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Abstract

Clusters that handle data-intensive workloads at a data-centre scale have become commonplace.
In this setting, clusters are typically shared across several users and applications, and consolidate
workloads that range from traditional analytics applications to critical services, stream processing,
machine learning, and complex data processing applications. This constitutes a growing class of
applications called long-running, consisting of containers that are used for durations ranging from
hours to months. Even though long-running applications occupy a significant amount of resources in
shared compute clusters today, there is currently rudimentary systems support that not only hinders
application performance and resilience but also decreases cluster resource efficiency i.e., the effective
utility extracted from cluster resources.

In this thesis, we describe two main areas that lack support for long-running applications in traditional
system designs. First, the way modern data processing frameworks execute complex computation tasks
as part of shared long-running containers is broken. Even though these frameworks enable users to
combine different types of computation as part of the same application using high-level programming
interfaces, they ignore their diverse latency and throughput requirements during execution. Second,
existing systems that allocate resources for long-running applications in the form of containers lack
an expressive interface that can capture their placement requirements in shared compute clusters.
Such placements can be expressed by means of complex constraints and are critical for both the
performance and resilience of long-running applications.

To target the aforementioned mismatch, we introduce our contribution of unified dataflows with
placement constraints, an abstraction that enables the efficient execution and the effective placement
of long-running applications in shared compute clusters. Our abstraction is realised as part of a novel
execution framework and a new cluster manager following a two-scheduler design.

We first present NEPTUNE, a data processing framework that captures application execution require-
ments and employs coroutines as a lightweight mechanism for suspending and resuming tasks within
long-running containers with sub-millisecond latency. NEPTUNE introduces scheduling policies that
can dynamically prioritise tasks of heterogeneous jobs respecting their requirements in an efficient
manner while achieving high resource utilisation.
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We then introduce MEDEA, a cluster scheduler that enables the effective placement of containers
in shared compute clusters. It follows an optimisation-based scheduling approach that is used for
applications with sustained impact on cluster resources. MEDEA introduces powerful placement
constraints with formal semantics that developers can use to capture container interactions within and
across applications. MEDEA has been deployed in large production clusters and has been open-sourced
as part of Apache Hadoop 3.1 release.
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Chapter 1

Introduction

The internet today represents an enormous space where large volumes of data are captured and
analysed. Datasets are tightly coupled with our everyday habits including our mobile, social, finance
and digital life. The connection between humans and data is so strong that scientists claim we are
now living in the era of big data [14, 92]. The analysis of such data is ranging from building indexes
to help users find on-line content through search engines, predicting earthquakes and financial trends,
suggesting user content through ad-targeting platforms and recommender systems, to genome research
trying to cure deadly diseases [115]. To a great extent, analysing big data efficiently enables science
and the world to access new undiscovered insights and make progress faster.

The explosive growth of big data and information processing has created an unprecedented need for
storing huge data volumes. This has led to the development of several scalable storage systems [5, 155]
and a new breed of databases [22, 34, 50, 62], often referred to as NoSQL data stores. These data
stores usually explore weaker consistency models [11, 42, 85] that trade-off strong consistency for
increased performance and scalability; while more recent data store designs also support transactions
over such weaker consistency models [29].

Even though scalable data storage can be challenging, it is not the biggest issue anymore. Large
internet companies such as Microsoft, Amazon, Facebook, and Google already store large amounts
of information on a daily basis and are willing to store even more information that can potentially
increase their value in the future. For example, Facebook was able to store data from its on-line
user activity directly to its back-end storage service back in 2005 [43]. This shifted the focus of
organisations from storage to scalable data processing technologies that allow their developers to
process large volumes of data in an efficient manner.



2 Introduction

1.1 The evolution of Big Data processing

Over the past decade, we have witnessed several distributed data processing frameworks [5, 7, 20,
32, 45, 64, 66, 114, 127, 150] that have enabled users to process vast amounts of data on clusters of
machines [18, 31, 82, 135, 137]. In order to scale, these systems rely on shared-nothing architectures
comprised of clusters of commodity machines [126]. The aggregate computation power of those
machines enables distributed processing frameworks to handle increasing volumes of data in a cost-
effective manner. This scale out approach is more attractive than using more powerful machine
hardware to speed up computation, an approach also known as scale up, which can be a non-viable
costly solution.

Early implementations of distributed data processing frameworks were targeting specific types of
computation and use cases. For example, batch processing frameworks such as Apache Hadoop, Spark
and Hive [5, 66, 107, 150] mainly focused on high processing throughput over large datasets, while
stream processing frameworks such as Apache Storm, Flink and Heron [20, 45, 64, 127], focused
more on providing low processing latency. In practice, however, this variety of frameworks posed a
limitation both for the users and cluster operators. Users had to copy data across frameworks when
building more complex workflows involving multiple systems, and also had to face unclear trade-offs
picking the right framework for the right job. At the same time, cluster operators had to support and
manage multiple systems with dependencies across compute clusters.

Acknowledging the limitation of using, deploying and maintaining multiple systems, distributed
processing frameworks evolved to support and unify different types of data processing such as
streaming, batch, and machine learning in a single execution engine [7, 13, 20, 41, 150]. This
evolution is in line with the current momentum towards unified analytics in general, where modern
systems try to combine large-scale data processing with state-of-the-art machine learning and artificial
intelligence in an efficient manner [81, 93, 123].

Applications in these frameworks are realised as generic dataflow graphs, where nodes perform
computation and edges represent the flow of data across the nodes. Dataflow computation is performed
in parallel tasks that usually run as part of long-running containers in the cluster. These systems have
also exposed unified programming interfaces for the users to express their computation through a
single API. Users can now use unified APIs to express different types of computation such as batch
and streaming. Examples include Spark’s Structured Streaming API [9], Flink’s Table API [49], and
the external API layer of Apache Beam [13].

As the next step in this unification, users have begun to combine diverse computation jobs within
more complex applications. For example, a real-time malicious behaviour detection service [88] can
now combine a machine learning job training a model using historical data, and a low-latency stream
job performing inference on real-time data, as part of a single unified application [48, 119]. Such
unified application designs simplify application development and operationalisation: (i) users can
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reuse code with consistent semantics e.g., a streaming and a batch version of a job running over the
same data will produce the same results; (ii) avoid the complexity of interacting with external systems
e.g., state sharing across jobs is usually provided by the framework; (iii) and have a single application
to monitor and tune. However, despite the unified application support from the API point of view
by some distributed processing frameworks, there is no support on the scheduling or execution side.
These complex applications still follow a typical dataflow abstraction, ignoring specific job execution
requirements.

In the era of unified analytics, a common challenge of modern data processing frameworks is capturing
and satisfying the diverse job requirements of complex unified applications. These applications can
now execute computation with different demands (i.e., low latency or high throughput processing)
within the same shared long-running containers.

In addition to that, data processing frameworks require large clusters of commodity machines to
be able to scale and provide results in a timely manner. Modern organisations operate such large
data-centres that are typically shared across users and applications. In this environment, sophisticated
clusters managers such as Hydra [31], YARN [135], Mesos [65], and Borg [137] carry out the
on-demand allocation of resources such as memory, disk and CPU to applications in the form of
containers. Cluster managers have thus allowed data processing frameworks to scale to hundreds of
commodity machines while at the same time they have enabled the consolidation of a plethora of
different workloads onto shared compute clusters as they are application-agnostic.

Workload consolidation is important to increase cluster resource efficiency, i.e., to extract as much
computation as possible from the underlying resources available. However, this has led to a diverse set
of applications running in shared compute clusters today. Apart from batch analytics jobs [5, 32, 129,
154] that were traditionally running in those clusters, workloads now include unified applications [48,
119], stream processing [64, 127], iterative computations [1], data-intensive interactive jobs [150], and
latency-sensitive online applications [62, 94]. For their deployment, unlike batch jobs that typically use
short-lived containers running for durations in the order of seconds, most of the modern applications
benefit from long-running containers. These containers are allocated and used for durations ranging
from hours to months, thus avoiding repeated container initialisation costs and reducing container
scheduling load. We refer to this new growing class of applications that leverage long-lived containers
as long-running applications or LRAs.

As LRAs use containers that run for longer periods of time, they have a sustained impact on cluster
resources. Selecting the most suitable machines for their container placement is thus important not
only for application performance and availability, but also for cluster efficiency. For instance, load
imbalances in a cluster can potentially block future applications with specific machine requirements
from running. In terms of LRA performance, containers on the same machine may suffer from
interference, contending in shared resources, heavily affecting their throughput (see §2.3.1). Moreover,
groups of machines failing together that are not uncommon in large compute clusters, can affect
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application resilience — an LRA with a random container placement might lose multiple containers at
once (see §2.3.2). Despite these observations, support for effective long-running application placement
in existing cluster schedulers is still elementary [10, 78, 82, 137].

Long-running applications require precise control over container placement to unlock their full poten-
tial. A common challenge of modern cluster managers is to provide support for high-quality placement
of LRAs that run along traditional applications in shared compute clusters while guaranteeing cluster
resource efficiency.

