
Event-Based Middleware:
A New Paradigm for Wide-Area Distributed

Systems?
Peter R. Pietzuch1

University of Cambridge Computer Laboratory
{Peter.Pietzuch}@cl.cam.ac.uk

Abstract:

Large-scale, internet-wide applications are becoming commonplace. Such systems can consist of
many heterogeneous components distributed over several continents. Whereas middleware platforms
like CORBA or Java RMI are useful for building distributed applications at a small to moderate
scale, we do not have similar tools for large-scale systems. However, without a middleware
abstraction it is difficult to deal with the complexity of global systems.

In this paper, we describe a novel kind of middleware, Hermes, that uses event-based communication
as its primary paradigm. Nevertheless, it supports standard middleware functionality. It is built on top
of an overlay routing network and uses intrinsically scalable algorithms for event dissemination.

1 Introduction
Distributed systems have a number of advantages over conventional, centralised systems. They can
support a larger number of users at a smaller cost and the overall availability of the system is higher
than of a centralised solution. Increased performance of the system can be provided to the users by
adding small, inexpensive components as the systems grows. However, the cost to be paid for these
benefits is the increased complexity of the system which has to be managed. This complexity mainly
comes from the fact that a potentially large set of autonomous and heterogeneous components are
part of the distributed system.

In order to simplify the problem, middleware platforms were developed that run on top of
heterogeneous operating systems and provide a homogeneous, abstract view of the entire distributed
system. Today, most middleware systems like CORBA or Java RMI are invocation-based and thus
follow a request/reply paradigm: A client requests a particular service from a server by either
sending a request message or performing a remote method invocation (RMI) and then receives a
reply in return.

Although such a mode of operation works well in a local area network (LAN) context with a
moderate number of clients and servers, it does not scale to large networks like the Internet. This is
mainly because the request/reply paradigm only supports one-to-one communication where a single
client interacts with a single server. In contrast, large-scale systems benefit from many-to-many
communication since the client does not have to decide on the best communication partner. Another
problem is the tight-coupling of request/reply middleware: The method invocation is synchronous
forcing the client and server to couple at one particular point in time [10]. Such a behaviour is clearly
not desirable on the Internet because of the large number of potential communication partners and the
dynamic nature of the system with new clients joining and servers failing.

A different underlying communication paradigm for building large-scale distributed systems on top
of a middleware seems to be necessary. In this paper, we argue that event-based communication [2] is

a viable new alternative for doing this. In an event-based system, events are the basic communication
mechanism: First, event subscribers, i.e. clients, express their interest in receiving certain events in
the form of an event subscription. Then event publishers, i.e. servers, publish events which will be
delivered to all interested subscribers.

As a result, this model naturally supports a decoupled, many-to-many communication style between
publishers and subscribers. A subscriber is usually indifferent to which particular publisher supplies
the event that it is interested in. Similarly, a publisher does not need to know about the set of
subscribers that will receive a published event.

In a world where millions of small and inexpensive devices can be provided with network
connectivity and integrated into a distributed system, a vision like the Active City could be supported
by an underlying event-based middleware. In the active city, houses, offices, public buildings,
transportation services, and administrative services are interlinked and can interact with each other.
Every device can potentially talk to every other device and provide or request information. A vast
portion of the devices are mobile and autonomous so that no central administrative authority can be
established. A scalable and flexible middleware is essential in such a world. Event-based
communication appears to be much more suited than other traditional request/reply paradigms to
cope with these requirements.

In this paper, we express our idea of an event-based middleware architecture by pointing out the
requirements and presenting, Hermes, an event-based middleware.

2 Event-Based Middleware
Even though several event-based, publish/subscribe systems [6,4,16,9] have been developed over the
past years, little work has been done to unite the areas of middleware systems and publish/subscribe
communication to provide, what we call, an event-based middleware. Traditional publish/subscribe
systems have very limited application scenarios like stock quote dissemination [4] or instant
messaging [16]. Middleware functionality, such as type-checking of invocations, reliability, access
control, transactions, and so on, is often neglected. Our work focuses on providing a scalable
event-based middleware that is powerful enough to be the building layer for any large-scale
distributed application that would traditionally be implemented with an invocation-based
middleware. We envision a world with global e-commerce and business applications, and complex
systems like an active city with thousands of components. We have identified a number of important
middleware and publish/subscribe features that must be provided in an event-based middleware
system.

Scalability is a crucial requirement for Internet-wide applications. A system is only scalable if all its
components are, which means that the implementation of the middleware system must not rely on
any centralised services. Moreover, algorithms must not keep any global state, and resources like
network bandwidth and memory must be consumed efficiently.

