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Abstract—Big data processing is no longer restricted to
specially-trained engineers. Instead, domain experts, data scien-
tists and data users all want to benefit from applying data mining
and machine learning algorithms at scale. A considerable obstacle
towards this “democratisation of big data” are programming
models: current scalable big data processing platforms such as
Spark, Naiad and Flink require users to learn custom functional
or declarative programming models, which differ fundamentally
from popular languages such as Java, Matlab, Python or C++. An
open challenge is how to provide a big data programming model
for users that are not familiar with functional programming,
while maintaining performance, scalability and fault tolerance.

We describe JAVA2SDG, a compiler that translates annotated
Java programs to stateful dataflow graphs (SDGs) that can
execute on a compute cluster in a data-parallel and fault-tolerant
fashion. Compared to existing distributed dataflow models, a
distinguishing feature of SDGs is that their computational tasks
can access distributed mutable state, thus allowing SDGs to
capture the semantics of stateful Java programs. As part of
the demonstration, we provide examples of machine learning
programs in Java, including collaborative filtering and logistic
regression, and we explain how they are translated to SDGs and
executed on a large set of machines.

I. INTRODUCTION
Today we witness the “democratisation of big data”—not

just specialised developers want to process and analyse big
data but also data scientists, domain experts and business
analysts [2]. This is hindered, however, by the bespoke pro-
gramming models that data-parallel processing platforms, such
as Spark [16], Naiad [11] and Flink [6], require users to learn.

While early data-parallel platforms follow the MapReduce
programming model [3], which is easy for users to master,
they are limited in their expressiveness—e.g. they lacks ef-
ficient support for iterative algorithms. With users wanting
to execute more complex data mining and machine learning
algorithms, platforms need to become more expressive. Cur-
rent platforms [16], [11], [6] have support for iteration and
advanced functions, but they expose functional programming
interfaces. Typical users, however, are familiar with imperative
programming languages such as Java, Matlab, Python or C++,
thus struggling with the collections of higher-order functions of
current platforms. The programmability of big data platforms
consequently becomes a major entry barrier for new users.

Using imperative languages for big data processing, how-
ever, introduces challenges: achieving high-throughput be-
comes difficult when programs have access to mutable state.
Current big data platforms rely on stateless dataflow graphs
that avoid all forms of state—hence their dependence on
functional programming models. While this simplifies parallel
computation and failure recovery [3], it is incompatible with
an imperative programming model.

We argue that, to support an imperative programming

model, big data platforms should instead embrace mutable
state and offer it as a first-class abstraction. Based on this
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Matrix userItem = new Matrix(); 
Matrix coOcc = new Matrix(); 

void addRating(int user, int item, int rating) {  
    userItem.setElement(user, item, rating); 
    updateCoOccurrence(coOcc, userItem); 
} 

Vector getRecommendation(int user) { 
    Vector userRow = userItem.getRow(user); 
    Vector userRec = coOcc.multiply(userRow);  
    return userRec; 
} 
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Fig. 1: Data-parallel execution of Java programs using JAVA2SDG

idea, we describe stateful dataflow graphs (SDGs) [5], a new
model for data-parallel processing that separates large mutable
state from the processed data. SDGs include primitives for
maintaining distributed state efficiently: if tasks can operate on
state entirely in parallel, the state is partitioned across nodes; if
this is not possible, tasks are given local instances of replicated
state for independent computation. Computation can include
synchronisation points at which all partial state instances are
accessed, and state instances can be reconciled at any point
according to the semantics of the algorithm.

As shown in Figure 1, we demonstrate the features and op-
eration of JAVA2SDG [5], a compiler that translates annotated
Java programs to SDGs, enabling their execution on a cluster
in a data-parallel and fault-tolerant fashion. The JAVA2SDG
compiler infers the dataflow and the types of state accesses
from the Java program and uses this information to generate
an executable SDG. Using static program analysis, it extracts
the computational tasks, state fields and variable-level dataflow
from the Java program.

