
���������
	��
�������������������������
������� �"!#�%$&��'
�)(*���,+���-/.0���213�4��56$

798;:<8;=>7@?A8B:<C&D%E2F
GH8BIJ=K8BL0MNF%OP8&?AQ%RTSHO
U0SV:K:XWY8[Z]\KF
U0S^=K_�`
Ma8&Zb:<C[8;=

SHO%Q
Uc8[RTS#d>`HD%\<\K`He�`fD%Z]`H\

g dihkj^l�hnm^o

p `fR
e�D�:<8;=>MNE;?A8[O%E;8rqs=<`fDPe
tsSV=Ku^SV="Qcv�O%?bu�8[=<\K?w:nL

p SHRyx%="?AQP_f8Hz%U0SH\K\"S^E{FND%\|8B:K:2\

Path Optimization in Stream-Based Overlay Networks

Peter Pietzuch, Jeffrey Shneidman, Matt Welsh, Margo Seltzer, Mema Roussopoulos
NOTE: Related Work under Blind Submission! Do NOT Distribute!

Harvard University Tech Report: TR26-04

hourglass@eecs.harvard.edu

Abstract
The emergence of sensor networks and distributed applications that gen-
erate data streams has created a need for Internet overlays designed for
streaming data. Such stream-based overlay network (SBONs) consist
of a set of Internet hosts that collect, process, and deliver stream-based
data to multiple applications. A key challenge in the design and im-
plementation of SBONs is efficient path optimization when mapping
logical query streams to physical network hosts and paths. Suboptimal
placements can induce poor utilization of network resources, leading
to severe performance penalties, link saturation, and network hotspots.
Our goal is to realize efficient stream placement that takes the physi-
cal topology of the Internet into account, thereby minimizing overall
network utilization.

In this paper, we describe a novel, network-aware path optimization
algorithm for stream-based overlay networks. Our approach is based on
a spring relaxation model that operates in a metric space defined by the
pairwise node latency within the SBON. This relaxation placement al-
gorithm utilizes the underlying network resources efficiently, is capable
of performing inter-stream optimization, and can be implemented in a
scalable and decentralized way.

To evaluate its performance, we define a set of evaluation metrics
for path optimization in terms of network utilization, application de-
lay, and resource contention. Our simulation experiments with a real-
istic network topology show that relaxation placement approaches op-
timal network utilization without introducing an undue delay penalty
or resource contention. Compared to an optimal placement strategy,
relaxation placement causes only15% more network traffic on aver-
age, while adding a24% delay penalty for the application. We validate
our simulation results with actual measurements involving70 PlanetLab
nodes.

1 Introduction
Recently, there has been much interest generated in buildingdata
streaming applicationson the Internet. These applications typi-
cally involve querying, processing, and delivering real-time data
from multiple distributed data sources, such as sensor networks,
and making use of shared resources in the Internet to aggregate,
filter, or multicast this data. Commonly-cited target applications
include real-time processing of financial data streams [1, 2], con-
tinuous monitoring of Internet paths and system loads [15], and
querying geographically diverse sensor networks [14, 18].

In thesedata streaming applications, queries tend to be sim-
ple but frequent, and data almost always needs to be transmitted
to a location remote from the source. While any single stream-
ing application might not stress the network infrastructure, un-
less each application deploys its own network, the aggregate load
imposed by the myriad applications under consideration is likely
to overwhelm any existing infrastructure. Therefore, we need
new network infrastructure that is capable of efficiently support-
ing this class of applications. We call this network infrastructure
astream-based overlay network(SBON).

An SBON consists of some number of participants, possibly
in different administrative domains, each of whom is willing and
able to transmit data and implement a variety of stream operators
(e.g., merging two streams, duplicating a single stream to fa-
cilitate transmission to multiple destinations, selecting elements
from the stream that meet some criteria). In addition, some par-
ticipants may implement application-specific operators.

Stream-based overlay networks introduce two fundamental
technical challenges: First the SBON must perform apath place-
ment decision, creating a mapping of a particular data stream and
its operators onto a particular collection of participants. Second,
the SBON must make this decision in a manner that makes ef-
ficient use of the underlying network. There is an inherent ten-
sion in this second challenge in that a placement that optimizes
for the global network good may harm the performance (delay
or response time) for a particular application. Thus, we must
optimize network utilization within the constraints of tolerable
application latency.

A number of distributed stream processing systems incorpo-
rate the notion of an SBON either explicitly or implicitly in their
designs [10, 14, 15, 27]. These systems differ with respect to
their scalability, fault tolerance, and query models. To date, how-
ever, few of these systems have attempted to address the path
placement decision in a manner that takes the physical topol-
ogy of the Internet into account. To the best of our knowledge,
none of these systems have considered the placement decision as
a whole, and instead focus on the placement or optimization of
individual streams.

The contributions of this paper are as follows. First, we for-
malize the notion of astream-based overlay networkand the fun-
damental path placement decision that must be resolved in such
a network. Second, we present a novel network-aware place-
ment algorithm based on a spring relaxation model that operates
in a metric space defined by the pairwise node latency within
the SBON. The spring relaxation-based algorithm we propose
has several attractive properties: it is fully decentralized, has low
communication overhead, and it facilitates optimization across
multiple data streams. We define a set of metrics that capture
different aspects of network efficiency including network uti-
lization, infrastructure utilization (i.e., routers), and end-to-end
latency. Finally, we present extensive simulation results that
use these metrics to compare our algorithm to several others in-
cluding IP multicast, random placement, and source/destination
placement as well as an optimal placement. We also validate
these simulation results with PlanetLab measurements.

We find that our spring-relaxation based algorithm achieves
within 15 % of the optimal bandwidth-latency product (a met-
ric that captures the amount of data in transit in the network)

1

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

P
e

rc
e

n
ta

g
e

 o
f

m
e

ss
a

g
e

s

Latency (in ms)

Number of producers
1 producer

3 producers
5 producers
7 producers
9 producers

11 producers
13 producers

1,3,5, 7 producers

9,11 producers

13 producers

Figure 1: Resource contention with centralized stream-
processing on Planetlab.Each producer is sending32 KB mes-
sages over a TCP connection at a rate of20 KB/s.

while imposing only a24 % delay penalty. As a point of compar-
ison, while IP Multicast achieves better latency results, it is only
within 27 % of the optimal in terms of the bandwidth-latency
product.

The rest of this paper is organized as follows. In Section 2,
we motivate why SBONs are a necessary alternative to a tradi-
tional centralized data warehouse approach and specify the re-
quirements for performing path placement in SBONs. In Sec-
tion 3, we introduce our SBON system model, formalize the
placement problem, and introduce our evaluation metrics. In
Section 4, we present the Relaxation placement algorithm. In
Section 5, we discuss both our simulation and deployment re-
sults. In Section 6, we place our work in the context of other
related work and in Section 7, we discuss future work that is
beyond the scope of this paper. We conclude in Section 8.

2 Motivation
The traditional approach to stream-based processing involves a
centralized data warehouse that collects and processes real-time
data [8]. While such an approach permits the use of extensive
resource provisioning and replication to manage server load, it
does not lead to an efficient use of resources because streams
must be routed to the central warehouse for processing.

We illustrate the problems inherent to centralized stream-
based processing with the Planetlab experiment in Figure 1,
which shows the latency distribution of messages in a stream
sent by several producers to a single consumer node. As can be
seen from the graph, when more than five producers are simul-
taneously sending data directly to the consumer, contention in
the system causes the observed application latency to increase.
The contention worsens as more producers are added, increasing
latency drastically.

Stream-based overlay networks (SBONs) offer a better ap-
proach by leveraging resources in the Internet to process and
deliver stream data. Rather than sending data to a centralized
store for processing, we believe that SBONs of the future could
be used to run query operators on behalf of multiple concurrent
queries, perhaps allowing the results of a particular computation
to be shared across multiple users. In such a shared scenario,
interesting path optimization problems arise. The essential task
facing an SBON ispath placement, whereby logical streams are

Producer
Services

Circuit
Link

Circuit 1 Circuit 2

Operator
Services

Consumer
Services

P

C

S

S

S

C

P P P

Figure 2:Example of an SBON with two circuits that share a
producer and operator service.

mapped to physical resources (hosts and network links). Given a
logical data stream consisting of zero or more data sources, one
or more processing operators, and one or more destinations, the
goal is to instantiate operators on nodes in the SBON to make
best use of the physical network resources and maintain good
performance.