1.2 Research motivation

In order to cope with the growing class of long-running applications, there is a need for scalable cluster
management architectures that can support precise and high-quality container placement. At the same
time, cluster management systems should take into account global cluster-wide goals (e.g., reduce
load-imbalance) and effectively allocate resources (e.g., be cost-effective). Data-parallel processing
systems already execute long-running applications that utilise shared clusters to analyse large volumes
of data. However, modern unified applications and complex workloads require more sophisticated
systems and abstractions that can understand the unique execution requirements of their applications
and are able to efficiently utilise shared resources (e.g., extract the most computation from resources).

In general, there are fundamental mismatches between the needs of modern long-running applications
and traditional data-centre system designs. The shortcomings of these systems include:

• Lack of expressive container placement. Even though shared compute clusters today consol-
idate a variety of workloads with several of them requiring precise control of their containers
for performance or resilience, existing cluster managers lack support for placement constraints
that can capture such requirements in an expressive and high-level manner. Such constraints
are critical to achieve higher-quality resource allocations, satisfy application requirements and
also guarantee the healthy operation of the cluster.

• Lack of unified data computation abstractions. Even though data processing frameworks
evolved to support different types of computation such as batch and streaming within the same
execution engine that can be expressed using a single unified API, current data processing frame-
works lack understanding of the diverse execution requirements of unified applications. Data
processing systems need to utilise new abstractions that can capture complex job requirements
and also satisfy their demands during execution.
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1.3 Contributions

To address the aforementioned challenges, in this thesis we introduce unified dataflows with place-
ment constraints, a new abstraction for efficiently unifying dataflows with different computation
demands in shared compute clusters. In addition to data and computation, they can capture dataflow
execution requirements and placement constraints. Unified dataflows with placement constraints can
therefore: (i) combine data-parallel programs with different execution requirements as part of the
same application; and (ii) control the placement of their long-running containers in the cluster.

To satisfy diverse unified dataflow requirements at runtime, we introduce suspendable tasks and
novel scheduling policies that dynamically prioritise tasks within long-running containers as part of a
distributed dataflow framework. To control long-running containers during placement, we introduce
rich placement constraints that capture container interactions. We implement placement constraints as
part of a cluster manager that achieves high-quality placement on clusters consisting of thousands of
machines.

1.3.1 Unified dataflows

Similar to traditional dataflow graphs, unified dataflows represent data and computation explicitly in a
graph. A unified dataflow graph may consist of multiple sub-dataflows, with each possibly having
specific execution requirements such as high-throughput or low-latency. In unified dataflows, these
execution requirements are treated as first-class citizens. Users can implement complex dataflows
using unified APIs and mark explicit dataflow requirements expressed as priorities. A dataflow
framework that implements unified dataflows must be flexible in providing high-throughput and
low-latency data processing according to user-expressed requirements.

We introduce novel scheduling policies that are aware of user-defined requirements and can preempt
tasks within long-running containers. Using application-level preemption policies, we can control the
execution of diverse tasks in a dataflow. To preempt tasks efficiently, we implement a lightweight
task preemption mechanism allowing tasks to be suspended and resumed within milliseconds while
preserving their execution progress. Our scheduling policies along with the efficient preemption
mechanism enable dataflow platforms to dynamically prioritise tasks according to their needs while
efficiently utilising container resources.

Unified dataflows expose execution requirements as first-class citizens to the system. This makes it
possible to employ application-specific mechanisms and scheduling policies to dynamically prioritise
tasks within long-running containers according to their needs.
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1.3.2 Placement constraints

For their execution, unified dataflow platforms utilise long-lived containers in compute clusters that
are shared with a variety of other workloads. To express dependencies across long-running containers
during placement, unified dataflows make use of placement constraints. Placement constraints enable
both users and cluster operators to satisfy specific performance and availability requirements of
long-running applications in shared clusters. For example, one can minimise resource interference
between specific containers types (e.g., memory intensive) by placing them in different machines.
This is a typical anti-affinity constraint across nodes in the cluster.

We introduce expressive high-level constraints that enable users to specify container placements both
within and across applications without requiring knowledge of the underlying cluster infrastructure.
We show that a single cardinality constraint type is sufficient to capture a wide variety of cases
related to application performance and resilience. Our rich, high-level constraints along with a
two-scheduler design enable cluster managers to optimise the placement of long-running containers
without impacting traditional short-running containers running in the clusters.

Rich, high-level placement constraints allow the concise representation of interactions across con-
tainers without revealing the underlying cluster infrastructure. Cluster managers can utilise such
constraints to achieve higher-quality placement of LRAs in shared compute infrastructures.

1.4 Related publications

Parts of the work described in this thesis are part of peer-reviewed publications:

• NEPTUNE: Scheduling Suspendable Tasks for Unified Stream/Batch Applications.
Panagiotis Garefalakis, Konstantinos Karanasos and Peter Pietzuch.
10th ACM Symposium on Cloud Computing (SoCC), Santa Cruz, CA, 2019 [52]

• MEDEA: Scheduling of Long Running Applications in Shared Production Clusters.
Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh and Sriram Rao.
13th ACM European Conference on Computer Systems (EuroSys), Porto, Portugal, 2018 [51]

The following publications have also influenced the work described in this thesis, but did not directly
contribute to:

• Peering through the Dark: An Owl’s View of Inter-job Dependencies and Jobs’ Impact
in Shared Clusters. Andrew Chung, Carlo Curino, Subru Krishnan, Konstantinos Karanasos,
Panagiotis Garefalakis and Gregory R. Ganger. ACM International Conference on Management
of Data (SIGMOD), Amsterdam, Netherlands, 2019 [25]
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• Java2SDG: Stateful Big Data Processing for the Masses.
Raul Castro Fernandez, Panagiotis Garefalakis and Peter Pietzuch.
32nd IEEE International Conference on Data Engineering (ICDE), Helsinki, Finland, 2016 [46]

1.5 Outline

The remainder of this thesis is structured as follows:

• Chapter 2 presents background and related work. It first describes basic concepts and terminol-
ogy, and then gives an overview of workloads executed in shared compute clusters today with
an emphasis on the growing class of long-running applications. The chapter then tracks the
evolution of data processing frameworks, a particular type of long-running applications, from
single purpose engines to unified execution engines, and showcases their limitations in terms
of complex application scheduling. Finally, it traces the advancements in cluster management
and lays the requirements a cluster scheduler must satisfy in order to effectively place long-
lived containers. The requirements are based on observations from a series of long-running
application experiments on a real pre-production cluster.

• Chapter 3 describes unified dataflow graphs with placement constraints, the new abstraction
proposed in this thesis for efficient data processing in shared compute clusters. The chapter
explains model characteristics including dataflow requirements and placement constraints in
detail using examples.

• Chapter 4 describes NEPTUNE, an execution framework for unified dataflow applications that
can dynamically prioritise tasks based on their user-defined dataflow requirements. The chapter
focuses on the system aspects of NEPTUNE and describes the implementation details of its
suspendable tasks and its novel scheduling policies on top of Apache Spark, one of the most
widely used data processing frameworks today. Finally, in a range of experiments, it shows
that our Spark-based implementation of NEPTUNE on a 75-node Microsoft Azure cluster can
achieve close to optimal performance for both latency-sensitive and latency-tolerant dataflows
with a modest memory impact. At the same time, NEPTUNE can better utilise long-running
container resources in the cluster.

• Chapter 5 describes MEDEA, a cluster scheduler with rich placement constraints that can
support the placement of applications with long-running containers as well as traditional
analytics jobs with short-lived containers. The chapter first explains the system components of
MEDEA including its novel two-scheduler design and its powerful constraints API, and then
describes the implementation details on top of Apache Hadoop YARN, one of the most popular
open-source cluster managers today. Finally, over experiments we show that the YARN-based
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implementation of MEDEA on a 400-node pre-production cluster can achieve placements of
long-running applications that yield significant performance and resilience benefits compared
to state-of-the-art schedulers today.

• Chapter 6 summarises the contributions of this thesis and presents potential future research
directions.



Chapter 2

Background

This chapter describes big data systems and concepts used in this thesis related to long-running
applications (§2.1). We cover the evolution of data processing systems, describe their programming
and execution model, and list their requirements (§2.2). We also trace the advancements of cluster
management systems responsible for controlling shared compute clusters and give an intuition of their
requirements in respect to long-running applications (§2.3).

In the era of big data, modern organisations rely on distributed data processing applications to
improve the quality of their services. These applications can involve different types of computation
such as batch processing, streaming, machine learning and artificial intelligence forming complex
workloads. In this context, a workload represents a collection of resources and computation logic
that delivers specific business value. Workloads typically consist of several jobs, and each job runs
a sequence of tasks. A job task is the smallest form of computation processing a set of data. Based
on their characteristics, workloads can be classified into different categories, based on their resource
requirements (i.e., memory, IO or CPU intensive), inter-arrival times (i.e., daily, weekly), or traffic
patterns (i.e., static, periodic, unpredictable) [4].