As part of the demonstration, we show how JAVA2SDG
enables the execution of several Java programs at scale:
collaborative filtering, logistic regression and a key/value store.
We use SEEP [4], a stateful data-parallel processing system,
as the execution engine for SDGs. We explain the translation
of Java code to SDGs through its different stages with the
help of graphical representations generated by JAVA2SDG.
The audience can explore existing Java programs and modify
them to understand an imperative big data processing model.

Next, we describe the Java programs that will be demon-
strated in detail. §III explains stateful dataflows graphs and
their generation. §IV introduces the use of the programming
model from a user perspective. In §V, we give an overview of
the proposed demonstration. The paper finishes with a related
work discussion (§VI) and conclusions (§VII).

Java2SDG:  
Stateful Big Data Processing for the Masses 
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Algorithm 1: Logistic regression
1 final int NUM_FEATURES = 1000;
2 final int ITER = 15;
3 final double DELTA = 0.01;
4
5 @Partial double[] weights = new double[NUM_FEATURES];
6
7 void train(List<double[]> samples, List<Double> labels) {
8 for (int i = 0; i < ITER; i++) {
9 for (double[] sample : samples) {

10 double predicted = classify(sample, weights);
11 double[] gradient = new double[NUM_FEATURES];
12 for (int j = 0; j < NUM_FEATURES; j++) {
13 double f = sample[j];
14 gradient[j] = (f * (labels.get(j) - predicted) * DELTA);
15 }
16 weights = add(weights, gradient);
17 }
18 double[] gWeights = mergeWeights(@Global weights);
19 @Global weights = gWeights;
20 }
21 }
22 double test(double[] sample) {
23 double label = classify(sample, weights);
24 return label;
25 }
26 double[] mergeWeights(@Collection List<double[]> weights) {
27 double [] gWeights = new double[NUM_FEATURES];
28 for (double[] pw : weights)
29 for (int i = 0; i < NUM_FEATURES; i++)
30 gWeights[i] = gWeights[i] + pw[i];
31 int numSamples = weights.size();
32 for (int i = 0; i < NUM_FEATURES; i++)
33 gWeights[i] = gWeights[i] / numSamples;
34 return gWeights;
35 }
36 double classify(double[] sample, double[] weights) {
37 double z = 0;
38 for (double w : weights)
39 z += multiply(w, sample);
40 return 1 / (1 + Math.exp(-z));
41 }

II. PROGRAMMING MODEL
Our imperative programming model allows users to imple-

ment algorithms with mutable state in Java. In this section, we
describe Java programs that can be translated by JAVA2SDG
and executed on a cluster running the SEEP platform. The
annotations (starting with ’@’) will be explained in §IV.
Logistic regression. Algorithm 1 is a complete implementa-
tion of logistic regression, an iterative machine learning algo-
rithm widely used to perform supervised classification tasks.
It represents the learned model as a vector of weights (line 5).
The train method receives a new data item and uses it to train
the model (line 7); the test method uses the trained model to
classify a yet unknown item (line 22). We use this program
to train a model that classifies machine- and human-generated
web requests in an online fashion.
Collaborative filtering. We also demonstrate the implementa-
tion of a collaborative filtering algorithm (see Algorithm 2),
typically used to provide recommendations. The algorithm
uses matrices to represent user preferences about items and
the relationships between items. It implements two functions,
addRating() and getRecommendation(), that update the matri-
ces and provide online recommendations, respectively. We use
this algorithm to provide online film recommendations to users
based on data available from Netflix.
Distributed key/value store. To show the generality of our
programming model, we also implement a distributed in-
memory key/value store in Java (see Algorithm 3). The key/-
value store maintains a map of counters that record the number
of visits of users to a web site. We provide methods to
both update and retrieve the number of visits per user. The
program differs from a single-node implementation in only
one annotation, but, after compilation by JAVA2SDG, it can
execute on a cluster of machines.