Interoperability should allow the integration of a variety of components with the middleware. The
event model and the subscription language must be language- and platform-independent. The
middleware must not rely on any particular support from the underlying network that is not
universally available like IP multicast. However, it should take advantage of available services for
performance reasons.

Reliability when delivering events may be one of the quality of service (QoS) requirements
requested by event clients or servers. The middleware must support a range of QoS guarantees, from
``best-effort'' to ``guaranteed and timely'' event delivery. Fault-tolerance mechanisms such as

persistent events stored in a database allow the middleware to operate in the light of client and server
failures.

Expressiveness is an important requirement when specifying events and subscriptions. Subscriptions
must allow filtering depending on the content of events (content-based filtering). Composite event
expressions [15] that detect patterns in the event stream are an intuitive and powerful higher-level
abstraction that helps event subscribers to express their information need. Nevertheless, there is
always a trade-off between expressiveness and efficiency [5].

Usability means that the middleware is easy to handle. It should cleanly integrate with the
application programming language. For instance, events should be typed objects that are mapped
transparently to programming language objects. Linguistic supports involves type-checking of events
and subscriptions and tools for the construction of complex composite event expressions.

3 Hermes

Figure 1: A Distributed Application built with
Hermes

In our research group we have developed Hermes [12], a distributed, event-based middleware
architecture. It consists of two components, event clients and event brokers. Event clients can be
event publishers or event subscribers. The main functionality of the middleware is implemented by
the event brokers. As a result, event clients are light-weight components that can easily be
implemented in any programming language guaranteeing language-independence of the architecture.
They communicate with the event brokers by passing XML messages.

Event brokers are interconnected in an arbitrary topology. They use a content-based routing
algorithm [7] to deliver events from publishers to subscribers. The filtering of event streams
depending on the subscriptions is done in a distributed fashion. It happens as close to the event
source as possible, thus saving network bandwidth and increasing scalability (source-side filtering).
Figure 1 shows a distributed application built on top of Hermes.

In order to provide a scalable event routing algorithm that can deal with node failures, Hermes relies
on the service of a peer-to-peer overlay routing network like [13,17]. The event brokers are the nodes
of an overlay network that supports a route(message, destination_id) function that enables a
broker to send a message containing an event to any other broker. This event is then routed via the
overlay network, and the event brokers along the path apply their filtering expressions.

Using an overlay network for event dissemination has several advantages: Firstly, events are routed
without any need for global state. No event broker in the system must have knowledge of all the
subscriptions or event sources. Secondly, the entire system is more robust to error because the
overlay network can transparently adapt to node or link failures. Finally, the overlay network is used

to set up rendezvous nodes [3]. These special brokers with well-known addresses make sure that
published events are disseminated along paths towards all the subscribers that are interested in a
particular event [14].

To alleviate the impedance mismatch between events and programming language objects, all events
in Hermes are an instance of a particular event type. Event types contain event attributes and are
organised in an object-oriented inheritance hierarchy. When an event client wants to subscribe to an
event, it first decides on the event type it is interested in and then provides a filtering expression
based on the event attributes in this type. Such a type- and attribute-based publish/subscribe scheme
makes it simpler to decide which events are of interest. Moreover, it enables Hermes to type-check
subscriptions at runtime which is not possible in purely content-based publish/subscribe [6].

Figure 2: The Layered Architecture of Hermes

The architecture of Hermes follows a layered approach as shown in Figure 2. The middleware is
assumed to be deployed on an IP unicast network such as the Internet. The overlay routing layer
provides a basic communication service between the event brokers. The two publish/subscribe layers
implement the event dissemination algorithms with source-side filtering. Traditional middleware
services like QoS, security, reliability, etc. are implemented in the form of modules on top of the
event-based middleware layer.

4 Future Work
We are currently working on a full implementation of Hermes within a message-based, discrete event
simulator. Since Hermes is aimed at supporting global scale distributed applications, it is important
to have a simulation environment that can support at least nodes with a large number of event
publishers and event subscribers. Our goal is to be able to simulate isolated parts of our active city
vision. Performance measurements should support our claims of the overall scalability of the Hermes
architecture.

Another active area of interest is the distributed detection of composite events. Previous
work [15,11] assumed that either it is possible to put an upper bound on the network delay, or the
identity of all event sources is known to the composite event detector. Both assumptions are not valid
for a global-scale system. We are experimenting with a heartbeat protocol that gives a confidence
interval to the event detector about the likelihood of delayed events that might invalidate the
detection of a composite event pattern.