Specifically, a good placement algorithm must satisfy three
basic requirements. First, it must bescalablein that it can sup-
port a large number of concurrent streams, as well as a large
number of network hosts acting as data producers, consumers,
or intermediate nodes that execute query operators. This implies
that the algorithm must be decentralized, not depend on global
knowledge of network conditions and have low communication
overhead. Second, path optimization should beadaptivewith re-
spect to changing network conditions such as load, latency, and
link utilization, as well as changing stream characteristics and re-
quirements. Third, the placement algorithm should yield“good”
placement, where good is defined either in terms of global or
application-specific metrics. For instance, it could minimize
overall network utilization or load, or give placement priority
to certain classes of streams. Similarly, the algorithm could in-
corporate end-application performance goals, such as maximum
latency or jitter of streams. Regardless of the design goal, there
should be clear criteria with which to evaluate competing algo-
rithms.

3 Stream-based Overlay Networks
In this section, we introduce our model of astream-based over-
lay network(SBON). A wide range of existing stream processing
systems are examples of SBONs and are expressible within this
model. We are creating this model because these systems share
similar problems and can benefit from common problem-solving
methodologies and analysis.

An SBON is an overlay network that streams data from one or
more producers to one or more consumers, possibly via one or
more operators that perform in-network processing. The basic
model of an SBON is one of multiplecircuits interconnecting
multiple services, as shown in Figure 2. A circuit is a tree that
specifies the relationship and identity of services in a data stream
and corresponds to a query. Services that are part of a circuit are
connected withcircuit links. Note that a service identity may
not initially specify a physical node for hosting that service; this
unplacedservice scenario is described shortly, but highlights the
idea that a circuit can be alogical statement, before it becomes
fully realizedthrough placement decisions, tying it to physical

2

NOTE! Related Work under blind submission: Do not distribute to anyone else!

network locations.
Services are categorized into three classes: A (1)producer

servicestrictly acts as a data producer for the SBON. A (2)con-
sumer servicemay only receive data from the SBON. An (3)op-
erator serviceprocesses data, both consuming and producing
data streams. If a service is permanently associated with a physi-
cal network location, it is called apinned service. Typical pinned
services may include producer and consumer services; the net-
work addresses for these services may be explicitly specified by
the creator of a circuit. In contrast, anunpinned service, such as
a relational join operator, can be instantiated at an arbitrary lo-
cation in the SBON. Unpinned services can further be described
asplacedor unplacedbased on whether they are currently asso-
ciated with a physical network location. Unpinned services are
placed by aplacement algorithm. An unpinned, placed service
can be re-placed by a later iteration of the algorithm if the net-
work or stream characteristics change.

Our model of an SBON makes few assumptions about ser-
vices in order to capture a wide range of existing stream-
processing systems. In particular, no single query language or
data model has been assumed. Instead we assume that informa-
tion about circuits used in placement decisions can be accessed
by the system. For example, this involves knowledge of network
characteristics of the circuit links connected to services, such as
bandwidth usage. These characteristics are either known stati-
cally or determined through run-time measurements.

3.1 Placement Problem
In this section, we formalize the placement problem for unpinned
services that underlies data path optimization in an SBON. The
placement optimization is motivated by four observations, which
we will formalize in the following sections.

1. Unpinned, unplaced services must be placed on physical
nodes; in other words, logical circuits must be realized.

2. Some placements are better than others. There is some cost
function that reveals the “quality” of a placement decision.

3. The goal of the placement problem is an optimal node as-
signment for all unpinned services with respect to the cost
function.

4. Optimal placement requires global knowledge and isNP-
hard, so we seek an approximation algorithm that is scal-
able, adaptive, and yields “good” placement decisions, the
criteria mentioned above.

Placement Requirement. We seek a placementΠ that spec-
ifies where each of them unpinned services(s1 . . . sm) in the
SBON are located from thel possible physical nodes(n1 . . . nl).
As a pedagogical device, one can think ofΠ as a matrix, where
a 1 in a service’s row entry indicates placement on the physi-
cal node corresponding to the column entry. In the absence of
outside constraints, a physical node can support multiple placed
services, as in this placement of three services onto two nodes:

Π =

 n1 n2 n3

s1 1 0 0
s2 1 0 0
s3 0 0 1

 (1)

We require that every service be placed exactly once; rows of
Π must sum to 1.

Figure 3: Example of an inefficient circuit placement. The
thickness of a link is proportional to the used bandwidth.

Placement Quality. There are many possible placementsΠ.
To evaluate a placement or to guide an optimization function to
find the best placementΠ, we must state a cost function of the
following form: Given the set of circuitsC, which includes the
relationship and identity of all pinned and unpinned services, the
topologyT , which includes the network characteristics, and a
specific placementΠ, fcost evaluates to some scalar valuek.

fcost(C, T,Π) = k (2)

Intuitively, k is the quality of the placement decisionΠ as
calculated by this cost metric. Sample cost metrics are given in
Section 3.2.

Ideal Goal: Optimal Placement. Ideally, we seek an opti-
mization algorithm that calculates the best possible placement
Π. This can be expressed as an argument minimization function,

Placeopt = arg min
Π

[fcost(C, T,Π)] , (3)

subject to placing all services exactly once, and perhaps other
contraints that specify the set of candidate nodes allowed for
placement.

Realistic Goal: Approximation. Placeopt finds the optimal
placement for unpinned services for every circuit in the system.
However, the assumption of global knowledge about all possible
placements in the SBON is not realistic for a large-scale dis-
tributed system. In addition, iffcost is non-trivial, thenPlaceopt

is NP-hard [19]. These two concerns makes the implementation
of Placeopt infeasible.

Therefore, the rest of this paper focuses onPlacerelax, which
is an approximation algorithm based on spring relaxation that
uses two phases to approximate the optimal solution. In the next
section, we consider interesting choices offcost, and then moti-
vate our selection when describing the Relaxation algorithm in
Section 4.

3.2 Cost Metrics
Cost metrics can be used both as part of an optimization function
and to evaluate a placement. Our strategy in this paper is to use
several metrics, which we describe below, to drive our evalua-
tion.

Short of economic utility statements, it is unlikely that all of
the participants in a network can reach agreement on the “right”
optimization metric. Much existing work in operator placement

3

NOTE! Related Work under blind submission: Do not distribute to anyone else!

has focused on allowing individual circuit owners to drive the
optimization in their favor. In contrast, this paper places the op-
timization function in the hands of the network administrator,
who may be better equipped to optimize for the “network good.”
The placement in Figure 3 gives an intuition for what would be
an inefficient placement. The placement of serviceS on physi-
cal noden1 causes linkp to carry twice as much traffic, whereas
noden2 would not cause the same problem because of the di-
rect links to the producer nodes. The metrics described in this
section capture this type of global network efficiency, but also
incorporate application delay penalty and resource contention.

3.2.1 Network Utilization
Bandwidth-Latency (BW-Lat) Product is the product of the
bandwidth (in KB/s) used in a realized circuit linke times the
latency (in ms) of that link, calculated over all realized circuit
links E (computed fromC, T , andΠ) in the SBON:∑

e∈E

BW(e) Lat(e) (4)

The BW-Lat metric captures network utilization by comput-
ing the amount of data that is in transit in the network at any
point in time. The rationale is that the less data is put into the
network by circuits in the SBON, the more network capacity is
available to other circuits and applications. As a result, the BW-
Lat metric makes an assumption that high latency network links
are more costly to use than low latency ones [33]. Often high
latency over a network link indicates network congestion caused
by popularity or long geographical distance that translates into
higher operating cost. In both cases, reducing the utilization of
such a costly network link is beneficial.

Bandwidth-Hop Count (BW-HC) Product is the product of
the bandwidth (in KB/s) used in a realized circuit linke times the
number of physical routing hops for that link, calculated over all
circuit linksE in the SBON:∑

e∈E

BW(e) HC(e) (5)

The BW-HC metric emphasizes the utilization of Internet
routers and physical links by including the number of physical
routing hops into the cost of streaming data through the circuit.
This evaluation metric favors circuits that involve a small num-
ber of physical links, thus using a smaller fraction of the total
bandwidth available in the network. Often the number of physi-
cal routing hops correlates with geographic distance. This metric
assumes that routing information about the physical topology is
available to get an accurate measure of hop count.

3.2.2 Delay Penalty
Delay Stretch is defined as the sum of the longest path delay
under placementΠ for a circuitC divided by the shortest path
delay. The shortest path delay is the circuit realized by placing
all services at the consumer node (Πcons). Thus, using the func-
tion Delay to denote the longest path delay of circuit under a
particular placement, we have:

∑
C

Delay(C, T,Π)
Delay(C, T,Πcons)

(6)

For simplicity, we are ignoring the processing delay intro-
duced by services. Delay stretch is a common metric for mea-
suring the delay penalty that applications have to pay when using
an application-level multicast network compared to an IP-level
multicast implementation [6].