Algorithm 2: Online collaborative filtering
1 @Partitioned Matrix userItem = new Matrix();
2 @Partial Matrix coOcc = new Matrix();
3
4 void addRating(int user, int item, int rating) {
5 userItem.setElement(user, item, rating);
6 Vector userRow = userItem.getRow(user);
7 for (int i = 0; i < userRow.size(); i++)
8 if (userRow.get(i) > 0) {
9 int count = coOcc.getElement(item, i);

10 coOcc.setElement(item, i, count + 1);
11 coOcc.setElement(i, item, count + 1);
12 }
13 }
14 Vector getRecommendation(int user) {
15 Vector userRow = userItem.getRow(user);
16 @Partial Vector userRec = @Global coOcc.multiply(userRow);
17 Vector rec = merge(@Global userRec);
18 return rec;
19 }
20 Vector merge(@Collection Vector[] allUserRec) {
21 Vector rec = new Vector(allUserRec[0].size());
22 for (Vector cur : allUserRec)
23 for (int i = 0; i < allUserRec[0].size(); i++)
24 rec.set(i, cur.get(i) + rec.get(i));
25 return rec;
26 }

Algorithm 3: Distributed key/value store
1 @Partitioned Map<Integer, Integer> store = new HashMap<>();
2
3 public void incrUserVisits(int uid) {
4 int visits = 0;
5 if (store.containsKey(uid))
6 visits = store.get(uid);
7 store.put(uid, visits + 1);
8 }
9 public int getUserVisits(int uid) {

10 int visits = store.get(uid);
11 return visits;
12 }

We highlight two aspects of our programming model. First,
it allows the concise representation of stateful algorithms, as
opposed to stateless dataflow models that force users to rewrite
algorithms without side-effects. Second, it permits users to
combine high-throughput and latency-sensitive functions in
the same program, which thus merging the computation and
serving of results.

III. STATEFUL DATAFLOW GRAPHS
Stateful dataflow graphs (SDGs) are designed to facilitate

the translation of stateful imperative programs to a dataflow
representation that performs parallel, iterative computation.

A. Overview
An SDG specifies the computation as a dataflow graph that

separates computation and state. As shown in the example in
Figure 2, which depicts the SDG for Algorithm 2, an SDG
has two types of vertices: (i) task elements (TEs) are compu-
tational tasks that transform input to output data; and (ii) state
elements (SEs) represent the computational state accessed and
used by TEs. Dataflows carry data between TEs. To achieve
fault tolerance, SDGs rely on an asynchronous checkpointing
mechanism with log recovery [5].
Task elements (TEs) are arbitrary functions that transform
input dataflows into output dataflows. A TE may run multiple
instances on distributed nodes to process data in parallel. For
example, the SDG in Figure 2 has 5 TEs, which form the
dataflow graph of the collaborative filtering algorithm.
State elements (SEs) encapsulate the state used by TEs for
computation. Access to SEs from TEs is always local, and
SEs are implemented using arbitrary in-memory data structures
such as maps, lists or matrices. SEs can be distributed across
nodes if (i) the state is too large to fit in the memory of a single
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Fig. 2: Example of stateful dataflow graph with task elements,
state elements and dataflows

node; or (ii) the TE that accesses the state is itself distributed
for parallel processing.

SEs can be distributed according to one of two strategies:
partitioned and partial. Since the distribution strategy affects
the semantics of the program, the correct strategy must be
chosen by the user using source code annotations, as described
in §IV-A.
Partitioned state. A partitioned SE can be split into disjoint
sets. For example, a map with integer keys ranging from [0 : n]
can be split into two disjoint subsets according to a partitioning
key k, namely [0 : k] and [k+1 : n].