Data processing frameworks such as MapReduce, Spark and Hive have enabled developers to create
such distributed applications that have the ability to process increasing volumes of data [32, 66, 150].
These frameworks offer user-friendly programming interfaces and are designed to run on shared-
nothing commodity infrastructures (see §2.2). Applications can thus seamlessly scale on hundreds of
machines that are cheaper to maintain and operate [12]. Larger versions of those clusters comprise
of thousands of machines, potentially with different hardware characteristics, connected over the
network [31, 137]. Using general-purpose cluster managers, the resources of each machine in the
cluster can be shared across several frameworks, users and applications.

Cluster managers, or schedulers, such as Hydra [31], Kubernetes [82], YARN [135], Borg [137], and
Mesos [65] carry out the on-demand allocation of machine resources to applications. Resources such
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as CPU, memory and disk are packaged in the form of containers and are shared across applications
running computation tasks within those containers. Schedulers typically place containers on machines
based on simple scheduling algorithms, trying to make fast placement decisions. They can also offer
advanced features as part of their scheduling logic such as capacity planning, fairness, support for
hardware heterogeneity and more (see §2.3). To protect containers running on the same machine and
competing for shared resources such as CPU, memory and network, some schedulers also support
resource isolation mechanisms such as cgroups [82, 135].

However, the fast-paced evolution of frameworks and the diversification of applications that run in
shared compute clusters pose new challenges for the systems that support them. Data processing
frameworks, evolved from single purpose engines to unified execution engines with long-running
containers, and cluster managers now consolidate a plethora of diverse workloads in clusters consisting
of thousands of machines. In this thesis, we highlight some of the challenges and explore a new
opportunity to address them with our contribution of unified dataflows with placement constraints.

More precisely, out of the diverse workloads running in shared compute clusters today, the focus
of this thesis is on long-running applications. In this chapter, we highlight an important mismatch
between cluster managers that were traditionally focusing on fast allocation decisions for applications
with short-running containers and an increasing number of long-running applications with complex
placements deployed in large-scale shared clusters. At the same time, applications started utilising
long-running containers that can be used to run computation with diverse requirements. Another
critical mismatch is between modern data processing systems that evolved to support different types of
computation within those containers and the diverse execution requirements of applications developed
on top of these systems that are currently ignored.

In §2.1, we briefly discuss the different types of workloads that are currently deployed in compute
clusters based on existing studies and our analysis across six clusters within Microsoft, while in §2.1.2
we describe their scheduling life-cycles. Then in §2.2, we focus on the evolution of data-parallel
processing systems and we experimentally demonstrate using a real-world application on Azure how
existing scheduling policies fail to satisfy complex dataflow requirements during execution in §2.2.5.
Driven by experiments on a 275-node pre-production cluster, we explore the new challenges that arise
from placing the containers of long-running applications along other workloads in a shared cluster
in §2.3. Finally, we list the requirements that a cluster scheduler must satisfy to efficiently support
long-running applications in §2.3.4.

2.1 Cluster workloads

Large-scale data analysis provides the means for companies to improve product engagement and
increase their revenues. For this purpose, companies have traditionally utilised batch analytics
frameworks to perform off-line analysis of their data [32, 113, 154]. Batch data analysis involves jobs
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that run computation tasks as part of short-lived containers in the cluster. Analysis results are not used
in real-time and thus batch computation mostly focuses on high-throughput processing and does not
usually yield strict latency requirements.

Besides batch analytics, an increasing number of applications currently relies on distributed systems
to scale and handle increasing volumes of data [104]. To handle user-facing requests in real-time
or process continuous streams of data, efficient on-line streaming services use long-lived containers
with continuously running tasks to achieve low end-to-end latency [45, 47, 64, 98]. This richness of
modern applications relying on distributed infrastructures for scalability and fault tolerance, led to
increasingly varied workloads running in shared clusters today.

In fact, studies on publicly available cluster traces from several companies confirm the increasing
workload diversity in terms of job runtimes and resource requirements [4, 87, 112]. In the publicly
available Google trace, around 80% of the jobs utilise containers in the cluster that have durations
of less than 12 minutes each, while the longest container duration is at least 29 days, which in this
case is the duration of whole trace [112, 139]. In Alibaba clusters, there is significant reported
imbalance in terms of container resource usage between long-running on-line services and off-line
batch analytics [87].

In addition to existing studies, we perform an analysis of cluster workloads within Microsoft. For
the analysis we use six analytics clusters, each comprised of tens of thousands of machines with a
variety of hardware characteristics. In these clusters, thousands of applications utilise containers that
are using shared cluster resources. When the active container durations of an application are above
12 hours, we mark it as a long-running application, also known as LRA. As shown in Figure 2.1,
within Microsoft analytics clusters, at least 10% of each cluster’s machines are used for LRAs while
two are used exclusively by them. Our analysis, therefore, confirms that a substantial portion of
cluster resources is dedicated to applications that use long-lived containers such as on-line services. In
general, as the percentage of cluster resources used for LRAs is reported to be growing [31], support
for LRAs in modern compute clusters is going to be even more crucial in the near future.
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Figure 2.1 Machines used for long-running applications (LRAs) in six analytics clusters at Microsoft
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Placing LRAs with long-lived containers along with batch jobs utilising short-lived containers in
shared compute clusters is both appealing and challenging. On the one hand, it can reduce cluster
operational costs by increasing resource efficiency, avoid unnecessary data movement, and enable
pipelines involving both classes of applications. On the other hand, it can add conflicting demands
to the cluster scheduler managing the cluster as we describe in more detail in §2.3. Applications
with short-lived containers such as batch jobs need to be placed with low-latency to achieve high
processing throughput, while LRAs might need high-quality placement to achieve good performance
and availability.

2.1.1 Workload types

Depending on the duration of their containers, cluster workloads can be classified as either batch
or long-running, with the former using short-lived containers and the latter utilising long-running
containers. Below we identify some key application scenarios for these two categories of workloads
and describe their main characteristics.

Batch. Represent traditional workloads in production clusters that utilise short-running containers to
execute tasks that run for durations ranging from seconds to minutes. Examples include frameworks
such as MapReduce [5, 32], Scope [154] and Tez [129], performing off-line computation, e.g.,
extracting, transforming and loading data (ETL) in order to provide data insights and improve the
quality of services. Frameworks that perform off-line computation with short-lived containers are
not sensitive to machine failures as they can spawn new ones and continue data processing from the
last checkpoint [20, 70, 106, 114]. Their containers have no strict placement requirements except
optional data locality to avoid data movement. However, as batch computation involves large numbers
of processing tasks spawning several containers, these frameworks require low container placement
latency to avoid increasing their total task runtime (see §2.1.2).

Long-running. Apart from batch analytics applications, workloads in production clusters now include
several long-running applications with containers running for durations ranging from hours to months.
Below we identify different scenarios where LRAs are used. We base these scenarios on discussions
with cluster operators from several companies and the open-source community:

• Streaming systems such as Storm [127], Samza [114], Heron [83], Flink [20], Millwheel [3],
Kafka Streams [76], and SEEP [45] process data streams in near real-time via dataflows of
long-running operators that are deployed using containers.

• Interactive data-intensive applications such as Spark [150], Impala [80], and Hive LLAP [19]
employ long-standing workers, also known as executors, to avoid container start-up costs and
to process data that resides in memory with low latency.
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• Latency-sensitive applications such as HBase [62], ZooKeeper [69], and Memcached [94]
serve requests using long-standing containers to achieve low end-to-end latency.

• Machine learning frameworks such as TensorFlow [1], Spark MLLib [125] and SystemML [15]
use long-running executors to efficiently perform iterative computations.

In the analysis we perform within Microsoft’s shared big data infrastructure (see Figure 2.1), we
observe that, in most analytics clusters, tens of unique scenarios involve LRAs falling into one of
the categories above. Some of these LRAs must meet strict latency requirements, scale to large
volumes of data, or achieve high-availability. As their containers run for longer periods of time,
they could tolerate longer placement latency than traditional batch workloads, however, they require
higher-quality placement to meet their special requirements (see §2.3.1).

2.1.2 Workload scheduling

Both LRAs and batch analytics workloads utilise containers that execute computation tasks. To
allocate containers, applications use cluster managers that are responsible for the placement of
containers on shared machines. Figure 2.2 shows the container placement life-cycle. To execute
tasks within those containers, applications or application frameworks such as Spark and Flink, use
schedulers that take into account task characteristics, dependencies and available container resources
when launching tasks. Figure 2.3 shows the task scheduling life-cycle. As we describe below, even
though container scheduling takes place at cluster management level and task scheduling happens at
the application level, their scheduling life-cycles share similar concepts.

Container scheduling life-cycle. Applications first submit container requests to a general-purpose
cluster manager responsible for the placement, initialisation and monitoring of these containers. A
container request waits to be considered for placement by the cluster scheduler. Next, the cluster
manager triggers a scheduling algorithm to place the container according to specific policy or objective
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Figure 2.2 Container scheduling event life-cycle over time describing states at the bottom and metrics
at the top
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i.e., place the container in a machine in a way that balances load in the cluster. Upon container
placement, the cluster manager starts container initialisation, also called localisation, downloading
all the necessary binaries and dependencies to get the container ready for execution. Finally, the
initialised container, which is now capable of executing tasks, is returned to the application.