3.2.3 Resource Contention

Node Stress addresses resource contention in the SBON.
Node stress is defined as the number of services hosted at a given
node. Usually, each node has a maximum node stress that it can
support.

Link Stress is defined as the total bandwidth sent through a
physical link. When placing services in the SBON, a circuit link
cannot be placed if the placement causes a physical link along
the path to exceed its maximum capacity.

4 Relaxation Placement
In this section, we describe Relaxation placement, our network-
aware path optimization algorithm. The main idea behind Relax-
ation placement is to partition placement into two phases. First,
an unpinned service in a circuit is placed using a spring relax-
ation technique in a virtuallatency spaceand then the solution
is mapped back to the physicalnetwork space. Performing data
path optimization in latency space has the advantage of naturally
capturing global knowledge about latency in the network topol-
ogy, without imposing a large overhead due to network probing.
The choice of latency as the principal metric acknowledges that
most of the placement cost functions described in Section 3.2
depend on latency.

Next, we explain the characteristics of latency space before
presenting the spring relaxation model used for service place-
ment within that space in Section 4.2. A description of the com-
plete Relaxation placement algorithm is given in Section 4.3. In
Section 4.4, we explain how Relaxation placement can perform
cross-circuit optimization, adopting a global view of the opti-
mization problem.

4.1 Latency Space
Recently, several proposals have been made for the computa-
tion of synthetic,n-dimensionalnetwork coordinates[20, 21]
for physical nodes in the Internet. Network coordinates have
the property that the Euclidean distance between two coordi-
nates is a reasonable prediction for the communication latency
between the corresponding network nodes. This enables large-
scale distributed applications to make latency-conscious deci-
sions without the overhead of probing the network directly with
all-pairs ping measurements. Network coordinates can usually
be calculated after probing the latency to only a small subset of
nodes. That subset either consists of a set of well-known land-
mark nodes [21] or is randomly selected [11]. Since communi-
cation latency on the Internet violates the triangle inequality and
changes dynamically over time, network coordinates can only
provide an estimate of the true latency value. However, simula-
tion results [12] suggest that network coordinates, even with low
dimensionality, have a small predication error.

The plot in Figure 4 shows a3-dimensional latency space for
a 1550-node transit-stub topology with10 transit domains and
150 stub domains. The topology was created with the Georgia
Tech topology generator [34] and the network coordinates were

4

NOTE! Related Work under blind submission: Do not distribute to anyone else!

Transit

Domains

Stub

Domains

Figure 4: Visualization of a 1550-node transit-stub topology
in latency space.

Consumer1

Service1 Producer3

Producer2

Producer1

Producer4

Figure 5:Example of circuit placement in latency space.The
circuit consists of4 pinned producers,1 unpinned service, and
1 pinned consumer, placed in3-dimensional latency space with
42 nodes.

calculated according to the Vivaldi algorithm [11, 12]. Physi-
cal nodes are indicated as points, and edges represent physical
links between nodes. The length of an edge predicts the physical
communication latency. The transit domains can be seen layered
on top of each other at the center of the plot because they are
densely interconnected, exhibiting low communication latency.
Stub domains are radiating off the center as thin clusters because
all outgoing traffic from a stub domain must be routed through
one or more transit domains first.

Intuitively, an efficient placement location for an unpinned
service in terms of network utilization is “on the routing path”
between the pinned services in the circuit. This is captured by
the BW-Lat and BW-HC cost metrics introduced in Section 3.2.
If an unpinned service is not on the routing path, additional traf-
fic is added to the network, thus increasing both products. The
same argument can be made for service placement in latency
space. Figure 5 depicts the placement of a single circuit in la-
tency space. This placement is efficient because the unpinned
service is located on the routing path between the pinned ser-
vices, yielding the lowest possible network utilization.

4.2 Spring Relaxation Model

We compute the placement location for an unpinned service in
latency space by solving the optimization problem usingspring
relaxation. In spring relaxation, the goal is to compute the rest
lengths of a system of interconnected springs. Spring relaxation
is a technique that can approximate solutions to minimization
problems. For example, the Vivaldi algorithm uses spring re-

n

Latency

BW

P
1

C

S

P
2

(a) Before relaxation

P
1

C

S

P
2

(b) After relaxation

Figure 6: Example of circuit placement using spring relax-
ation. The circuit is placed in2-dimensional latency space. The
thickness of a circuits link is proportional to the used bandwidth.

laxation to approximate network coordinates for physical nodes
in the network. A spring is modeled as having an extension vec-
tor ~si and a spring constantki. The average force~Fi experienced
by a springi is governed by

~Fi =
1
2
ki~si. (7)

A system of interconnected springs attempts to reach a low
energy state by minimizing the sum of the potential energiesEi

stored in the springs, according to

arg min
~si

∑
i

Ei =
∑

i

~Fi~si =
1
2
ki~si

2. (8)

This can be implemented efficiently with a decentralized al-
gorithm, such that each spring is relaxed independently by mov-
ing it a small amount as desired, potentially affecting the exten-
sion of other springs in the system. After a number of such re-
laxation iterations, the system of springs will converge towards
the low energy state. Note that the relaxation of an individual
spring only requires local knowledge.

To solve the path optimization problem in latency space
with spring relaxation, we model circuit links as springs. The
spring constant equals the data rate transfered over that link,
ke = BW(e), and the spring extension comes from the la-
tency, se = Lat(e), whereBW(e) andLat(e) are defined as
in Section 3.2. Services are modeled as massless bodies between
springs. Pinned services have a fixed location, whereas unpinned
services can move freely. Expressing this setup as a cost function
for the placement problem from Section 3.2, we obtain

fcost(C, T,Π) =
∑
e∈E

[BW(e) Lat(e)]2 , (9)

This fcost resembles the BW-Lat product cost metric that we
would like to minimize. The additional squared exponent in the
cost function above gives preference to certain placements over
others that have the same cost under the BW-Lat metric.

Figure 6 illustrates the placement of a circuit in latency space
using spring relaxation. In (a), the initial location of the un-
pinned serviceS “stretches” the circuit links to producersP1 and
P2, which then causes the service to migrate to a better noden
in (b). In general, a strong force pulling an unpinned service
into a particular direction can either be caused by multiple cir-
cuit links or a single circuit link that uses high bandwidth.

Using spring relaxation to solve the path placement prob-
lem in SBONs has two advantages. First, the iterative nature of

5

NOTE! Related Work under blind submission: Do not distribute to anyone else!
1 updatePlacement(S):
2 ~F ← ~0
3 ∀Sparent ∈ Parents(S)

4 ~F ← ~F + (~S − ~Sparent) ∗ BW(S, Sparent)
5 ∀Schild ∈ Children(S)

6 ~F ← ~F + (~S − ~Schild) ∗ BW(Schild, S)

7 IF (|~F | > Fthresh) THEN

8 ~S ← ~S + ~F ∗ δ

Figure 7:Pseudo code for the decentralized relaxation place-
ment algorithm

spring relaxation allows placement decisions to adapt to changed
network and circuit conditions. Second, the decentralized im-
plementation of spring relaxation does not require coordination
between services. This keeps the communication overhead low
and opens up the possibility of cross-circuit optimization that has
global impact in the SBON, as will be described in Section 4.4.

4.3 Algorithm
In this section, we explain how the Relaxation placement algo-
rithm is used by an SBON and outline a decentralized imple-
mentation. Consider an SBON with its circuits. Each unpinned
service executes the following two steps continuously. (1) The
serviceplacesitself using spring relaxation in latency space with
respect to the location of its neighbors in the circuit. After that,
(2) it mapsthe computed location from latency space to a node
in the physical network. If the new physical location differs from
its current location, the service may migrate to the new node.

To make the placement decision adaptable, the placement and
mapping steps are repeated continuously by all unpinned ser-
vices in the SBON. This does not cause a large communication
overhead because each service can perform its placement deci-
sion with local knowledge only after learning the network coor-
dinates of its direct circuit neighbors. When the cost of migra-
tion from one node to another is less than the improvement in the
cost metric, the service moves to the new node. This optimizes
the data paths created in the SBON and adjusts them to changes
in network and application conditions. Next, we describe the two
steps in more detail.