As a consequence, a TE accessing a partitioned SE must
access the correct partition. Partitioned SEs yield better perfor-
mance because access by TEs to different partitions can occur
in parallel without the need for synchronisation, but not all
algorithms use state access patterns that can be partitioned.
Partial State. If the state cannot be partitioned, a partial
SE creates multiple replicas of the state on different nodes.
Each TE reads and writes its local SE replica independently,
permitting it to diverge from the other replicas. Each SE replica
therefore represents incomplete (partial) information about the
SE, e.g. it may not include all updates performed on the SE.

When accessing a partial SE, the default access is to the
single local replica (e.g. as shown in Algorithm 1, line 16). An
explicit source code annotation (see §IV-A) permits access to
all replicas of the partial state.

A special merge task in the SDG introduces a global
synchronisation point by collecting data from all partial SE
replicas and combines it in an application-specific manner. As
a result, frequent merging of partial SEs affects performance—
partial SEs should only be used if the semantics of the
algorithm does not permit state partitioning.

B. Translation Process
An SDG is generated from an (annotated) Java program by

the JAVA2SDG compiler. The compiler operates in two stages,
dataflow construction and code generation. The dataflow con-
struction stage translates the Java program using static analysis.
The code generation stage performs bytecode rewriting and
synthesis of executable code for the task elements in the SDG
based on the original Java program. The generated code can
be executed by SEEP [4], a data-parallel processing platform
that supports SDGs (see Figure 1).
Dataflow construction. The first stage extracts the required
TEs and SEs from the program and creates the SDG topol-
ogy. Java attributes used by methods are translated to SEs.
JAVA2SDG has SE implementations for common Java classes
such as Map, List and Set; new types of SEs can be supported

as long as the user provides implementation for checkpointing,
partitioning and recovery of state [5].

Statements in the Java program are translated to TEs by
splitting them into groups such that each group only accesses
a single SE. This strategy results in two desirable properties:
(i) it facilitates data parallelism by associating a TE with only
one SE; and (ii) it introduces pipeline parallelism by creating
a sequence of TEs.

The topology of the SDG is determined based on the
control flow of the Java program. The dataflows between TEs
are derived from the program using live variable analysis
at the boundaries between TEs. Live variables between TE
boundaries must be exchanged over the network as dataflows.
Code generation. In the second stage, JAVA2SDG generates
new code and rewrites existing one to execute the SDG in the
cluster. First it synthesises new code that: (i) creates wrappers
around SEs so that the system can manage them for fault
tolerance; (ii) embeds the TE code in a template that allows
the platform to deploy and schedule TEs; and (iii) acts as the
driver program for setting up the correct topology of the SDG
as part of the deployment.

Second, it rewrites the Java bytecode of TE implemen-
tations so that the content of variables at TE boundaries is
serialised and transmitted over the network between nodes.

IV. WRITING JAVA2SDG PROGRAMS
This section explains how users write annotated Java pro-

grams for JAVA2SDG. Users provide (i) the methods that pro-
cess the input data and generate output and (ii) a deployment
configuration that specifies the input data and the output to be
used. When writing the methods that process data, this section
explains how to use source code annotations that disambiguate
the handling of distributed state.

A. Source Code Annotations
When the user provides an implementation of logistic

regression, as shown in Algorithm 1, they want to execute
the train method in a distributed fashion to achieve high
processing throughput with a large volume of training data. As
a result, the field weights (line 5), which contains the model
to be trained, should be distributed.

Note that we do not attempt to be completely transparent
for developers or to address the general problem of automatic
code parallelisation [7]. Instead, the JAVA2SDG compiler
requires information on how to distribute the model, and how
the distributed model should be accessed by the train and test
methods. Next we explain how this information is provided by
the user through source code annotations:
@Partitioned and @Partial. If the state of an algorithm
can be partitioned across nodes, the field should be annotated
with @Partitioned. In the example of the logistic regression
algorithm, however, the train method requires access to all
weights, which means that weights cannot be partitioned.
Instead, the user adds the @Partial annotation to the definition
of weights, which results in multiple distributed replicas of
weights being created, representing it as a partial SE in the
SDG. These replicas can be updated independently by separate
instances of the train method executing on different nodes.
@Global. When the train method accesses the partial
weights, the user must choose if the access refers to only one
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of the replicas or all of them. By default, access is only to a
single local replica of weights, e.g. as shown in line 10.