Based on the event life-cycle described above, the main container metrics are: container placement
latency, container initialisation latency and container runtime (see Figure 2.2). Container placement
latency is the time between a container request is submitted to the scheduler until its placement
on a machine. It represents the time it takes the scheduling algorithm to decide where to place a
container in the cluster. Container initialisation latency is the time it takes the scheduler to install
dependencies, download binaries and prepare the container on a specific machine. It represents the
container set-up time. Container runtime is the time spent running application tasks and performing
computation. Depending on the execution policy of the application, a container can be used to
run a single application task [32] or multiple ones in order to avoid unnecessary container start-up
costs [80, 150].

From the cluster management level, both LRAs and batch analytics follow the same container life-
cycle transitions even though they have different needs. LRAs often require high-quality placement
for their containers to satisfy their performance and resilience requirements without the need for fast
placement decisions. Batch analytics containers must be placed with low latency as their completion
time can be significantly affected by increased placement costs.

Task scheduling life-cycle. An application uses the acquired containers placed on cluster machines to
execute tasks. Each task is a computation instance usually utilising a single core of a container. Tasks
that are ready to execute are first submitted to an application specific scheduler that is responsible
for task execution and monitoring. A task is waiting in a queue to be considered and for resources
to become available. Next, the application scheduler uses a policy to decide the task that is going to
be executed next within a container i.e., run the task that was earlier submitted, or the task with the
highest priority in the first available container. Finally a task runs until completion in a container.
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Figure 2.3 Task scheduling event life-cycle over time describing states at the bottom and metrics at
the top
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Main task life-cycle metrics include: task scheduling latency and task runtime (see Figure 2.3). Task
scheduling latency is the time between a task being submitted to the application scheduler until being
launched within a container. It includes the time that it takes the scheduler to decide where to run a
task and also the time a task has to wait for resources to become available. Task runtime is the time
spent running application specific computation in a container also including infinitely long tasks by
LRAs such as database services or cache servers. Note here that a task does also deserialise some
application code or data which is similar to a container initialisation stage. As the duration of that
stage is typically short and cannot be avoided, it is not included in our figure.

In a cluster environment, application schedulers follow similar task life-cycle transitions even when
their application requirements are entirely different. For example, traditional batch applications
schedule a single task per short-running container for simplicity, LRA services schedule continuous
tasks within long-lived containers to serve requests with low latency, while some data-intensive LRAs
utilise long-running containers to execute several heterogeneous tasks with reduced initialisation costs.
As we describe in more detail below, the diverse tasks of an LRA may have different requirements in
terms of latency and throughput while being scheduled on the same shared long-running containers.
Increased task queueing or scheduling latencies can thus significantly affect task requirements and
consequently the goals of an entire LRA application.

2.2 Data processing systems

In the previous section, we classified shared cluster workloads and discussed their container and
task scheduling life-cycles. This section describes big data processing systems. We first focus on
their abstraction (§2.2.1), programming interface (§2.2.2) and execution model (§2.2.3) and then on
how they adapted to support the heterogeneous jobs of modern data processing applications (§2.2.4).
Finally, we show with experiments how existing data processing systems fail to satisfy modern
application requirements (§2.2.5).

Over the past years, many parallel processing systems have been developed to enable users analyse
large volumes of data by executing computation within short- or long-lived containers [5, 6, 7, 66, 127].
In order to scale processing, these systems employ a data-parallel model. In a data-parallel model,
the same computation is performed over smaller chunks of data that are also known as partitions. This
is different than the task-parallel model where different computation is performed over the same or
different data. Essentially, task parallelism allows splitting memory or CPU intensive computation in
smaller tasks while data parallelism allows splitting IO intensive computation to many smaller but
identical tasks.

Big data workloads are processing increasing volumes of data and are traditionally bound by the
amount of data they can transfer and process. Therefore, big data processing systems expose dataflow-
based abstractions that accommodate data-parallel processing [32, 151]. By employing the dataflow
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abstraction, processing systems extract tasks that can be executed in parallel from the application
definition with minimal user intervention. As a result, users of the data processing systems do not
have to explicitly choose the granularity of the tasks but only how to partition the data based on the
available resources.

Data parallelism enables systems to scale throughput with the amount of resources available. Each
application task is running computation over an individual portion (partition) of the total data as part
of a container. As tasks can process data in parallel, one can reduce the total computation time by just
adding more resources and spawning new tasks. By adding new tasks, each task will be responsible
for processing a smaller partition of data.

To increase the amount of usable resources, data processing systems follow a scale out approach
where they transparently implement the distributed logic to utilise the aggregate resources of many
commodity machines connected over the network. To reduce total computation time and scale, one
can just add machines of similar hardware characteristics to the network. This is a fundamentally
different approach than scaling up resources and using more powerful hardware. Scaling up is
usually a cost-ineffective approach where a slight increase in resources could multiply costs and most
importantly is limited by Moore’s law [116].

Most of the existing well-established distributed data processing systems are targeting a particular
use case. They exploit domain specific knowledge to improve their performance while preserving
system simplicity. For instance, batch analytics frameworks such as Scope [154] and Tez [113]
are mainly targeting off-line computation over huge data sets spanning many machines in a cluster.
They focus on improving data insights and performing ETL computations while quickly recovering
from hardware failures. Stream processing frameworks like Flink [20] and MillWheel [3] are mainly
targeting real-time computation for tasks like detecting malicious behaviour over clickstreams of data
while maintaining low end-to-end latency. Machine learning frameworks such as Tensorflow [1] and
Spark MLLib [125] focus on performing efficiently iterative computations and train models faster by
caching intermediate results in memory.

In essence, distributed data processing systems enable developers to transparently run scalable parallel
computation over large sets of data. They hide the underlying complexity of data partitioning,
network communication, coordination and fault tolerance from the users. As we describe next,
they follow a dataflow model offering a variety of programming interfaces including lower-level
interfaces such as functional or imperative APIs and higher-level abstractions like the SQL declarative
language (§2.2.2). Using these interfaces users develop applications that perform computation
ranging from batch processing to streaming, machine learning, and artificial intelligence (§2.2.4).
Computation is represented as dataflows of operators that are executed within containers in clusters of
machines (§2.2.3). In what follows, we describe the dataflow model in more detail.
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2.2.1 Dataflow model

Applications in data processing systems are represented as dataflow graphs. Under the generic
dataflow computation model, nodes or vertices perform the user-defined computation while edges
represent the flow of data across the nodes. Nodes apply computation functions on data that can be
stateless or stateful, storing the data locally. The output of an upstream node can be used as an input
by a downstream node connected with an edge. As a result, edges in a directed graph define the flow
of data. Using dataflow graphs, a system can easily identify elements that can run in parallel and thus
provide a good representation of parallel computation. Implementations of the dataflow model in
existing data processing systems include the MapReduce dataflow model and the acyclic dataflow
model, both discussed below.

MapReduce dataflow model was proposed by Google in 2004 and influenced the first breed of big
data processing systems [5, 33]. It offers a simple computation model consisting of map and reduce
tasks. Map tasks process the input by applying a computation function on the input data and reduce
tasks aggregate the processed map data and output results. As depicted in Figure 2.4a, dataflow graphs
expressing MapReduce computation are quite simple. Users develop their applications using stateless
map and reduce functions. The dataflow system first runs the map tasks applying user-defined map
function over partitions of the input data. For every data element the map function returns zero or
more key-value pairs. Then, the key-value pairs are sorted locally by key across all tasks. In the
reduce phase, the dataflow system assigns a group of keys to each of the reduce tasks. A reduce task
finally applies the user-defined reduce function and outputs the results. By partitioning the input data,
map and reduce tasks can run in parallel as shown in the figure.

The simplicity of the MapReduce programming model made it a popular choice across several
organisations. In addition to that, the ability to increase processing rate by scaling out to clusters
of machines and being able to tolerate hardware failures fuelled its wide adoption. However, the
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simplicity of the model proved to have its own disadvantages as it can not express more complex
applications. Higher-level frameworks such as Pig [53, 99] and Hive [68] tried to address this
limitation by generating and managing multiple MapReduce jobs for more complex applications.

Acyclic dataflow model is a generalisation of the MapReduce dataflow model that allows to represent
more complex applications. It models application computations as directed acyclic graphs or DAGs
of tasks as shown in Figure 2.4b. Instead of relying on map and reduce functions, this model allows
tasks of any user-defined function. Tasks that apply those functions can be interconnected in arbitrary
ways forming a DAG, as long as no cycle exists in the graph. In an acyclic dataflow, tasks that perform
on different partitions of the data can execute in parallel while tasks that depend on the output of other
tasks can run as soon the former produce some output.

