network topology and a logical
network topology obtained by mapping logical nodes that
execute a distributed algorithm onto the physical nodes.
It offers a number of simple physical topologies such as
a euclidean plane and a spherical topology but also sup-
ports transit-stub topologies [16] as generated by the BRITE
topology generator [8]. Routing in the physical topology
follows a hierarchical two-level distance vector algorithm.
Visualisation plug-ins allow the physical and logical topolo-
gies to be shown as dynamic graphs during the simulation.
The interface used by the logical nodes for communication
mainly deals with message-passing and is general enough
to be implemented e.g. with JMS or CORBA so that the
simulated system can be deployed on a real network.

4.2 Pan
Our Pastry implementation, called Pan, is built on top of

DSSim. This successfully reproduced the average hop count
and distance results of the Pastry routing algorithm from [4]
within a small error. Pan provides a slightly more powerful
callback interface than Pastry which includes information
about the last hop. Furthermore, we added a mechanism
for request/reply interaction between two Pan nodes that is
required by Hermes to set up rendezvous nodes.

4.3 Hermes
The API exported by a Hermes event broker is shown in

Fig. 3. For simplicity of exposition, we ignore the comple-
mentary functions to disconnect, unadvertise, etc. and any
of the error exceptions. Every function takes the caller’s
identity and a set of credentials to perform access control.
Two functions are provided for clients to connect to an
event broker. The addEventType function sets up a new

rendezvous node for an event type. Two subscription func-
tions are included that correspond to t-based and t/a-based
subscriptions. Finally, advertise and publish enable pub-
lishers to carry out the corresponding operations.

Hermes uses the Pan API for sending and receiving mes-
sages. However, when Hermes’ content-based routing al-
gorithm performs reverse-path forwarding [6] of messages,
it does not use Pan’s route operation but sends the mes-
sages directly to the destination. Routing these messages
with Pan would substantially increase the hop count of an
already set up event dissemination tree.

4.4 CovAdv
CovAdv, our Siena-like publish/subscribe implementation,

has the same external API as Hermes. It uses advertisement
messages sent by publishers, subscription messages that fol-
low the reverse path of advertisements, and publications
that follow the reverse path of subscriptions. Covering be-
tween advertisements and subscriptions in routing tables is
implemented and, for this, the same code is shared between
Hermes and CovAdv.

CovAdv’s overlay broker network is statically defined at
deployment time by a list of event brokers for the neigh-
bouring broker sets. Advertisements are sent to all brokers
in this set unless a covering advertisement exists. We de-
cided to only support acyclic graphs for overlay broker net-
works in CovAdv. This is because the implementation of
an incremental distance-vector algorithm, which would be
needed otherwise, turned out to be complex. It would have
required patching up subscription and advertisement rout-
ing tables whenever a more efficient path was discovered.
Instead, CovAdv’s overlay broker network was arranged to
be a minimum spanning tree.

5. EVALUATION
This section presents the experimental results that we

obtained from comparing our Hermes implementation with
CovAdv. We start by describing the experimental setup in
terms of topologies and parameters. After that, we justify
our choice of experiments and discuss the four experiments
that evaluate Hermes and its overlay broker network.

5.1 Experimental Setup
All experiments were carried out in our simulator, DSSim.

The underlying physical topology was a transit-stub topol-
ogy generated by BRITE with 1000 nodes consisting of 10
autonomous systems with 100 nodes each. Event brokers,
publishers, and subscribers were randomly assigned to phys-
ical nodes unless stated otherwise. We varied the number of
event brokers (ne), the number of publishers (np), the num-
ber of subscribers (ns), and the number of event types (nt)
in the different experiments. Each publisher published npt
different event types and each subscriber subscribed to nst
types using a type- and attribute-based subscription. We
always compared the result of Hermes against a run of Cov-
Adv with the same parameters. Each data point in the plots
is an arithmetic mean of 5 runs.

The overlay broker network in the case of Hermes was
formed by sequentially adding event brokers. The boot-
strap broker chosen for each new addition was the closest
(in terms of network latency) already existing broker in the
topology. Pan used nodeIds with 4 digits of base 4 and
the leaf set size was 4. For CovAdv, we precomputed a
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Figure 4: E1: Latency per event notification versus
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minimum spanning tree and used this for the neighbouring
broker set. Even though this gave CovAdv the advantage of
having an optimal overlay broker network, it only affected
the first experiment.

