A Large-Scale Overlay Infrastructure for Streaming Real-Time Data

Peter Pietzuch prp@eecs.harvard.edu

Systems Research Group – Harvard University Division of Engineering and Applied Sciences

Cambridge Systems Colloquium - October 2005

Motivation: Internet-Scale SensorNets

- EarthScope: Instrument the continent to understand geological evolution
 - 400 seismometers, 1000 GPS stations, 180 strainmeters
 - How are we going to harness this real-time data?

Motivation: Network Monitoring

- Instrument routers to receive flow information
 - Many different queries by researchers, network admins, ...
 - How can we support many different applications?

Research Challenges

• Scalability

In-network processing

- Large number of data sources and consumers
- Large volume of data (sensors, RFID tags, telescopes, ...)
- Performance
 - Real-time stream data
 - Network and node resources are limited
 - Network and node conditions change over time
- Heterogeneity
 - Wide range of different applications
 - No single data model (relational, XML, VOTable, ...)
 - No fixed set of processing operators

New Infrastructure for Building Large-Scale Stream-Processing Applications

Application independence

Optimization and adaptation

Stream-Based Overlay Network (SBON)

- Overlay network that processes streams on behalf of clients
 - Massive number of data sources and queries
 - Where do we locate the operators?

SBON Model

- Stream and Node Management
 - Instantiation of stream data paths and operators
 - Management of resources for in-network processing
 - Stream Optimization
- Operator Model
 - SBON is data and operator model agnostic
 - Processing operators are application-defined
 - e.g. aggregate, join, filter-XML, match-face, adjust-parallax, ...
 - Describe abstract operator properties
 - Measure incoming/outgoing data rates to estimate selectivity
 - Functions to

Distributed Stream Optimization

- Classic DB query optimization doesn't work in this context
 - Assume knowledge of operator semantics
 - Smaller scale: 100s of processing nodes and 1000s of streams
 - Global stable view of the entire system
 - Network properties not taken into account
 - latency, bandwidth, packet loss, ...
- Need novel approach for distributed stream optimization

 Our approach: Perform stream optimization decisions in a virtual metric space

- Optimization metric
 - Reduce *latency* and minimize *network* effect on others
 - Push aggregation operators close to data sources
 - Minimize the amount of *in-flight data*
 - Product of *latency* and *datarate*

Cost Space

- Nearest neighbor lookup
 - e.g. geometric routing, DHT, ...
- Advantages
 - Decentralized and scalable implemention
 - Adapts to changing network conditions
 - Geometric algorithms applicable for optimization decisions

Network coordinates on PlanetLab

Operator Placement

- Placement Problem
 - Different operator placements have different costs
 - Approximate optimization problem in cost space
 - Map solution back to physical node to host operator

- Relaxation Placement
 - Physical simulation: model streams in cost space as a *network of springs*
 - Spring **extension** = **latency**
 - Spring *constant* = *datarate*
 - Springs "pull" according to datarate

Relaxation Placement

- Minimize latency-datarate product
 - Decentralized and adaptive computation

Relaxation Placement

Relaxation Placement

Operator Decomposition

- Decompose operators due to network and CPU load
 - Consider springs pulling in given direction

Operator Decomposition

- Decompose operators due to high network and CPU load
 - Consider springs pulling in given direction

Operator Reuse

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators

Cross-Query Optimization

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators

Cross-Query Optimization

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators

Research Agenda

- Distributed Stream Optimization
 - Right set of optimization primitives
 - Take advantage of semantic knowledge
- Query Interface
 - Rich expressive query language
 - Implementation language for operators
- Resource Discovery
 - Efficient nearest neighour search in cost space
 - Discover sensor networks
- Build and deploy real applications
 - Analysis of political weblogs
 - Detection of network attacks with PlanetFlow traffic data
 - Exploring collaborations with domain scientists

Summary

- Large-scale stream applications need new infrastructures
 - Support for in-network stream processing
 - Adaptation to network and node dynamics
- Stream-Based Overlay Network
 - Overlay infrastructure for multiple stream-processing applications
 - Data and operator model agnostic
 - Efficient placement of in-network processing operators
- Distributed Stream Optimization
 - Need new query optimization techniques for this space
 - **Cost Space** encodes network state efficiently
 - Algorithms for **placement**, **decomposition**, and **reuse**
 - SBON nodes periodically re-optimize hosted operators

Thanks!

Peter Pietzuch

http://www.eecs.harvard.edu/~prp prp@eecs.harvard.edu

The Hourglass Project Team

Jonathan Ledlie, Jeff Shneidman, Rohan Murty, Matt Welsh, Mema Roussopoulos, Margo Seltzer