Dryad was one of the first distributed data processing systems that was based on the acyclic dataflow
model [70]. It allows DAGs of tasks that perform user-defined functions. Tasks are connected with
edges of communication channels such as files, TCP pipes, and shared-memory FIFOs in order to
send data. Unlike MapReduce, Dryad allows users to write more complex dataflow graphs that are
expressed as several connected sub-dataflows. Higher-level interfaces on top of Dryad evolved to
expose more user-friendly declarative APIs that simplify expressing iterative computation [148].

Spark is a more recent big data processing system based on the acyclic dataflow model. Spark builds
a DAG of stages for each application. Every stage groups several identical tasks that can run in
parallel [150]. Spark performs in-memory computation by utilising special data structures called
Resilient Distributed Datasets or RDDs [151]. Unlike MapReduce where computation tasks always
store their output on disk, Spark maintains output in memory where possible. As a result, tasks
consuming upstream output can directly stream it from memory resulting to orders of magnitude
throughput improvements compared to MapReduce. Unlike MapReduce and Dryad that have to
materialise intermediate results for fault tolerance, Spark maintains the lineage of data transformations.
To recover from failure, Spark reapplies in parallel the data transformations recorded in the lineage
graph and continues making progress.

2.2.2 Programming interface

Programming interfaces exposed by data processing systems allow developers to implement applica-
tions without worrying about the underlying dataflow execution complexity such as task parallelisation.
Applications expressed using such interfaces are first translated to dataflows and then jobs with par-
allel tasks that can be directly executed by the runtime. Data processing frameworks expose one
or more programming interfaces including lower-level functional, imperative or dataflow interfaces
and more intuitive higher-level declarative programming abstractions. Modern frameworks even
allow the mixture of those interfaces to implement applications. The above interface distinction to
low- or high-level is made based on the programming abstraction (e.g., declarative, or imperative)
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and not necessarily how close it is to the execution abstraction (e.g., map and reduce functions, or
dataflow vertices). Below we describe such lower- and higher-level programming interfaces targeting
distributed data processing systems.

Low-level interfaces

Lower-level programming interfaces include imperative style programming languages such as the
ones exposed in FlumeJava [21], Pig Latin [99], Sawzall [105] and Piccolo [106]. FlumeJava is a Java
library that exposes immutable collections supporting operations for data parallel processing. The
operations exposed by each collection form a dataflow graph which is then optimised and translated to
MapReduce jobs that can run in a distributed or local setting. Pig Latin is a domain specific language
exposing special operators that can be used as part of statements. A sequence of statements or steps
can be then combined as part of an application that runs on top of the MapReduce platform. Similar
to Sawzall, this type of language flexibility enables the development of more complex application
logic that can be translated to simpler MapReduce jobs.

Systems such as Heron [83], Flink [20], Storm [127] and SEEP [45] offer a dataflow programming
abstraction that models applications as computation graphs, also called topologies. Topologies are
defined as directed graphs where the vertices represent computations and the edges represent the data
flow between the computation components. Applications in Storm and Heron can be defined using
different programming languages such as Java or Python where developers implement their programs
using specific APIs. The application topology, defining all the application logic, is then executed on
top of the particular data processing runtime.

Low-level programming interfaces also include functional abstractions like the ones exposed by
systems such as Spark [151], Nectar [61] and D-Streams [152]. For instance, Spark exposes RDDs as
its main programming abstraction. They are a form of immutable, partitioned, implicitly distributed
collection as well as a functional programming interface providing fault-tolerance in a transparent
manner. The abstraction supports an expressive set of operations named transformations and actions
that can be used to implement application logic. Transformations like map and filter are lazily
evaluated merely constructing a computation graph, while actions like count trigger the actual
computation. The computation graph is captured by an RDD and describes the distributed operations
in coarse-grained manner which are then executed by the runtime.

The code example below uses the functional Spark RDD API to first load the contents of a potentially
distributed log file in an RDD, then run a filter operation keeping only the lines that start with an error
and finally run a count action returning the total number of errors.

1 val lines = sc.textFile("/var/log/syslog")
2 val error = lines.filter(s => s.startsWith("ERROR"))
3 println(s"Total errors : ${ error . count () }")
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High-level abstractions

Higher-level interfaces on top of data processing systems include the declarative programming
model where developers express the computation logic and the desired result without describing
implementation details such as the transformations on data. SQL is a popular declarative language
that has been widely used over the past decades to interface with database systems. More recently, we
witnessed significant efforts to bring similar interfaces on top of distributed dataflow systems as they
are more intuitive to users.

Examples include systems such as Pig [53] and Hive [130] offering SQL-style interfaces to developers.
They both run on top of the MapReduce platform and translate SQL applications to graphs of
MapReduce jobs. They also allow more complex applications to be expressed as a series of simpler
jobs with data dependencies across them. Shark [141] was a similar effort for Apache Spark by
replacing the physical plan generator of Apache Hive to generate RDDs instead of MapReduce jobs.
Impala was another system offering SQL-style interface to the users on top of Apache Hadoop but
implementing its own execution runtime instead of relying on MapReduce or Spark jobs [80].

Spark SQL [8] is a replacement of Shark, providing better integration between relational SQL code
and traditional Spark processing code. It is based on the DataFrames abstraction which is conceptually
equivalent to a table in a relational database i.e., a collection of rows with named columns. DataFrames
capture the high-level computations to be executed. Spark computes a query plan and then the query
plan is optimised using a relational query optimiser named Catalyst. Finally, for the execution the
optimised higher-level DataFrame is simply translated to an RDD representation that the Spark engine
can execute.

The code example described above using the functional Spark API can be rewritten using the declara-
tive SQL interface as:

1 lines.createOrReplaceTempView("lines")
2 val error = spark.sql("select * from lines
3 where value like ‘ERROR%’")
4 println(s"Total errors : ${ error . count () }")

Declarative interfaces found great success among data analysts as they can now implement big data
applications with higher-level programming abstractions they are already familiar with. At the same
time, particular lower-level interfaces proved to be better fit for particular types of computation than
others. For example, the dataflow abstraction can precisely represent streaming computation while
functional abstractions provide a more concise representation of ETL or batch computation.

To utilise the benefits of all interfaces, modern distributed dataflow frameworks such as Spark and
Flink, allow users to develop applications using a mixture of higher-level SQL-style relational queries
with lower-level functional or imperative code. In addition to that, we also witnessed a shift towards
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the unification of APIs to capture efficiently different types of computations using a single interface,
as we discuss in more detail in §2.2.4. Applications implemented using higher, lower, or unified APIs
are translated by frameworks to dataflow computation abstractions that can be natively executed by
the dataflow execution engines on the entire cluster.

2.2.3 Execution model

In §2.2.1, we described how data processing systems utilise the dataflow model to scale out to
increasing data sizes by parallelising computation and IO over clusters of machines. In §2.2.2, we
discussed how users can take advantage of lower-, higher- and mixed-level interfaces to intuitively
express their applications. Now we explain how dataflow frameworks execute translated applications
using DAG abstractions regardless of the implementation interface.

In a dataflow engine, an application consists of one or more jobs, and each job is converted to a
directed acyclic graph (DAG) of operators as shown in Figure 2.5. Operators in the DAG are usually
grouped into stages. Each stage corresponds to a collection of tasks where every task performs
computation over different partitions of data. Within each stage, many operators can be fused together,
a technique also called operator chaining or pipelining in systems like Apache Spark. At each stage
boundary, data is written to a local cache residing in memory or disk by tasks in the upstream stages
and then transferred over the network to tasks in the downstream stages.

A scheduler is a data-driven component responsible for assigning tasks to containers in the cluster.
For execution, a container receives a computation task and a reference to its input data. Scheduling
decisions in dataflow systems are data-driven. Given the application dataflow graph and the already
completed operators, the scheduler first decides which operator in the graph is ready for execution
(has satisfied dependencies) and it then spawns parallel tasks on particular machines in the cluster that
implement the computation logic of that operator. As a result, an application scheduler assigns tasks
to containers respecting their data dependencies but also taking into account their resource needs and
data locality [54, 58, 149].

stage

Application

job

DAG

stage

stage

Scheduler

tasks Execution threads

Local cache

DAG Stage Task
Execution threads

Local cache

Container

Execution threads

Local cache

Figure 2.5 Execution overview of a dataflow application (Blue circles represent operators while white
ones indicate different tasks.)
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Depending on the execution model of the dataflow system, tasks are either executed on a container as
long running (continuous operator model) [20, 45, 64, 127] or are scheduled incrementally as soon
as their dependencies are met (bulk-synchronous model) [32, 70, 136, 150]. Systems utilising the
continuous operator model can usually achieve lower latency by immediately processing a stream
of data, while systems of the bulk-synchronous execution model make it easier to achieve high
throughput by applying optimised execution techniques within each batch of data [16].

For efficiency reasons, most recent dataflow frameworks follow an executor model in which tasks
are dispatched to long-running containers or executors. This is different than the traditional model of
instantiating a new container for every task in frameworks like MapReduce. Executors are deployed
on machines in the cluster, also called worker nodes, and typically run for the entire lifetime of
an application thus avoiding repeated container scheduling latencies and initialisation costs. Every
executor provides task slots that represent the compute capabilities of the node and each slot can
execute a single task.