Relaxation Placement. We show the pseudo code for the dis-
tributed Relaxation placement algorithm for circuits in Figure 7.
TheupdatePlacement function is executed periodically by
every unpinned service in the SBON. The current network co-
ordinate of the service is~S. A new unpinned service that has
been added to the SBON is assigned a provisional location in la-
tency space, such as the node hosting the consumer service for
the new circuit. The total force~F is calculated by iterating over
all parent and child services connected through input and output
circuit links to serviceS and obtaining their current network co-
ordinates. The force~F is updated with the distance in latency
space between the current coordinate~S and the remote coordi-
nates scaled by the bandwidth used by the circuit link (lines 3–6).
The movement of the service through latency space is dampened
by a factorδ. If the magnitude of the force vector~F is larger
than a force thresholdFthresh, theupdatePlacement func-
tion updates the current network coordinate~S (lines 7–8). The
choice of the force threshold depends on the cost of service mi-
gration. After the service coordinate has been updated, the ser-
vice is mapped to a physical node in the SBON.

Service Mapping. To place a service in the SBON, it is neces-
sary to map the network coordinate of the computed placement
location in latency space to a suitable physical node. Two con-
siderations are important here. First, the mapping should choose
a physical node with a network coordinate as close as possible
to the placement coordinate. Second, the selected node and net-
work path must have sufficient resources to support the new ser-
vice and circuit links. Resources include node resources, such
as the load in terms of CPU utilization (node stress) or mem-
ory consumption, and network resources, such as the available
network capacity on the path of the circuit links (link stress).

We propose a simple scheme, in which we consider thek-
closest physical nodes in latency space to the placement coordi-
nate in order of proximity and select the first node for placement
that has sufficient resources. This relies on a scalable directory
mechanism for looking up network coordinates of existing nodes
and identifying the closest one. A possible solution is to rely
on the routing properties of a DHT, such as Pastry [24], which
routes a message with a destination key to the node with the clos-
est existing key in the system. Each physical node in the SBON
stores its network coordinate in the DHT. Ann-dimensional net-
work coordinate can be mapped to a1-dimensional DHT key
with the help of a space-filling Hilbert function [25]. To find the
closest existing network coordinate, a message is routed via the
DHT with the placement coordinate as a key. The DHT then en-
sures that the message arrives at the closest existing node in the
coordinate space.

The mapping of a placement location in latency space to a
physical node will introduce amapping errorthat depends on
the distribution of nodes in latency space. In Section 5.5, we
show that the mapping error stays within a small fraction of the
network diameter for realistic network topologies.

4.4 Cross-circuit Optimization
An advantage of the Relaxation placement algorithm is that it
naturally supports cross-circuit optimization decisions when cir-
cuits are interconnected with shared services. For this, the entire
circuit graph can be viewed as a network of springs. The place-
ment of an unpinned service in the SBON can then potentially
affect the placement of any other service with transitively shared
circuit links. In practice, placement effects will be more local-
ized because the cost of service migration ensures that placement
decisions do not create a domino effect in the system. Incorpo-
rating the required bandwidth of a circuit link in the cost function
has the desired result that placement decisions for services with
high data rates have a stronger global impact in the SBON.

To enable the sharing of services and links among circuits,
a circuit analyzermust determine whether a new circuit over-
laps with any circuits already existing in the SBON. If this is
the case, stream processing and communication efforts can be
reused, thus reducing resource usage in the SBON. A wide va-
riety of techniques found in distributed query optimization [17]
can be adopted to identify coverage among circuits.

To evaluate the potential of cross-circuit optimization with
Relaxation placement, we implemented a simple circuit analyzer
that determines whether producers are shared among circuits in
the SBON. For each newly added circuit, the circuit analyzer
checks whether any of the producers are already part of other
circuits. When such a producer is identified, the structure of
the involved circuits is altered by inserting amulticast service.
A multicast service has a single input link from the producer

6

NOTE! Related Work under blind submission: Do not distribute to anyone else!

and multiple outputs links connected to the services that share
this producer. It can then be placed at a location closer to the
consumers using the regular Relaxation placement algorithm de-
scribed above in order to reduce the amount of network traffic
generated. We evaluate the effect of multicast services on Relax-
ation placement in Section 5.3.1.

5 Evaluation
In this section, we present the evaluation of the Relaxation place-
ment algorithm for solving the path optimization problem in an
SBON. Our goal is to compare Relaxation placement to five
other relevant placement algorithms using the metrics defined in
Section 3.2. The results are obtained from both simulation and
PlanetLab deployment.

In simulation, we are able to perform the full evaluation and
compare each algorithm in terms of network utilization (BW-Lat
and BW-HC metrics), application delay penalty (delay stretch),
and resource contention (node and link stress). In addition, we
examine cross-circuit optimization in terms of the BW-Lat met-
ric usingmulticast services, as described in Section 4.4.

On PlanetLab, we compare Relaxation placement to four
other algorithms because the fifth, IP Multicast placement, as-
sumes complete knowledge of the physical topology. We explore
the BW-Lat metric and an approximation to the BW-HC metric
since the exact physical topology is unknown. We also exam-
ine application delay stretch. These experiments were performed
by entering the full set of Planetlab ping times into our off-line
simulator, which then output an experiment file with placement
decisions. This file was used to deploy a real stream-processing
system on Planetlab. We did not run resource contention exper-
iments on Planetlab because of the side-effects this would have
on other experiments running in this shared environment.

The remainder of this section is structured as follows: first, we
describe the alternate placement algorithms; we then present our
simulator setup in Section 5.2 and the simulation results in Sec-
tion 5.3; this is followed by our PlanetLab setup in Section 5.4
and the corresponding results in Section 5.5.

5.1 Other Placement Algorithms
In order to provide a comparative evaluation of the Relaxation
algorithm described in Section 4, we implemented five additional
placement approaches.

Optimal Placement chooses the best possible placement with
respect to the BW-Lat cost metric after performing an exhaustive
search over all possible placements, having global knowledge of
all placement locations. The complexity of this algorithm is ex-
ponential in the number of unpinned services in the circuits. This
means that results for Optimal placement can only be calculated
for simple circuits.

IP Multicast Placement puts unpinned services at physical
nodes that would be routers hosting branches of an IP multicast
tree. In simulation, we calculate the IP multicast tree by taking
the union of all the IP unicast routes from the producers to the
consumers.

Producer Placement randomly picks one of the physical
nodes hosting producer services for the circuit and places all un-
pinned services at this node. Such a placement algorithm of-
ten utilizes the network less than Consumer placement because
it can better leverage any selectivity of operator services. Less

C

S

1KB/s

P1 P2 P3

2KB/s

P4

(a) Simple circuit

C

S1

1KB/s

S2

2KB/s

S3

2KB/s

S4

2KB/s

P1 P2 P3

4KB/s

P4 P5

4KB/s

P6 P7

4KB/s

P8 P9

(b) Complex circuit

Figure 8:The two circuits used in experiments.

data is sent through the circuit if it is processed and potentially
discarded at a location close to the data producers.

Consumer Placement places all unpinned services at the
physical node hosting the pinned consumer service. This place-
ment algorithm corresponds to a centralized, data-warehouse ap-
proach to stream-processing, which is often used for current de-
ployments of SBONs.

Random Placement picks a physical node for each unpinned
service in the circuit at random. This placement algorithm is
also equivalent to a placement strategy in which a DHT is used
to hash an operator to a physical node in the network.

5.2 Simulation Setup

Since some of our evaluation metrics require the knowledge of
the physical network topology, we decided to use a simulator
to evaluate the performance of our path optimization algorithm.
Following previous work on the evaluation of large-scale peer-
to-peer systems [24], we built a discrete-event simulator to avoid
the scalability issues of standard network simulators. Our simu-
lator can place a large number of circuits on a physical network
topology according to one of several placement algorithms and
then compute a set of evaluation metrics.

Most of our experiments were carried out with a1550-node
transit-stub topology, which was generated by the Georgia Tech
topology generator [34]. The topology has10 transit domains
with 5 nodes, each connected to150 stub domains with10 nodes
on average. Routing tables for the topology were calculated with
the help of the routing policy weights assigned to physical links
by the topology generator. These weights are intended to reflect
Internet routing policy. The network diameter of the transit-stub
topology was878 ms.

The majority of experiments evaluated placing1000 circuits
in the SBON. Pinned services were randomly distributed across
the network. Only a single producer service was hosted at any
physical node, with producers being shared among circuits. Each
circuit had its own consumer service. The experiments consid-
ered the two types of circuits shown in Figure 8. Both circuits
aggregate data from more than two producers, which we believe
is realistic for many applications. Thesimple circuitconsists of
4 producers sending messages at a rate of2 KB/s with 1 un-
pinned serviceS aggregating the incoming data and outputting
1 KB/s. Thecomplex circuitinvolves9 producers and requires
the placement of4 unpinned services.