5.2 Experiments
The four experiments (E1–E4) investigate different as-

pects of event dissemination in a publish/subscribe system.
The first experiment E1 looks at the efficiency of event rout-
ing in the system in terms of latency and number of hops
(cost metrics (1) and (2) from Sect 2.1) in order to evaluate
the quality of the overlay broker network built by Hermes.
Following our requirement of minimising routing state in
the system (cf. Sect. 2.5), experiment E2 looks at routing
tables sizes. In a similar manner, experiment E3 addresses
the distribution of routing tables sizes across all brokers. Fi-
nally, we consider bandwidth (cost metric (3)) and measure
the number of messages sent by both Hermes and CovAdv
when publishing a fixed number of events.

5.2.1 E1: Routing Efficiency
In this experiment, the number of event brokers ne = 500,

the number of publishers np = 10, the number of event
types nt = 1, and each publisher/subscriber operated on
this single event type. We varied the number of subscribers
ns = 10 . . . 500 and assigned at most one subscriber per
event broker. We ran the experiment three times: with
Hermes, with CovAdv using the same bootstrap broker as
Hermes, and with CovAdv using a minimum spanning tree
for its overlay broker network.

Figure 4 shows the experienced latency per received notifi-
cation in ms as ns varies. In all three cases, the average la-
tency decreases as more subscribers are added to the system
because the event dissemination tree becomes more densely
populated. In a realistic deployment of CovAdv in which
it uses the closest event broker for its neighbouring broker
set, it shows the largest latency times. Especially when the
system is sparsely populated with subscribers, CovAdv has
a poor latency behaviour because its overlay broker network
does not adequately reflect the physical topology. Hermes
does a better job and is less dependent on the number of
subscribers. As expected, the lowest latency is achieved by
CovAdv when using a precomputed minimum spanning tree.

In Fig. 5, we plot the average hop count per received noti-
fication. Here, Hermes is most efficient because of its larger
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Figure 5: E1: Hop count per event notification ver-
sus number of subscribers (ns)
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Figure 6: E2: Routing tables sizes versus number of
subscribers (ns)

neighbouring broker sets. Note that even when ns = 10,
Hermes only uses log16 (500) = 2.24 hops on average. As
the number of subscriber-hosting brokers increases, all three
routing approaches converge towards a single hop because a
notification occurs after each routing step.

5.2.2 E2: Space Efficiency
The next experiment plotted the total number of entries in

the advertisement (advRT) and subscription (subRT) rout-
ing tables at all the brokers as a function of the number of
subscribers (ns = 100 . . . 5000). The other parameters were:
ne = 500, np = 10, nt = 10, and each publisher/subscriber
used 5 different event types (nst = npt = 5). As can be
seen from Fig. 6, Hermes creates a fraction of the state of
CovAdv in advRTs because it does not broadcast advertise-
ments to all brokers. Because the number of publishers does
not change, the number of entries in the advRTs stays con-
stant. Due to Hermes’ more efficient routing in the overlay
network, it can better take advantage of subscription cover-
age and therefore uses slightly less state in the subRTs than
CovAdv. When ns becomes large, the routing tables get
completely filled and thus converge towards the same value.

We also varied the number of publishers (np = 100 . . . 5000)
and kept the number of subscribers fixed (ns = 100) (cf.
Fig. 7). Again, the sum of advRT entries for CovAdv is con-
stant because the advertisements broadcasts create a com-
plete set of advRT entries at all the brokers. In contrast
to that, advRT entries in Hermes scale sub-linearly with



0

10000

20000

30000

40000

50000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Nu
m

be
r o

f R
ou

tin
g 

Ta
bl

e 
En

tri
es

Number of Publishers (np)

Hermes (Advertisements)
Hermes (Subscriptions)

CovAdv (Advertisements)
CovAdv (Subscriptions)

Figure 7: E2: Routing tables sizes versus number of
publishers (np)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900

Nu
m

be
r o

f R
ou

tin
g 

Ta
bl

e 
En

tri
es

Number of Event Brokers (ne)

Hermes (Advertisements)
Hermes (Subscriptions)

CovAdv (Advertisements)
CovAdv (Subscriptions)

Figure 8: E2: Routing table sizes versus number of
event brokers (ne)

the number of publishers. Since t/a-based subscriptions are
used which cause more filtering state as more publishers are
added to the system, the amount of state in subRT increases
sub-linearly, as well.