2.2.4 Evolution of the execution model

Distributed dataflow frameworks following the execution model described above have enabled users
to analyse vast amounts of data using clusters of machines. User computation is expressed as a graph
of operators that process flows of data expressed in a variety of lower-level, higher-level and more
recently mixed and unified programming interfaces (see §2.2.2). In this section, we trace the evolution
of those frameworks as depicted in Figure 2.6.

Early dataflow systems followed a particular execution model targeting a use case with very specific
requirements. For example, some of the first dataflow systems were dedicated to batch processing
while other systems focused on streaming computation. Examples of the former include Apache
Hadoop [5], Hive [66], Spark [150], and Presto [107], while examples of the latter include Apache
Storm [127], Flink [20], and S4 [98]. Batch computation systems mainly focused on providing high
processing throughput, whereas streaming systems had also to achieve low processing latency.

Batch frameworks

20142010 2018

Frameworks 
with hybrid 

stream/batch 
applicationsStream frameworks

Unified 
stream/batch 
frameworks

Figure 2.6 Evolution of stream and batch frameworks
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This dichotomy was a limitation to the users who had to use multiple dataflow frameworks to
accommodate their needs. At the same time, cluster operators had to logically separate cluster
resources and make sure each framework had enough resources to scale. Acknowledging the limitation
of having to manage multiple systems and copy data across them, both for users and cluster operators,
dataflow platforms evolved to support both stream and batch applications within the same framework.
Using a unified stream/batch framework such as Spark [150] or Flink [20], both stream and batch
computation can be expressed and run as part of a single execution engine (see Figure 2.6).

As part of the evolution of unified analytics in general, several unified APIs evolved on top of existing
popular frameworks [7, 20, 150], such as Spark’s Structured Streaming [9], Flink’s Table API [49],
or Apache Beam [13] that was introduced as part of an external layer. Unified APIs are high-level
programming interfaces that enable users to seamlessly express stream and batch computation using a
single API instead of using separate APIs for each type of computation.

Structured Streaming, for example, is a high-level unified API based on Spark DataFrames. Users
describe the computation query and the input that can be either bounded (batch) or unbounded
(streaming) data. The system then runs the query incrementally with tasks operating on micro-batches
of data, while maintaining enough state to recover from failure. Using a single programming interface
users can develop applications that were traditionally handled by separate systems.

As the next step in this unification, over the past few years, users have begun to combine latency-
sensitive stream jobs with latency-tolerant batch jobs as part of the same hybrid stream/batch applica-
tion (see Figure 2.6). In the remaining of this thesis, we use the term “stream/batch” to refer to these
applications where “stream” describes the latency-sensitive jobs of the application and “batch” to
the remaining ones. Examples of such applications include on-line machine learning, real-time data
transformation and serving, low-latency event monitoring and reporting.

For example, a stream/batch application implementing a real-time service to detect malicious be-
haviour would use a batch job to train a machine learning model over historical data while at the
same time it would use a stream job performing inference over the trained model to detect malicious
behaviour on real-time data [48, 119]. Stream/batch applications enable all jobs of an application to
execute as part of the same containers, share computation logic and application state across their jobs
as described in more detail in §3.2. Traditionally, a stream/batch application like the one described
above, would have to be executed by separate engines: a batch engine for training the model, and a
stream engine to perform the inference as dictated by the “lambda” architecture [91].

As we discuss in §2.2.5, even though existing dataflow platforms evolved to provide the logical
abstractions for unified applications to express their stream/batch jobs, there is no scheduling support
for these hybrid applications. Execution engines are unaware of stream/batch job requirements as
these applications are captured as typical dataflows.
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Figure 2.7 Resource usage over time for the malicious behaviour detection application under different
scheduling policies

2.2.5 Scheduling hybrid dataflow applications

Dataflow platforms such as Apache Spark provide API support for hybrid stream/batch applications.
However, they have well-known limitations in terms of scheduling and execution especially when both
stream and batch tasks operate on micro-batches as we explain below [120, 121, 122]. In this section,
we show how the different jobs of a stream/batch application are handled by existing distributed
dataflow platforms that schedule tasks incrementally.

Figure 2.7 illustrates the scheduling problem that a distributed dataflow system faces when dealing
with stream/batch applications. In our example, the stream/batch application implements a malicious
behaviour detection service . It consists of a real-time inference job and a historical data training job.
Rectangles on the simplified DAG at the top of the figure represent job stages consisting of tasks.
Each task in a stage requires a single resource unit. Execution time on the x-axis is normalised in
time units (T ). Light blue rectangles represent tasks of the (stream) inference job while dark blue
ones represent (batch) training tasks. Note that training tasks require up to 3 times more time and
2 times more resources than the inference tasks and can thus introduce significant queueing delays to
the latter.
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In an ideal scheduling scenario for this application, stream tasks would start execution immediately to
achieve the lowest latency, which is 2T . The remaining resources would be used by batch tasks to
achieve high resource utilisation and throughput.

A basic approach that avoids queueing and achieves low latency employs static resource allocation
in which each job uses a dedicated set of resources (DIFF-EXEC in the figure). This corresponds to
approaches that either use separate engines for stream and batch (“lambda” architecture), or use a
single engine but submit separate applications for each job. This is a common solution in existing
production environments that use general-purpose resource managers and have dedicated resource
queues for latency-critical jobs [23, 30, 35].

In our example, we assign 25% of the resources to the stream job executor and the rest to the batch
job executor. Although the latency for the stream job is low, it is still 2× higher than the optimal (that
is 2T ), as separate executors cannot guarantee low latency. More importantly, as resources cannot be
shared across jobs, the application completes in 7T , which is the worst of all scenarios. Jobs could be
allowed to go over capacity, but that would result in either higher queueing delays for stream jobs or
wasted work for batch jobs, as we discuss below. Allowing jobs to go over capacity could increase
utilisation, however, using separate job executors does not allow sharing of application state or logic
across jobs, which is a fundamental weakness of this approach.

By default, unified stream/batch engines such as Spark [8] and Flink [20] schedule applications with
multiple jobs on shared executors in a FIFO fashion, based on job priorities and job submission times.
Every job is divided into stages and each job gets priority on all available resources sequentially as
long as its stages have tasks to launch. When jobs at the head of the queue use only part of the cluster,
subsequent jobs can start running immediately. If they consume all available resources, later jobs
may be delayed significantly. In our example, if the training job gets triggered first, it will consume
all cluster resources and when the inference job arrives, it will get queued behind it, leading to an
increased latency of 6T .

FAIR is an alternative scheduling policy that runs tasks on shared executors in a round-robin fashion.
All jobs receive an equal, possibly weighted, share of resources. Stream jobs submitted while a batch
job is running can obtain resources right away and experience good response times, without waiting
for the batch job to finish. In our example, FAIR achieves better utilisation (the application completes
in 5T ) and reduces the stream job’s response time by 2T , compared to FIFO. FAIR, however, cannot
guarantee low queueing delays. The achieved latency is 2× higher than the optimal, because FAIR

treats all jobs as equal without respecting job latency requirements.

To avoid queueing delays for the latency sensitive stream tasks completely, it is possible to employ
non work-preserving preemption by killing tasks of batch jobs when needed. This mechanism can
be combined with any of the above scheduling strategies. In Figure 2.7, KILL coupled with FAIR

scheduling policy shows minimal queueing, but requires restarting tasks and losing their progress.
This policy side-effect leads to the second worst effective resource utilisation and thus throughput as
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Figure 2.8 Queueing and end-to-end latencies observed for the detection application implemented in
Spark over varying sizes of batch jobs

the application completes in 6T . Even if jobs support work-preserving preemption, one would have to
account for the extra overhead of checkpointing task state.

Instead of killing batch tasks, we would like to suspend them in favour of higher-priority stream
tasks and resume them when free resources are available both minimising queueing latency and
wasted work. This is exactly what we achieve with NEPTUNE, our solution described in Chapter §4.
NEPTUNE’s approach is depicted in the lower right part of Figure 2.7. It dynamically prioritises
stream tasks by suspending running batch tasks, minimising queueing delays (2T runtime for the
stream job). When resources become available, batch tasks are resumed without losing progress,
thus achieving high resource utilisation (5T for application completion) without any checkpointing
overhead.

Measuring queueing delay. To assess the effect of different scheduling policies on queueing and
end-to-end latencies in practice, we also run a real-world stream/batch application using a cluster of
4 Azure E4s_v3 virtual machines with 4 CPU cores, 32 GB of memory, and 60 GB of SSD storage
each. The implementation of the stream/batch application described above consists of a real-time
inference and a historical training job in Spark. More details about the implementation can be found
in Listing 3.1. For this experiment, we run the application with varying sizes of training jobs by
increasing the number of files they consume from the NYTimes dataset, while a small subset of the
dataset was used for inference [67].