5.3 Simulation Results

Our experiments investigated the network utilization, delay
penalty, and resource contention of the six placement algorithms.
Next, we present and discuss the results for each of these in terms
of our evaluation metrics from Section 3.2.

7

NOTE! Related Work under blind submission: Do not distribute to anyone else!

Algorithm Simple circuit Complex circuit
Optimal 1.00 —
IP Multicast 1.27 1.00
Relaxation 1.15 0.90
Producer 1.43 1.43
Consumer 1.60 1.32
Random 1.81 1.58

Table 1: Ratio of BW-Lat product for different placement
algorithms.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

BW-Lat product (in KB)

Optimal

O
p

ti
m

a
l

IP Multicast

IP
 M

u
lt

ic
as

t

Relaxation

R
e

la
xa

ti
o

n

Producer

P
ro

d
u

ce
r

Consumer

C
o

n
su

m
er

Random

R
an

d
o

m

Figure 9:Distribution of BW-Lat product for different place-
ment algorithms.

5.3.1 Network Utilization

Bandwidth-Latency Product. Our first evaluation metric is
the BW-Lat cost that captures network utilization as the amount
of data in transit. Table 1 shows the BW-Lat product as
a ratio between Optimal placement and IP Multicast/Relax-
ation/Producer/Consumer/Random placements. The results give
the average BW-Lat ratios of two separate experiments, placing
1000 simple and complex circuits in the1550-node topology.

For the simple circuit case, Relaxation placement performs
well, which is expected because BW-Lat is the cost function used
by this placement algorithm in latency space. Relaxation place-
ment is more efficient than IP Multicast placement because IP
Multicast attempts to minimize routing hops and not necessar-
ily routing latency. Therefore, Relaxation placement manages to
find better placement nodes that are not on the IP routing path
from the producer to consumer. The Producer placement algo-
rithm does better than Consumer placement because, by placing
the selective operator service on one of the producers, data from
only 3 producers needs to be sent through the network to the op-
erator service. Random placement exhibits the highest BW-Lat
cost and Consumer placement is only marginally better.

With complex circuits, the Optimal placement algorithm is
not feasible any more because of the complexity of the exhaus-
tive search through all placement possibilities. Instead, we nor-
malize the BW-Lat ratio against IP Multicast placement. Relax-
ation placement has the lowest BW-Lat cost. Producer place-
ment does worse now than Consumer placement because the
reduction of traffic by one producer is out-weighed by the bad
placement decision of picking that producer for the placement of
all services in the circuit.

The distribution of the BW-Lat product per circuit as a CDF
is plotted in Figure 9. It illustrates the clear division between

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
W

-L
a

t
p

ro
d

u
ct

 (
in

 K
B

)

Maximum Producer Distance

Optimal

Optimal

IP Multicast

IP Multicast

Relaxation

Relaxation

Producer

Producer

Consumer

Consumer

Random

Random

Figure 10:BW-Lat product as a function of maximum pro-
ducer distance (MPD) in circuit.

the evaluated placement algorithms. Even for the small fraction
of badly placed circuits, Relaxation placement manages to cause
only 33 % more network traffic compared to Optimal placement.
In the worst case, Producer placement results in55 % more data.

In the previous experiment, the producers in the SBON were
randomly assigned to physical nodes in the network. However,
for some applications it is more likely that producers in a circuit
are heavily clustered because, for example, they represent sensor
networks that are in physical proximity to each other. To address
this, the graph in Figure 10 investigates how the sum of the BW-
Lat product is influenced by the clustering of producers in the
circuit.1 The maximum producer distance (MPD) is defined as
the fraction of the network diameter that limits the maximum
distance between any two producers in a circuit.

As can be seen from the plot, an efficient placement strategy
can result in a lower BW-Lat product when the producers are
highly clustered in the circuits. In that case, Producer placement
is also a viable placement strategy because it places unpinned
services within that cluster. As the MPD increases, Relaxation
and IP Multicast placement give better performance.

Bandwidth-Latency Product with Multicast Services. As
explained in Section 4.4,multicast servicescan improve the
network utilization when producers are shared among circuits.
We examined an extension to Relaxation placement, called
Relaxation-MC, which has a circuit analyzer for adding multi-
cast services on demand. For comparison, we also considered
an extension of IP Multicast placement, called IP Multicast-MC,
in which multicast services are also added to shared producers.
Unlike Relaxation-MC, IP Multicast-MC does not optimize ser-
vices globally. This means that the location of placed services is
never reconsidered, unless they are added to a new circuit.

The plot in Figure 11 shows how the BW-Lat product is af-
fected by multicast services when more circuits are added to
the SBON. It compares the two versions of Relaxation and IP
Multicast placement with and without multicast services against
the baseline of Optimal placement (without multicast services).
Initially, as few producers are shared, multicast services add an
overhead. However, after about250 circuits are added, multicast

1Note that the y-axis of this plot (and others) is not zero-based. This is to em-
phasize the differences between the placement algorithms, acknowledging that
no algorithm can perform better than Optimal placement.

8

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 100 200 300 400 500 600 700 800 900 1000

Optimal

Optimal

IP Multicast

IP Multicast

IP Multicast-MC

IP Multicast-MC

Relaxation

Relaxation

Relaxation-MC Relaxation-MC

Number of circuits

B
W

-L
a

t
p

ro
d

u
c

t
ra

ti
o

Figure 11:Ratio of BW-Lat product for placement with mul-
ticast services as a function of number of circuits.

Algorithm Simple circuit Complex circuit
Optimal 1.00 —
IP Multicast 1.12 1.00
Relaxation 1.17 1.10
Producer 1.38 1.60
Consumer 1.56 1.48
Random 1.76 1.77

Table 2: Ratio of BW-HC product for different placement
algorithms.

services substantially improve the efficiency of the system. The
Relaxation-MC algorithm performs better than IP Multicast-MC
because it is capable of globally optimizing the placement of all
services in the system, whereas IP Multicast cannot revisit place-
ment decisions and thus is restricted to local placement on a per
circuit basis. Because producers and consumers are randomly
distributed in the network, the Relaxation-MC algorithm slowly
causes all multicast services to move into the transit domains.
This makes produced streams easily accessible to all consumers.

Bandwidth-Hop Count Product. The second network uti-
lization metric we evaluated is the BW-HC product, which quan-
tifies the impact of a placement on routers and network links.
Similar to the BW-Lat metric, we express the BW-HC product
as a ratio between Optimal placement and IP Multicast/Relax-
ation/Producer/Consumer/Random placements in Table 2. Note
that Optimal placement still optimizes for the BW-Lat product
as before. The results give the average BW-HC ratios for the
placement of1000 simple and1000 complex circuits.

A noticeable feature is that, unlike for the BW-Lat product,
IP Multicast now gives better results than before because it at-
tempts to minimize the number of physical routing hops in the
placement path of the circuit. Even though Relaxation placement
does not optimize for the BW-HC product directly, it performs
only marginally worse than IP multicast and substantially better
than Producer, Consumer, and Random placement. The saving
obtained by Relaxation placement is even larger for the complex
circuit, where bad placement decisions have bigger impact.

The plot in Figure 12 shows the distribution of the BW-HC
product per circuit as a CDF. Using this metric, IP Multicast
placement performs close to the Optimal placement algorithm.
For about40 % of the circuits, Relaxation placement is able to
find a similarly efficient placement as IP Multicast placement.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 30 40 50 60 70 80 90

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

BW-HC product

Optimal
IP Multicast

Relaxation
Producer

Consumer
Random

O
p

ti
m

a
l

IP
 M

u
lt

ic
as

t

R
e

la
xa

ti
o

n

P
ro

d
u

ce
r

C
o

n
su

m
er

R
an

d
o

m

Figure 12: Distribution of BW-HC product for different
placement algorithms.

Algorithm Simple circuit Complex circuit
Consumer 1.00 1.00
Optimal 1.13 —
IP Multicast 1.00 1.00
Relaxation 1.24 1.44
Producer 1.75 2.58
Random 1.76 2.58

Table 3:Delay stretch for different placement algorithms.

However, in a small number of cases, Relaxation placement fa-
vors additional hops to reduce the latency of the overall path, and
thus shows worse behavior.