Finally, we changed the size of the overlay broker network
(ne = 50 . . . 1000) and kept the other parameters fixed (np =
10 and ns = 100) to see how scalable the overlay broker
network itself is. The plot in Fig. 8 clearly points out that
most additional state is created by CovAdv advertisements.
Hermes’ overlay broker network scales more favourably.

5.2.3 E3: Space Distribution
In the third experiment E3, we investigated the distribu-

tion of routing table sizes in the system. For this, all pa-
rameters were kept constant: ne = 500, np = 10, ns = 1000,
nt = 10, and nst = npt = 5. In Hermes, the majority of
event brokers had 10 routing table entries, as shown in the
distribution plot in Fig. 9. No broker had more than 15 en-
tries and about 40 brokers were not involved in routing, at
all. The CovAdv implementation spreads out routing table
state much more through the system — a vast majority of
brokers had a maximum of 20 routing table entries and the
minimum number of entries was 10.

5.2.4 E4: Message Complexity
The last experiments carried out counted the numbers of

messages (advertisements, subscriptions, and publications)
that were sent as the number of subscribers and publishers
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changed. We used the same number of event brokers as
before (ne = 500) but increased the number of distinct event
types (nt = 100, nst = npt = 10) in order to reduce covering
and have more sent messages. In Fig. 10, the number of
subscribers was ns = 100 . . . 5000 with np = 100 publishers.
It is interesting to observe that Hermes sends significantly
fewer publications than CovAdv due to its more efficient
content-based routing. However, it is less scalable in terms
of subscriptions sent because of the additional messages that
are sent to reach rendezvous nodes. As discussed before, the
counts of advertisements stay constant with more messages
being sent by CovAdv.

In Fig. 11, when the number of publishers is variable
(np = 100 . . . 5000 and ns = 10), a similar behaviour occurs.
However, the number of advertisement messages increases
slowly for both Hermes and CovAdv because there is less
coverage due to the larger number of event types.

5.3 Summary
We feel that the results in this section substantiate some

of the earlier scalability claims made about Hermes. Sev-
eral interesting results were obtained: (1) Hermes’ overlay
broker network gives a good compromise in terms of la-
tency compared to a minimum spanning tree. It is more
efficient in terms of hop count which is especially impor-
tant for application-level routing. (2) A large portion of the
state at brokers in a publish/subscribe system is created by
advertisements. This can be unnecessary since it assumes
the worst case of all event brokers hosting subscribers. Using
rendezvous nodes to ensure that subscriptions meet with ad-
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vertisements can be less expensive. (3) Finally, the number
of messages is reduced if the routing efficiency of the overlay
broker network is improved despite Hermes’ need for extra
subscription messages for rendezvous nodes.

6. RELATED WORK
Some related work exists on the evaluation of publish/

subscribe systems. In [3], Siena is evaluated using an ap-
proach comparable to ours. However, its overlay broker net-
work closely follows the physical network topology which
may not be achievable in reality. The evaluation does not
include notification latency or routing state.

In contrast to that, a non-simulational approach is taken
by the Rebeca project [10, 9]. An extensive comparison of
different content-based routing algorithms is provided and
includes a first attempt at formalising publish/subscribe se-
mantics. Unfortunately, the cost of routing in the physical
network topology is not addressed and only a single pub-
lisher in a tree-like overlay broker network is assumed.

The work on Pastry [13] and Scribe [14] deals with the
quality of peer-to-peer overlay networks for routing and app-
lication-level multicast. However, Scribe does not include
content-based filtering of messages and thus creates less state
in the system. Gryphon comes with a detailed evaluation of
IP multicast for content-based publish/subscribe [11]. How-
ever, IP multicast does not create an application-level over-
lay broker network.

7. CONCLUSION
As publish/subscribe systems grow in size, in addition

to efficiency and scalability of the event-based middleware,
the deployment and management of overlay broker networks
will become a major concern. Ideally, as little administra-
tive intervention as possible should be required when event
brokers are deployed — but without compromising routing
efficiency. In this paper, we focused on the requirements of
overlay broker networks. Hermes follows these requirements
with its type- and attribute-based routing algorithm on top
of a peer-to-peer routing substrate. Several experiments
compared Hermes with a traditional publish/subscribe sys-
tem in terms of efficiency and state. As future work, we
would like to extend the delivery semantics of Hermes to
provide guarantees in case of failure in the overlay broker
network. This will add the notion of persistent events to
the event-based middleware.
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