Figure 2.8a shows the 95th percentile of queueing latency for the stream tasks of the application. The
results indicate that Spark’s default policies, FIFO and FAIR, cannot achieve low queueing delays
for the latency-sensitive stream tasks as we increase the training load and, thus, resource utilisation.
Ideally, we would like minimal queueing delays, even under high resource utilisation. As we show
in §4.6, NEPTUNE can achieve minimal queueing delays by preempting lower priority tasks when
needed, also leading to significant gains both in terms of end-to-end latencies and task throughput.
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Figure 2.8b shows the end-to-end inference latency of the application over increasing training load.
The results show that Spark’s default scheduling policies cannot guarantee low end-to-end latency
due to increased task queueing delays. Even under low training load, FIFO and FAIR yield latencies
of several seconds for the upper percentile. In contrast, NEPTUNE results in sub-second end-to-end
inference latency distributions even under high resource utilisation by efficiently suspending lower
priority batch training tasks.

2.2.6 Data processing summary

To sum up, there are numerous dataflow frameworks for batch or streaming computation, which expose
a variety of programming models and transparently provide scalability and fault-tolerance (§2.2.2).
The recent demand for unified analytics, as described in §2.2.4, resulted in several unified APIs on top
of those frameworks [7, 20, 150], such as Spark’s Structured Streaming [9], Flink’s Table API [49],
or external layers such as Apache Beam [13].

However, as we experimentally demonstrated in §2.2.5, these systems only provide the logical
abstractions for stream/batch jobs running on shared resources. Even though more critical jobs
can be prioritised with static policies such as fair scheduling [147], this does not avoid queueing
delays and thus cannot guarantee latency or throughput requirements. In Chapter §4, we propose
NEPTUNE, a unified execution framework to support stream/batch applications that can efficiently
share long-running executors. NEPTUNE is aware of explicit job requirements and can dynamically
prioritise latency-critical jobs of these applications while effectively utilising cluster resources.

2.3 Cluster scheduling

After discussing the evolution of big data processing systems from single purpose to unified engines
and describing the system mismatch in regard to modern application needs and existing job scheduling
approaches, we focus on cluster management systems. Cluster managers such as YARN [135],
Mesos [65], Borg [137] and Kubernetes [82] enable resource sharing across users, frameworks and
applications in large compute clusters. They package resources such as CPU, disk and memory as con-
tainers that are allocated on-demand by applications. To reduce interference across containers running
on the same machine, they usually offer performance isolation mechanisms such as cgroups [84].

In general, the role of a cluster manager is to place containers on cluster machines in a way that
machines are efficiently shared, container and thus application performance is not hindered, and the
majority of application- and cluster-level requirements are satisfied. However, meeting these goals is
increasingly hard as cluster workloads grow richer, workload requirements become more diverse and
clusters grow in size.
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As we discussed in §2.1, a substantial portion of production clusters today is dedicated to LRA
workloads. They are placed along batch analytics workloads in shared compute clusters to reduce
operational costs (see Figure 2.1). As LRA containers run for longer durations compared to traditional
batch applications, their placement is important and has a sustained impact on cluster resources. As
we experimentally demonstrate below, support for LRAs in existing schedulers is limited and simple
placement constraints such as affinity and anti-affinity that are supported by some schedulers today
are necessary but not sufficient to satisfy their requirements.

In this section, we explore the new challenges that cluster schedulers, especially in production
environments, face due to long-running workloads. First, we motivate the importance of LRA
placement for the application performance (§2.3.1) and resilience (§2.3.2). Then, we describe
particular types of global cluster objectives imposed by cluster operators (§2.3.3) and provide a
summary of requirements for modern cluster managers (§2.3.4). Finally, we study the main system
architectures that these cluster schedulers follow (§2.3.5).

2.3.1 Long-running application performance

To study the impact of container placement on application performance, we run a series of experiments
on a 275-node pre-production cluster within Microsoft. Each cluster machine has with 8 CPU cores,
128 GB of memory, 3 TB of HDD storage and is connected on a 10 Gbps network. On the cluster we
deploy various LRAs such as HBase, TensorFlow, and Storm while controlling their placement using
constraints such as affinity, anti-affinity, and cardinality. We experiment with constraints targeting
containers both within an application (i.e., intra-application constraints) and across applications (i.e.,
inter-application constraints).

Affinity. It is often beneficial to collocate the containers of an LRA on the same node or group of
nodes as other containers, e.g., to reduce network traffic between communicating containers within
the same or across different applications.

To observe the impact of intra- and inter-application affinity on application performance, we deploy a
Storm (streaming) application on the 275-node cluster using YARN, a popular open-source cluster
manager. The application identifies top-k trending hash-tags on Twitter over a 60-second sliding
window using an input stream of 6,000 tweets per second, similar to the typical average number of
tweets reported by Twitter [134]. The resulting hash-tags are then combined with user profiles loaded
from Memcached, a key-value store that stores a total of two million user profiles. For the deployment,
we use five supervisors for Storm application and a single instance for Memcached.

We compare three different container placement scenarios: (i) a container placement with no con-
straints (no-constraints); (ii) a placement where all Storm containers live on the same node (intra-only);
and (iii) a placement where both Storm and Memcached containers live on the same node (intra-inter).



2.3 Cluster scheduling 29

0 200 400 600
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
No constraints
Intra-only
Intra-inter

Figure 2.9 Memcached lookup latency with node affinity constraints

Memcached latency (ms) Processing latency
mean stdev median average (ms)

No-constraints 372.0 129.5 327.4 1100
Intra-only 361.7 96.0 337.0 755
Intra-inter 78.8 90.6 53.0 150

Table 2.1 Storm/Memcached latencies (Latencies include Memcached lookup and total processing.)

Figure 2.9 shows the latency distribution of the Memcached lookups, and Table 2.1 includes both the
Memcached lookup latency and the total end-to-end latency of the Storm/Memcached topology.

Our results show that intra-only placement leads to an end-to-end latency improvement of 31% over
no-constraints due to reduced network costs. However, as we can observe from Figure 2.9, this strategy
cannot improve mean Memcached lookup latency. On the other hand, with intra-inter placement, we
can reduce mean Memcached lookup latency by 4.6× over intra-only; end-to-end latency by 5× over
intra-only and by 7.6× over no-constraints (see Table 2.1). Therefore, we conclude that both intra- and
inter-application affinity constraints are crucial to achieve the best application performance.

Anti-affinity. To minimise resource interference between LRAs, it may be desirable to place the
containers of an application on different machines through intra- and inter-application anti-affinity.

To validate the performance benefit of such constraints, we deploy 40 HBase instances with 30 region
servers each, occupying 30% of the 275-node clusters’ total memory. We use the YCSB bench-
mark [26] with a dataset of 1 billion records (1 TB) and submit six YCSB workloads through multiple
clients to generate load for the HBase instances. To emulate a shared production environment, we
also submit GridMix batch jobs [59] that use 60% of the cluster’s memory.

We first compare the following placement scenarios: (i) a placement with no-constraints; and (ii) a
container placement with anti-affinity constraints to avoid collocating region servers of the same
or different HBase instances on the same node (anti-affinity). As Figure 2.10 shows, no-constraints

achieves 34% lower throughput compared to anti-affinity, as it can lead to collocated region servers,
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Figure 2.10 HBase throughput with node anti-affinity constraints

competing for CPU and I/O resources. Our experiment also reveals that no-constraints incurs increased
tail latency compared to anti-affinity by up to 3.9× for the 99th percentile.

Furthermore, we repeat the above experiment using the cgroups [84] mechanism to assess whether
resource isolation mechanisms are sufficient to improve performance, instead of using placement
constraints. As shown in Figure 2.10, although cgroups improve the throughput of no-constraints by
20%, they cannot match the performance of anti-affinity. The isolation offered by cgroups cannot
prevent interference between resources not managed by the OS kernel, such as CPU caches and
memory bandwidth. Hence, anti-affinity is required for optimising LRA performance. Moreover,
combining placement constraints like anti-affinity with resource isolation mechanisms such as cgroups
leads to the highest performance gains.

Cardinality. The affinity and anti-affinity constraints represent the two extremes of the collocation
spectrum where we either collocate everything or nothing. To strike a balance between the two, we
experiment with more flexible cardinality constraints, which set a limit on the number of collocated
containers on a node or group of nodes in the shared cluster. Even though finding the right cardinality
is hard and depends on both the application and cluster state as we show below, in this experiment we
want to see if applications can benefit from more flexible constraints and not how to automatically
infer them.