5.3.2 Delay Penalty

Delay penalty is concerned with the delay overhead of plac-
ing services in-network, which is important to most applica-
tions using circuits in a SBON. In general, the lowest delay on
the longest path from any producer to the consumer in the cir-
cuit is achieved when all unpinned services are placed on the
consumer node, resulting in the Consumer placement algorithm.
We express delay penalty asdelay stretch, which normalizes the
longest path delay with respect to delay of Consumer placement.

Table 3 shows the average delay stretch after placing
1000 simple and1000 complex circuits in our1550-node transit-
stub topology. As expected, the table reveals that Consumer
and IP Multicast placement have optimal delay stretch because
they place services only along IP routing paths. However, Re-
laxation and Optimal placement introduce only a small average
delay penalty of24 % and13 %, respectively. Producer and Ran-
dom placement perform worst because they add a random delay
overhead. The delay penalty for complex circuits is higher be-
cause more unpinned services need to be placed. This effect is
especially visible for Producer and Random placements, which
both exhibit the highest delay penalties.

Figure 13 shows the distribution of the delay stretch after
placing1000 simple circuits. An interesting observation is that
both Optimal and Relaxation placement achieve a lower delay
stretch than Consumer placement for about15 % of the circuits.
This can be explained by the fact that the routing weights in
transit-stub topology reflect the real-world, in which IP routing
paths are sometimes sub-optimal in terms of latency. Optimal
and Relaxation placement are then able to reduce the latency by

9

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

Delay stretch

Consumer
Optimal

IP Multicast
Relaxation

Producer
Random

O
p

ti
m

a
l

R
e

la
xa

ti
o

n

P
ro

d
u

ce
r

C
o

n
su

m
e

r/
IP

 M
u

lt
ic

a
st

R
an

d
o

m

Figure 13: Distribution of delay stretch for different place-
ment algorithms.

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Optimal

Relaxation

Consumer/IP Multicast

Producer

Random

Maximum producer distance

A
v

e
ra

g
e

 lo
n

g
e

st
 p

a
th

 d
e

la
y

 p
e

r
ci

rc
u

it
 (

in
 m

s)

Figure 14:Average longest path delay as a function of maxi-
mum producer distance in circuit.

choosing a different overlay routing path with a higher hop count
but lower latency. Producer and Random placement have a long
tail of bad placement decisions with a large delay stretch.

The delay stretch is also influenced by the clustering of pro-
ducers in a circuit. The plot in Figure 14 shows how the longest
path delay in a circuit is affected by the clustering of producers,
as expressed by the MPD. The results show that if producers are
highly clustered (MPD = 0.25), Consumer and Optimal place-
ment perform similarly well because unpinned services that are
placed on one of the producers are likely to be on the routing
path to the consumer. This effect is confirmed by the low longest
path delay achieved by Producer placement when the MPD is
low. Irrespectable of the MPD, Relaxation placement manages
to obtain a good compromise in terms of delay penalty.

5.3.3 Resource Contention

Node Stress. The experiment in Figure 15 investigates the
distribution of placed services (i.e. the load) across the physi-
cal nodes in a600-node transit-stub topology with3 transit do-
mains and72 stub domains. In (a), the topology is shown in
latency space with the transit domains at the center. (b) Random
placement of1000 simple circuits does not create any load peaks
because of the uniform placement of unpinned services. How-
ever, (c) Optimal placement identifies that placing unpinned ser-

(a) Topology in latency space

 0

 50

 100

 150

 200

 250

 300

(b) Random placement

 0

 50

 100

 150

 200

 250

 300

(c) Optimal placement

 0

 50

 100

 150

 200

 250

 300

(d) Relaxation placement

 0

 50

 100

 150

 200

 250

 300

(e) IP Multicast placement

Figure 15:Load maps for different placement algorithms.

vices in transit domains results in more efficient network utiliza-
tion. When consumers and producers are randomly distributed in
the network, most traffic must flow through the transit domains.
Therefore, placing services there does not consume additional
network bandwidth. The3 transit domains in the network topol-
ogy are visible as peaks in the load map. (d) Relaxation and
(e) IP Multicast placement also prefer transit domains for ser-
vice placement, although not as strongly as Optimal placement.

As mentioned before, any efficient placement algorithm must
cap the number of unpinned services that can be placed at a phys-
ical node. The plots in Figure 16 show how the concentration
of service placement in transit domains caused by Relaxation
placement can be reduced through a threshold on the maximum
number of services,Loadmax, that can be hosted at a physical
node. As the load threshold is lowered, more services are placed
sub-optimally outside the transit domains and move into the stub
domains, reducing load at the center of the topology.

Of course, the impossibility of placing unpinned services at
the desired physical nodes reduces the efficiency of the place-
ment algorithm. In Figure 17, the graph illustrates how a max-
imum load thresholdLoadmax affects the network efficiency of
Relaxation placement. Efficiency is expressed as the BW-Lat
product after placing1000 simple circuits in a1550-node transit-
stub topology. As can be seen from the plot, the loss in efficiency
starts increasing substantially after a low load threshold of about
40 services. However, the placement efficiency still remains bet-
ter compared to IP Multicast, which is included for comparison.

Link Stress. Another network resource that may prevent the
placement of a circuit link on a network path is link stress. We
defined link stress as the total amount of traffic that traverses a
physical link. Figure 18 shows the distribution of link stress as
a CDF in a1550-node transit-stub topology after creating1000
simple circuits for different placement algorithms. The figure
shows that Optimal, IP Multicast, and Relaxation placement cre-

10

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0

 50

 100

 150

 200

 250

 300

(a) Loadmax = 100

 0

 50

 100

 150

 200

 250

 300

(b) Loadmax = 66

 0

 50

 100

 150

 200

 250

 300

(c) Loadmax = 33

 0

 50

 100

 150

 200

 250

 300

(d) Loadmax = 10

Figure 16:Load maps for relaxation placement with different
load thresholdsLoadmax.

 1.8e+06

 1.9e+06

 2e+06

 2.1e+06

 2.2e+06

 2.3e+06

 2.4e+06

 0 50 100 150 200

Relaxation Placement

Optimal Placement

IP Multicast Placement

Maximum load threshold

B
W

-L
a

t
p

ro
d

u
c

t
(i

n
 K

B
)

Figure 17: BW-Lat product for Relaxation placement as a
function of load threshold Loadmax.

ate overall less link stress through better utilization of the under-
lying network. For Relaxation placement,80 % of all physical
links use less than30 KB/s, compared to46 KB/s with Con-
sumer placement.

A lower maximum link stress with a particular placement al-
gorithm directly translates into a larger number of circuits that
can be handled by the SBON. To illustrate this point, Table 4
shows the maximum number of circuits that can be added to
an SBON under a particular placement algorithm when there is
a cap on the bandwidth usage of all physical links in the net-
work. If all physical links in the network topology are restricted
to Linkmax = 400 KB/s, Random placement is able to place
only 69 % of the circuits placed by Optimal placement. Relax-

Algorithm Num. of circuits
Optimal 844
IP Multicast 717
Relaxation 799
Producer 675
Consumer 680
Random 585

Table 4:Number of placed circuits with maximum link stress
threshold, Linkmax = 400KB/s.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

Optimal

Optimal

IP Multicast

IP Multicast

Relaxation

Relaxation

Producer

Producer

Consumer

Consumer

Random

Random

Link stress (in KB/s)

P
e

rc
e

n
ta

g
e

 o
f

p
h

ys
ic

a
l l

in
ks

Figure 18:Distribution of link stress for different placement
algorithms. Note that the x-axis uses a log scale.

Europe

US East

US West

Asia

Figure 19: Visualization of latency space for PlanetLab
nodes.

ation placement achieves a much higher rate of95 %.

5.4 PlanetLab Setup
To validate the results obtained from our simulator on a transit-
stub topology, we evaluated the different placement algorithms
with an SBON deployed onPlanetLab [31]. PlanetLab is a
global, distributed test-bed that currently encompasses434 ma-
chines located on5 continents. To give an idea for the PlanetLab
topology, the plot in Figure 19 depicts147 PlanetLab nodes in
latency space created from all-pairs ping measurements between
nodes [30]. As shown by the annotations, four clusters of nodes
can be identified that correspond to nodes located on the US East
coast, the US West coast, in Europe, and in Asia. The network
diameter for the PlanetLab topology is2074 ms.