Storing events in a persistent store was identified as a prerequisite for the provision of a reliable
event service. It enables an event broker to guarantee the correct delivery of an event to all interested
subscribers even when event brokers crash during transit of the event. [1] describes our work on
expressing event types using the Object Definition Language (ODL) [8]. These events can then be

directly inserted into an ODMG-compliant object-oriented database. We are planning to extend a
Hermes event broker to incorporate a persistent store used for reliably delivering events.

5 Conclusions
In this paper, we have briefly described the potential of the event-based paradigm for building
large-scale distributed systems using a novel middleware architecture. We motivate our approach by
the fact that wide-area systems are growing in importance as network connectivity is falling in price.
As a result, large federated systems consisting of thousands of systems can feasibly be built now in
many applications areas, such as global e-commerce or large-scale active environments like the
active city. Traditional, invocation-based middleware does not seem to be up to the task. Loose
coupling between components in these systems plays a central role because of their dynamic nature
and heterogeneity.

The event-based paradigm gives ways of dealing with these new requirements and provides an
intuitive model for building systems. The Hermes architecture combines traditional middleware
functionality with event-based communication. It uses a peer-to-peer overlay routing network as an
abstraction if IP multicast support is not available. Type- and attribute-based publish/subscribe
integrates cleanly with programming language types.

However, event-based middleware will only be successful in the future if we do not forget the
lessons learnt from decades of middleware research. Supporting traditional middleware functionality
like QoS, security, transactions etc. is essential. We feel that our work is a first step in that direction.

Bibliography

1 Jean Bacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao.
Event Storage and Federation using ODMG.
In Proc. of the 9th International Workshop on Persistent Object Systems: Design,
Implementation and Use (POS9), Lillehammer, Norway, September 2000.

2 Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew McNeil, Oliver
Seidel, and Mark Spiteri.
Generic Support for Distributed Applications.
IEEE Computer, pages 68-77, March 2000.

3 Tony Ballardie, Paul Francis, and Jon Crowcroft.
Core Based Trees (CBT).
In ACM SIGCOMM'93, Ithaca, N.Y., USA, 1993.

4 Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert E. Strom, and
Daniel C. Sturman.
An efficient multicast protocol for content-based publish-subscribe systems.
1999.

5 Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Achieving scalability and expressiveness in an internet-scale event notification service.
1999.

6 Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Design and evaluation of a wide-area event notification service.
ACM Transaction on Computer Systems, 2001.

7 Antonio Carzaniga and Alexander L. Wolf.
Content-based networking: A new communication infrastructure.
In NSF Workshop on an Infrastructure for Mobile and Wireless Systems, Scottsdale, AZ,
October 2001.

8 R. G. G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie Gamerman,
David Jordan, Adam Springer, Henry Strickland, and Drew Wade.
The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, 1997.

9 G. Cugola, E. Di Nitto, and A. Fuggetta.
The JEDI event-based infrastructure and its applications to the development of the OPSS
WFMS.
IEEE Transactions on Software Engineering, 1998.

10 P. Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec.
The Many Faces of Publish/Subscribe.
Technical report, EPFL Lausanne, 2001.

11 C. Liebig, M. Cilia, and A. Buchmann.
Event Composition in Time-dependent Distributed Systems.
In Proc. of the Fourth IECIS International Conference on Cooperative Information Systems,
1998.

12 Peter R. Pietzuch and Jean M. Bacon.
Hermes: A Distributed Event-Based Middleware Architecture.
Submitted to the Workshop on Distributed Event-Based Systems (DEBS), 2002.

13 Antony Rowstron and Peter Druschel.
Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems.

In Proc. of Middleware 2001, November 2001.

14 Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
Scribe: The design of a large-scale event notification infrastrucutre.
In Proc. of the 3rd Int. Workshop on Networked Group Communication (NGC2001),
November 2001.

15 Scarlet Schwiderski.
Monitoring the Behaviour of Distributed Systems.
PhD thesis, Computer Laboratory, University of Cambridge, 1996.

16 Bill Segall and David Arnold.
Elvin has left the building: A publish/subscribe notification service with quenching.
In Proc. of AUUG Technical Conference 1997, July 1998.

17 Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph.
Tapestry: An infrastructure for fault-tolerant wide-area location and routing.
Technical report, Computer Science Division, University of California, Berkeley, April 2001.

Footnotes

... Pietzuch1
Research supported by QinetiQ, Malvern

Peter Pietzuch 2002-01-17