After each iteration of the training stage, however, the
replicas of weights, which were trained independently, must
be merged to reach convergence of the model. Therefore, the
access to weights is annotated with the @Global annotation to
denote that the statement refers to all replicas (line 18).
@Collection. The reconciliation of the partial weights is per-
formed by the mergeWeights method (line 26). To indicate that
this method receives all replicas of weight as input, its input
parameter has the @Collection annotation, which turns the
parameter into an array with one entry per replica. This permits
mergeWeights to compute a new global value of weights.

V. DEMONSTRATION OVERVIEW
Next we describe what users see as part of this demon-

stration, which includes three algorithms: (i) a collaborative
filtering implementation; (ii) a logistic regression implementa-
tion; and (iii) a distributed key/value store.
Translation of algorithms. To demonstrate the details of the
translation process performed by JAVA2SDG, we modify the
compiler to produce a graphical representation of the SDG
in addition to the runnable program. The SDG visualisation
contains elements that give more details about the translation
process, including (i) the results of the live variable analysis
after the generation of each TE in the SDG; (ii) the grouping of
Java statements into separate TEs based on their state accesses;
and (iii) the type of access method used for each SE, i.e. local,
global or partitioned.
Execution of algorithms. As part of the demonstration, we
select the programs, modify them, explore their SDGs and
execute them on a remote compute cluster. The execution uses
the SEEP platform [4], [5], our implementation of a data-
parallel processing system for SDGs.

VI. RELATED WORK

Programming data-parallel platforms. A large class of data
processing platforms support a functional or declarative pro-
gramming model. MapReduce [3] only has two higher-order
functions; next generation systems such as DryadLINQ [15]
or Spark facilitate the automatic distribution of computation
due to their use of stateless functions. While a functional or
declarative model such as SQL, eases distribution and fault
tolerance, imperative models such as R and Python remain
more widely used among data scientists [8].

Storm [14] and SEEP [4] expose a low-level dataflow
programming model: algorithms are defined as a dataflow
pipeline, which is not a natural way to express applications,
and is hard to debug. Naiad [11] supports functional and
declarative programming models on top of its dataflow model,
but requires the adoption of new primitives.
Imperative programming models. CIEL [10] uses imperative
constructs such as the spawning of new tasks and futures, but
this exposes the low-level execution of the dynamic dataflow
graph to developers. Piccolo [12] is inspired by imperative
distributed shared memory models, but users must choose the
task granularity manually, i.e. there is no dataflow abstraction.

Pydron [9] introduces a one-sided communication model
for stateless Python programs. In contrast, SDGs permit the
use of explicit state, which facilitates the concise representation
of stateful algorithms, and allows generic dataflows (not just
master-client communication) to execute in parallel on clusters.
Program parallelisation. Extracting parallel dataflows from
imperative programs is a hard problem [7]. Our approach is
similar to that of Beck et al. [1], in which a dataflow graph is
generated compositionally from the execution graph. Jade [13]
is another approach for program parallelisation that relies on
users explicitly deciding on the granularity of tasks and how
these access share objects, similar to our partial annotations.
JAVA2SDG does not require users to specify the granularity of
each task. We find that our strategy for doing this automatically
performs well for many practical big data applications.

VII. CONCLUSION
We want to enable a broader set of users to write programs

that can execute efficiently on big data. We demonstrate
JAVA2SDG, a compiler that translates annotated Java pro-
grams into SDGs, a stateful distributed dataflow model for
executing programs in a data-parallel fashion on a compute
cluster. We demonstrate how big data algorithms can be
written naturally using this programming model and show
how JAVA2SDG translates them to SDGs. We believe that this
programming model is a first step towards the democratisation
of big data.
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