As a recent survey has shown [5], the PlanetLab topology is
not an unbiased cross-section of the Internet but rather has an
emphasis on well-provisioned, educational networks. Neverthe-
less, its wide-area topology allows a qualitative verification of
our simulator results. In general, efficient network utilization
is important on PlanetLab because it is heavily shared among
many parties so that efficient path optimization of an SBON de-
ployed on PlanetLab directly benefits other applications. One
of the challenges of PlanetLab experiments to evaluate path op-
timization is that the physical network topology is not known.
Although preliminary work to map the PlanetLab exists [23], we
needed to perform our own real-time measurements that infered
aspects of the PlanetLab topology. Circuits on PlanetLab were

11

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25

Planetlab
Transit-Stub ts-1550

Placement error as ratio of network diameter

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

Figure 20: Distribution of placement error when mapping
from latency space to physical space.

created with a distributed stream-processing infrastructure.2

The setup for our PlanetLab experiments was as follows. We
used our simulator to build the Vivaldi latency space using all-
pairs ping measurements. We then placed1000 simple circuits
off-line according to different placement strategies, with pinned
services randomly distributed across the network. The simulator
output an XML file, which then controlled the deployment of the
stream-processing system on PlanetLab and set up circuits ac-
cording to the calculated placement. Only one circuit was active
in the system at a time. The quality of the placement was eval-
uated through measurements on Planetlab usingScriptroute[28]
(for network utilization) and the stream-processing application
itself (for delay penalty). We had no restriction on the number of
services running on a node, but limited the candidate set of phys-
ical nodes to those running ScriptRoute and for which all-pairs
ping data was available.

5.5 Planetlab Results
Before comparing Relaxation placement to other placement al-
gorithms on Planetlab, we realized that its performance depends
on the error introduced when mapping a placement from latency
space to nodes in physical space, as explained in Section 4.3. To
compare the suitability of Relaxation placement for the transit-
stub and Planetlab topologies, Figure 20 plots the distribution of
themapping error. The mapping error is defined as the fraction
of the network diameter by which a physical node’s network co-
ordinate used for placement differs from the desired coordinate.

The plot shows that the mapping error for the Planetlab topol-
ogy is smaller than for the transit-stub topology. This is un-
derstandable because the transit-stub topology in latency space
has large volumes between stub domains that do not contain
any nodes. However, even the worst case mapping error for the
transit-stub topology is below13 %. The Planetlab topology is
more applicable to Relaxation placement as nodes are more uni-
formly distributed.

5.5.1 Network Utilization
Bandwidth-Latency Product. The first PlanetLab experi-

ment verifies the simulation results about network utilization in
terms of the BW-Lat product. For this, we measured the latency
of circuit links between PlanetLab nodes using Scriptroute. The

2Details omitted to preserve anonymity.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

Optimal
Relaxtion
Producer

Consumer
Random

BW-Lat product (in KB)

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

Figure 21: Distribution of BW-Lat product as measured on
PlanetLab.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

Optimal
Relaxation

Producer
Consumer

Random

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

BW-HC product

Figure 22: Distribution of BW-HC product as measured on
PlanetLab.

CDF of the measurements is shown in Figure 21. The results re-
flect our simulated predictions in Figure 9. Relaxation placement
achieves a reduction of19 % in the amount of network traffic for
90 % of the circuits when compared to Producer placement.

Bandwidth-Hop Count Product. We also considered the ef-
fect of our placement algorithms on the BW-HC product on
PlanetLab. To approximate the true physical hop count between
two nodes on PlanetLab, we used Scriptroute to collect 16,000
traceroutes between118 PlanetLab nodes over several days. Al-
though this is an approximation of physical hop count since not
all routers are visible at the IP-level and routing paths change,
we believe that is a reasonable indicator of true hop count.

The CDF plots for circuits with6 producers in Figure 22 show
that Relaxation placement performs better than Consumer place-
ment. It is interesting to see that Producer placement achieves
a lower BW-HC product than simulation. A possible explana-
tion for this is that, since most institutions only host2 Planet-
Lab nodes, placing a service on a remote node almost always
causes the path to leave the currentautonomous system(AS).
However, routing to another autonomous system incurs a much
higher overhead in terms of hop count when compared to intra-
AS routing. To verify this, we ran this experiment with6 instead
of 4 producers per circuit, which reduces the efficiency of Pro-
ducer placement.

12

NOTE! Related Work under blind submission: Do not distribute to anyone else!

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

P
e

rc
e

n
ta

g
e

 o
f

ci
rc

u
it

s

Latency (in ms)

Optimal
Relaxation

Producer
Consumer

Random

Figure 23: Distribution of delay stretch as measured on
PlanetLab.

5.5.2 Delay Penalty
The final PlanetLab experiment explores the application-
observed delay penalty of Relaxation placement. In this exper-
iment, we determine the longest path latency from a consumer
service to any of the producers in a circuit. The longest path de-
lay is obtained by a simple stream-processing application, which
measures the round-trip time of time-stamped messages through
a circuit. The CDF of the average longest path delay can be seen
in Figure 23. As expected, Consumer placement results in cir-
cuits with lowest average latency. The plot has a very heavy tail;
the longest delay, equal to the network delay plus application
processing time, is around 6 seconds for Random placement.
We also observe that for most circuits, the cost of Relaxation
placement, in terms of delay penalty, is not high. In fact, Relax-
ation placement performs comparably to Consumer placement,
and out-performs Random and Producer placements.

5.5.3 Summary
Even though the physical topology of PlanetLab is not avail-
able, we believe that the results from our PlanetLab measure-
ments confirm the performance evaluation in the simulator with
a transit-stub topology. For three cost metrics (BW-Lat, BW-HC,
and delay stretch), the evaluated placement algorithms perform
as expected. This means that an SBON deployed on PlanetLab
that uses Relaxation placement can achieve substantial savings in
terms of network utilization, while keeping the application delay
penalty low.

6 Related Work
In this section, we give an overview of work related to path opti-
mization in stream-based overlay networks.

Distributed stream processing systems, such as
Medusa [10] and Borealis [1], are faced with the path op-
timization problem when placing stream operators. Data paths
in Medusa are controlled by contracts for load management [4]
that take node properties into account but are not network-aware.
The work onnetwork-aware query processing[3] for Borealis is
closest to ours. Here, operators are either placed at the consumer
side, at the producer side, or in-network on the DHT routing
path, depending on the network bandwidth usage for a query.
Applications can also specify delay constraints on the placement
path in the DHT. By performing in-network placement in

latency space, our approach has more freedom in choosing a
good placement node without having the restriction of following
DHT routing paths. In addition, Relaxation placement supports
dynamic, global path optimization across circuits and considers
node and link stress. Other stream processing systems, such
asGATES[9], avoid the problem of data path optimization by
supporting only pre-defined locations with pinned services in
the SBON. This leaves the burden of efficient data path selection
with the system administrator. The work onmesh-based XML
routing [27] uses an SBON for content-based routing of XML
documents. XML routers create an overlay mesh for streaming
data to clients. However, the topology of the mesh does not
reflect the structure of individual queries in order to use the
underlying network resources efficiently.DistCED [22] is a
distributed system for pattern detection in message streams.
Pattern detectors in the overlay network are placed at distributed
nodes according to placement heuristics called distribution
policies, minimizing different performance metrics. However,
no evaluation of the system is provided.

Distributed databasespartition data across multiple nodes.
The placement of query operators is then often driven by the lo-
cation of the data [17]. InIrisNet [14], semi-structured data from
multiple sensor networks is partitioned hierarchically among
nodes. Stream queries contact all nodes that are relevant to
the query [13]. Our approach is complementary by installing
queries at suitable locations and streaming data to operators.
The location of operators (and corresponding relational tables)
in PIER [15], a distributed database built on top of a DHT, is
determined through hashing. Such a random distribution has
good load-balancing properties but uses the underlying network
resources inefficiently.Mariposa [29] is a distributed database
system that follows a market-based approach with economic
techniques for a decentralized implementation of the query op-
timization problem. However, global network costs, such as
network utilization, are not addressed. More recent efforts on
rate-based query optimization[32] and intelligentpartitioning
of streams[26] are directly applicable to our work when making
local placement decisions for services.

Content distribution networks build an overlay network for
efficiently disseminating data to many parties, which requires
a network-aware selection for the location of multicast nodes.
Narada [33] is an application-level multicast (ALM) system,
which builds a multicast tree out of an overlay mesh. The authors
introduced the issue of network efficiency and defined metrics to
quantify resource usage, which are similar to ours. The over-
lay mesh is optimized dynamically but cannot be optimized at
the granularity of a single circuit as in our approach because the
mesh is shared among applications.Overcast[16] is an ALM
scheme, which maximizes total bandwidth for content distri-
bution but does not deal with global network utilization. Pub-
lish/subscribe systems, such asScribe[6, 7], are built on top of
a DHT and rely on hashing for routing path selection.

