
Jeffrey Shneidman, Peter Pietzuch, Matt Welsh,
Margo Seltzer, Mema Roussopoulos

Systems Research Group – Harvard University
Division of Engineering and Applied Sciences

NetDB - April 2005

A Cost-Space Approach to
Distributed Query Optimization in

Stream Based Overlays

Data Stream Applications

● Producers generate real-time data streams
– Sensor networks, network monitors, financial markets, ...

Data Stream Applications

● Consumers submit continuous queries

Data Stream Applications

● Services (operators) process stream data
● Legacy way for stream processing

– Stream data to central data warehouse

Data Stream Applications

● Inefficient if multiple consumers with similar interests
– better: in-network processing

Stream Based Overlay Network (SBON)

● Overlay network of processing nodes
– Leverage Internet resources
– Re-use processing

 Distributed Query Optimization

– Reduce network traffic

Query Optimization

1) Query Plan Generation
– Find least-cost logical query plan

2) Operator (Service) Placement
– Find placement nodes in overlay network for all operators

● Problem
– Cost of query plan depends on service placement (network

costs dominant)
– Service placement expensive: many placement locations
– Changing network dynamics (latency, bandwidth, ...)

● Our Approach
– Reduce the cost of service placement through Cost Space
– Consider combined cost of query plan and service placement

Overview

● Stream-Based Overlay Network
– Service Placement
– Cost Space

● Virtual Placement
● Physical Mapping

● Integrated Query Optimization
● Multi-Query Optimization
● Current Work
● Conclusions

Stream-Based Overlay Network

● Applications

– Financial data
(Borealis, Aurora)

– Network Health (PHI)

– Streaming Scientific
Data (Hourglass,
IrisNet)

● Services

– DB/Stream Operators
(Aggregate, bucket, union,
join, wait-for, re-sample, map,
filter, sort, ...)

– Custom Operators
(Compress, FFT, detect-
attack, pattern matching, ...)

● Network abstraction layer

● SBON query
(multiple producers,
multiple opaque services,
one consumer)

Service Placement Cost

● Application-centric Costs
– Latency, jitter, available bandwidth, ...

● Global Costs
– Network utilization (network links, routers, ...)
– Resource contention (node & network link stress, ...)

● Idea
– Reduce latency and minimize the effect on others

 Keep network utilization for a query as low as possible
– Minimize the amount of in-flight traffic

● Product of data rate and latency
● Assumes that high latency network links are more costly

– Large geographic distance
– Network congestion

∑ DR * Lat

Service Placement I

● Need to instantiate the query in the SBON
– Know or measure the selectivity of a service

Service Placement II

● Calculate cost per query
● but: too many overlay nodes to probe individually

Data rate = 5MB/s
Latency = 30ms

Data rate = 5MB/s
Latency = 10ms

Data rate = 100KB/s
Latency = 80ms

∑ DR * Lat = 208KB

Cost Space I

● Metric space that expresses costs for placement decisions
– Euclidean distance between two points is the cost of routing

data between nodes
● Dimensions encode different costs

– Vector costs between two nodes
● Latency, jitter bandwidth,

– Scalar costs for a single node
● CPU load, available memory, uptime, ...

● Advantages
– Placement in mathematical space
– Can be maintained in a decentralised fashion

● Network coordinates for latency (Vivaldi, ...)
– Adapts to changing network conditions

Cost Space II

● Latency/Load cost space
– 2 dimensions for latency
– 1 dimension for load (with weighting function)

Service Placement in Latency/Load Space

1. Virtual Placement
Calculate placement solution in latency space

● Use spring relaxation to approximate best placement
location in latency space

2. Physical Mapping
Map solution back to physical space

● Locate physical node closest to computed solution

Virtual Placement

● Relaxation Placement: Model links as springs
– Spring extension = Latency of link (Lat)
– Spring constant = Data rate of link (DR)

Virtual Placement

● Relaxation Placement: Model links as springs
– Spring extension = Latency of link (Lat)
– Spring constant = Data rate of link (DR)

Physical Mapping

● DHT lookup to find closest existing node to desired
coordinate
– Use space-filling Hilbert curve to store n-dimensional cost

space coordinate in 1-dimensional DHT

Integrated Query Optimization

● Cost space allows us to integrate plan generation and
service placement by reducing the cost of service placement

● Query Set-up at any node
– Generate candidate set of query plans
– Place each query plan to calculate total cost
– Instantiate least cost plan

● Local query re-optimization
– Each node hosting an operator re-evaluates local placements
– Migrate operator when placement changes

Multi-Query Optimization

● Find re-usable services to save processing and network
resources

● Consider sphere of radius R in cost space
– Only reuse operators

within sphere
– Plans with distant

placement unlikely
to be useful

R

A
B

C

D

Current Work

● Running SBON implementation on PlanetLab that supports
– Load/latency cost space
– Service migration
– Simple Java application and Borealis

● Other metrics for cost spaces
– Bandwidth, jitter, reliability, ...

● Interaction between SBON optimizer and application
– Interfaces to describe service and data semantics to SBON
– Decomposition of services, coverage among services, ...

Conclusions

● Large-scale data stream apps require new infrastructures
– Support for in-network stream processing
– Stream-Based Overlay Network (SBON)

● Query optimization faces new challenges
– Vast search space for service placement
– A good logical query plan may lead to only bad placements

● Cost spaces are a useful abstraction to address this
– Reduce the cost of service placement decisions
– Virtual placement and physical mapping
– Decentralized, flexible, and adaptable to network dynamics
– Discovery of existing services for multi-query optimization

Thank You. Any Questions?

The Hourglass Project

http://www.eecs.harvard.edu/~syrah/hourglass

hourglass@eecs.harvard.edu

Peter Pietzuch

http://www.eecs.harvard.edu/~prp

prp@eecs.harvard.edu

Backup Slides

PlanetLab Latency Space

Spring ModelSpring Model

● Network of springs tries to minimize potential energy E
● where k is the spring constant and s is

the spring extension

● where E is the potential energy

● Cost function for placement

Lat = s

BW = k

P
1

S

P
2

F = ½ * k * s

Σ E = Σ F * s
 = Σ ½ * k * s2

Σ [BW * Lat]2