7 Future Work
This paper has introduced a novel path placement scheme that is
able to optimize an SBON with cross-circuit dependencies. We
are currently working on a fully decentralized implementation of
Relaxation placement that is deployable on PlanetLab. With this,
we will explore cross-circuit optimization, which is supported by
our current algorithm, on a global scale. In addition, we plan to
investigate how physical network and logical circuit dynamics

13

NOTE! Related Work under blind submission: Do not distribute to anyone else!

affect the performance of Relaxation placement. This involves
the introduction of a mechanism for service migration, which is
aware of the cost of migration.

Our analysis has assumed a fairly homogenous logical circuit
structure. We are also interested in finding more representative
circuits in existing SBON systems, particularly when there are
cross-circuit dependencies. This will allow us to show the ad-
vantages of intelligent path optimization for a real stream-based
application. We would also like to augment an existing SBON
with the Relaxation path placement algorithm to show the wide
applicability of this work.

8 Conclusions
In this paper, we have identified the problem of path optimiza-
tion in stream-based overlay networks and presented a novel,
decentralized placement algorithm, which is based on spring re-
laxation in a virtual latency space. Our placement algorithm is
network-aware without imposing unnecessary probing or com-
munication overhead, can adapt to changing network conditions,
and supports optimization decisions across circuit boundaries.
We have evaluated Relaxation placement in terms of network
utilization, application delay, and resource contention in simula-
tion and validated the results with experiments on PlanetLab.

Our results show that network-aware path optimization can
result in substantial savings of network resources in overlay net-
works. Efficient use of resources when deploying stream-based
overlay networks on shared networking infrastructures, such as
PlanetLab, is essential to achieve scalability and cooperation be-
tween different applications. Our results further indicate that ef-
ficient network utilization is possible without sacrificing applica-
tion metrics, such as delay, or creating resource contention in the
network. We have also demonstrated the advantages of service
placement in the Internet back-bone, which results in consider-
able improvements in terms of network efficiency.

References
[1] D. Abadi, Y. Ahmad, H. Balakrishnan, et al. The Design of the

Borealis Stream Processing Engine. Technical Report CS-04-08,
Brown University, July 2004.

[2] D. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A New Model
and Architecture for Data Stream Management.VLDB Journal,
12(2), Aug. 2003.

[3] Y. Ahmad and U. Çetintemel. Network-Aware Query Processing
for Stream-based Applications. InProc. of the 30th Int. Conf. on
Very Large Data Bases (VLDB’04), Toronto, Canada, Aug. 2004.

[4] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-
Based Load Management in Federated Distributed Systems. In
Proc. of NSDI’04, San Francisco, CA, Mar. 2004.

[5] S. Banerjee, T. G. Griffin, and M. Pias. The Interdomain Con-
nectivity of PlanetLab Nodes. InProc. of the Passive and Active
Measurement Workshop (PAM’04), Antibes Juan-les-Pins, France,
Apr. 2004.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A Large-scale and Decentralized Application-level Mul-
ticast Infrastructure.IEEE Journal on Selected Areas in Commu-
nication (JSAC), 20(8), Oct. 2002.

[7] M. Castro, M. Jones, et al. An Evaluation of Scalable Application-
Level Multicast using Peer-to-peer Overlay Networks. InProc. of
INFOCOM’03, San Francisco, CA, Feb. 2003.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, et al.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World. In Proc. of the 1st Biennial Conf. on Innovative Data Sys-
tems Research (CIDR’03), Asilomar, CA, Jan. 2003.

[9] L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based Mid-
dleware for Processing Distributed Data Streams. InProc. of the

13th Int. Symp. on High-Performance Dist. Comp. (HPDC-13),
Honolulu, Hawaii, June 2004.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska, et al. Scalable
Distributed Stream Processing. InProc. of the 1st Conf. on Inno-
vative Data Sys. Research (CIDR’03), Asilomar, CA, Jan. 2003.

[11] R. Cox, F. Dabek, F. Kaashoek, et al. Practical, Distributed Net-
work Coordinates. InProc. of the 2nd Workshop on Hot Topics in
Networks (HotNets-II), Cambridge, MA, Nov. 2003.

[12] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decen-
tralized Network Coordinate System. InProc. of the ACM SIG-
COMM’04 Conference, Portland, OR, Aug. 2004.

[13] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan. Cache-
and-query for Wide Area Sensor Databases. InProc. of the Int.
Conference on Management of Data (SIGMOD’03), 2003.

[14] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet:
An Architecture for a World-Wide Sensor Web.IEEE Pervasive
Computing, 2(4), Oct. 2003.

[15] R. Huebsch, J. M. Hellerstein, N. Lanham, et al. Querying the
Internet with PIER. InProc. of 29th International Conference on
Very Large Data Bases (VLDB’03), Berlin, Germany, Sept. 2003.

[16] J. Jannotti, D. K. Gifford, K. L. Johnson, et al. Overcast: Re-
liable Multicasting with an Overlay Network. InProc. of the
4th Symposium on Operating Systems Design and Implementation
(OSDI’00), San Diego, CA, Oct. 2000.

[17] D. Kossmann. The State of the Art in Distributed Query Process-
ing. ACM Computing Surveys, 32(4), Dec. 2000.

[18] J. Ledlie, J. Shneidman, M. Welsh, M. Roussopoulos, and
M. Seltzer. Open Problems in Data Collection Networks. InProc.
of the SIGOPS Euro. Workshop, Leuven, Belgium, Sept. 2004.

[19] L. F. Mackert and G. M. Lohman. R* Optimizer Validation
and Performance Evaluation for Distributed Queries. InProc.
of the 12th International Conference on Very Large Data Bases
(VLDB’86), Kyoto, Japan, Aug. 1986.

[20] T. E. Ng and H. Zhan. Predicting Internet Network Distance with
Coordinates-Based Approaches. InProc. of INFOCOM’02, New
York, NY, June 2002.

[21] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Light-
houses for Scalable Distributed Location. InProc. of the 2nd Int.
Workshop on P2P Systems (IPTPS’03), Berkeley, CA, Feb. 2003.

[22] P. R. Pietzuch, B. Shand, and J. Bacon. Composite Event Detec-
tion as a Generic Middleware Extension.IEEE Network Mag.,
18(1):44–55, January/February 2004.

[23] A.-M. Popa. An Investigation of Real Internet Topologies and AS
Relationships. Master’s thesis, University of the Federal Armed
Forces, Munich, Germany, 2004.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Ob-
ject Location and Routing for Large-Scale Peer-to-Peer Systems.
In Proc. of the 3rd International Conference on Middleware (Mid-
dleware’01), pages 329–350, Heidelberg, Germany, Nov. 2001.

[25] H. Sagan.Space-Filling Curves. Springer-Verlag, 1994.
[26] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.

Franklin. Flux: An Adaptive Partitioning Operator for Continu-
ous Query Systems. InProc. of the 19th International Conference
on Data Engineering (ICDE’03), Bangalore, India, Mar. 2003.

[27] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-Based Content
Routing using XML. InProc. of the 18th ACM Symposium on
Operating Systems Principles, Banff, Alberta, Canada, Oct. 2001.

[28] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A Public
Internet Measurement Facility. InProc. of the 4th USENIX Symp.
on Internet Tech. and Sys. (USITS’02), Seattle, WA, Mar. 2003.

[29] M. Stonebraker, P. M. Aoki, W. Litwin, et al. Mariposa: A Wide-
Area Distributed Database System.VLDB Journal, 5(1), 1996.

[30] J. Stribling. All-Pairs-Pings for PlanetLab. http://www.pdos.lcs.-
mit.edu/˜strib/plapp/, Sept. 2004.

[31] The Planetlab Consortium. http://www.planetlab.org, 2004.
[32] S. D. Viglas and J. F. Naughton. Rate-based Query Optimization

for Streaming Information Sources. InProc. of the Int. Conference
on Management of Data (SIGMOD’02), June 2002.

[33] Yang-Hua Chu and Sanjay G. Rao and Hui Zhang. A Case for
End System Multicast. InProc. of ACM SIGMETRICS’00, pages
1–12, Santa Clara, CA, June 2000. ACM.

14

NOTE! Related Work under blind submission: Do not distribute to anyone else!

[34] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. InProc of IEEE Infocom’96, volume 2, pages
594–602, San Francisco, CA, Mar. 1996.

15