Figure 2.11a reports the time required to run all YCSB workloads using 10 HBase region servers (RS)
with full anti-affinity (i.e., 1 RS per node) to full affinity (i.e., all 10 RS on one node). Similarly,
Figure 2.11b shows the time required for TensorFlow to complete a machine learning workflow with
one million iterations using 32 workers, each time with a varying maximum workers per node. We
again use GridMix for additional cluster load: 5% of the total cluster memory for the “low” utilised
cluster in the figures and 70% for the “high” utilised cluster.
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Figure 2.11 Impact of cardinality constraints on application performance

In our experiments in the highly utilised cluster, we observe that collocating up to 16 TensorFlow
workers on a node as shown in Figure 2.11b, reduces runtime by 42% compared to the affinity
placement with a maximum cardinality of 32, and by 34% compared to the anti-affinity placement
with a maximum cardinality of 1. A second observation is that the cardinality that leads to optimal
runtimes can vary based on the specific application and the current cluster load. Indeed, in the
TensorFlow experiment of Figure 2.11b, the most optimal cardinality value is 16 for the highly
utilised cluster and 4 for the the less utilised one, while in the HBase experiment of Figure 2.11a, the
optimal cardinality is 2 for the highly utilised cluster and either 1 or 2 for the low utilised cluster
as they yield similar runtimes. Based on these results, we make the crucial observation that affinity
and anti-affinity constraints, albeit beneficial, are not sufficient, and tighter placement control using
cardinality constraints is required to achieve optimal application performance.

2.3.2 Long-running application resilience

Besides the impact on application performance as experimentally demonstrated above, placement
constraints such as affinity, anti-affinity, and cardinality heavily affect application resilience in shared
compute clusters. To study the effect on application resilience, we use data from a shared production
cluster within Microsoft reporting the availability of machines over a period of four days.

Unavailable machines in large clusters of commodity machines are quite common. This is due
to machine failures, scheduled maintenance, OS and application upgrades, or machines being re-
purposed. For administrative reasons, cluster operators typically split clusters into: (i) fault domains,
that are machines with a higher likelihood of joint failure (e.g., racks); and (ii) upgrade domains,
which are machines that are scheduled to be upgraded together. In some production clusters within
Microsoft, node groups called “service units” account for both upgrades and failures [72].
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Figure 2.12 Unavailable machines in a Microsoft cluster (With total we represent the unavailability
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Figure 2.12 shows the percentage of machine unavailability in a production cluster within Microsoft
consisting of tens of thousands of machines (total) over the a day period. Figure also shows the
percentage of machine unavailability within four random service units of the cluster (SU1–SU4),
comprising a couple of thousand machines each. We observe that: (i) unavailability in a service
unit is usually below 3% but can spike to 25% or even 100%; (ii) there is a strong correlation of
unavailability within a service unit; and (iii) service units tend to fail asynchronously (e.g., when SU1

is 100% unavailable, total machine unavailability is only 8%).

As a result, deploying an application with a random placement plan on the cluster, could cause
multiple container failures at once, which can in turn impact its recovery time or performance. Such
a placement plan hurts LRAs in particular because their containers are by definition long-lived and
thus the failure probability increases over time. Hence, application owners must be able to spread
containers across fault and upgrade domains on the cluster using for example anti-affinity constraints
across node groups.

Even though spreading containers is crucial for long running application resilience, applications
owners should not be required to explicitly refer to specific nodes or domains (e.g., fault, or upgrade
domains) when requesting containers as: (i) these domains change over time, e.g., with the addition
or removal of nodes in these groups; and (ii) it is cumbersome to enumerate all domains of a cluster
with thousands of machines. Moreover, in cloud environments, it may even not be feasible to expose
the underlying nodes as the cluster operator will not be able to reveal the cluster configuration for
security and business reasons.
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2.3.3 Global cluster objectives

In addition to the above application requirements affecting performance and availability, cluster
operators must also specify constraints (usually expressed as placement constraints) that guarantee the
smooth operation of the cluster and are considered higher-priority than typical application constraints.
Besides local application constraints, such as restricting the number of network-intensive containers
per node, the scheduling of LRAs must meet global objectives targeting to:

• Minimise constraint violations. Satisfying the placement constraints of all applications may
not be possible, especially in a heavily loaded cluster. In this scenario, instead of avoiding
placement completely or ignoring placement violations, the number and the extent1 of constraint
violations should be minimised.

• Minimise resource fragmentation. It is undesirable to leave too few free resources on a node
as they might remain un-utilised. There might be cases where resources left on a node are not
even enough for a single container instance.

• Balance node load. By balancing the node load, applications can expand their allocated
resources on a given node when needed and better accommodate unpredictable load spikes
during runtime.

• Minimise number of machines used. A low number of machines used can be achieved by
better resource consolidation (packing) and it can thus reduce the operating cost of a cluster in
a cloud environment.

Note that some of the above objectives may be conflicting, for example minimising constraint
violations and load imbalance, while others may be irrelevant in a specific scenario, for instance
minimising the number of machines for an on-premises cluster. The cluster operator should be able to
determine the objectives to be used and their relative importance. At the same time, supporting such
global objectives should not affect the scheduling of traditional batch jobs, which are more sensitive
to container allocation latencies due to their shorter container runtimes (see §2.1.2).

2.3.4 Cluster scheduling requirements

Based on our observations so far (§2.3.1–§2.3.3), we summarise and list the requirements a modern
cluster manager should meet to effectively schedule long-running applications in shared compute
clusters:

1Consider a constraint to place no more than 5 HBase containers on a rack. Placing instead 10 containers is a more
extensive violation than placing 6.
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• [R1] Expressive placement constraints: The cluster manager should support intra- and inter-
application (anti-)affinity and cardinality constraints to express dependencies between containers
during placement both within and across applications.

• [R2] High-level constraints: The application constraints must be high-level, in the sense that
they should be agnostic of the cluster organisation, and capable of referring to both current and
future LRA containers.

• [R3] Global objectives: The cluster manager should also be able to meet global optimisation
objectives imposed by the cluster operator that can guarantee the smooth operation of the
cluster.

• [R4] Scalability and scheduling latency: Although LRAs can tolerate higher scheduling
latencies compared to batch applications, supporting LRAs should not affect the scheduling
latency for containers of task-based applications or affect the scalability of the scheduling
infrastructure.

Table 2.2 highlights the features of existing cluster managers with some support for LRAs in respect
to our requirements and their architectures (see §2.3.5). We do not list cluster managers that do not
provide support for LRAs. Most existing schedulers only provide rudimentary support for placement
constraints [55, 65, 128, 135, 137] and MEDEA is our work fully supporting LRAs, described in
Chapter §5. Existing schedulers typically rely on machine attributes to allow users to express affinity
or anti-affinity constraints in an implicit manner: e.g., placement of two application containers on
a node with a given hostname or on machines with a GPU/FPGA. Similar placement techniques
have been used by schedulers to reduce network congestion and achieve better data locality [60, 73].
However, as these attributes are statically assigned to machines, they can not be used to specify
expressive (e.g., inter-application, cardinality) and high-level (i.e., not relying on machine names)
LRA constraints.

Condor [128] is one of the first schedulers supporting constraints. It provides a classAd mechanism
that allows resource providers to describe declaratively each individual resource with expressions
built on a collection of attributes e.g., disk, memory, or architecture. Using the same mechanism,
applications can express their resource allocation preferences by submitting a classAd specifying
Constraint and Rank expressions for desired resources. The former serves as a hard constraint (a filter
on resources) while the later can be considered as soft constraint (the allocation will not fail if not
satisfied), an expression of preference over individual machines. The matchmaking algorithm then
evaluates each consumer classAd against each resource classAd and picks the highest ranked resource.
Unfortunately, Condor’s matchmaking algorithm relies on constraints expressed using a static set of
attributes exposing the underlying infrastructure and lacking flexibility.
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More recent schedulers include YARN [135] that was initially designed for task-based jobs, and
currently supports only affinity to specific nodes/racks [78]. Slider [118] and ongoing extension
efforts [144] enable LRAs in YARN that supports only simple intra-application constraints.

Prophet [142] is another scheduler on top of YARN that improves LRA scheduling based on historical
data, but requires jobs to be recurring. Aurora [10] and Marathon [89] add support for LRAs to Mesos
two-level scheduler. They enable intra-application, (anti-)affinity and cardinality constraints (e.g.,
limiting the number of containers per node or rack), but by being external to Mesos, they follow an
offer-based model that makes it hard to optimise for global cluster objectives (see §2.3.5).

Google’s Borg [137] schedules both LRAs and task-based jobs. Borg also supports scoring of nodes
during scheduling, which can emulate a restricted version of global objectives, however, only support
for affinity to machines with specific attributes is mentioned. Kubernetes supports explicit intra- and
inter-application high-level constraints between containers, but not cardinality, and lacks full support
for global objectives by considering only one container request at a time.

Firmament [57] uses a graph-based approach similar to Quincy [71], formulating scheduling pref-
erences of different jobs as a minimum-cost maximum-flow model. Firmament supports simple
placement constraints such as affinity to specific machines. Adding more constraints would require
(an exponential number of) additional vertices in the scheduling graph, increasing scheduling latency
and limiting scalability.

TetriSched [133] supports various placement and time constraints, but the exact machines/racks of
the placement have to be specified. TetriSched allows reservations of resources and introduces a new
Space-Time Request Language (STRL) that enables jobs to express their preferences in space-time
manner. Expressions in STRL are compiled and converted to an Mixed Integer Linear Programming
(MILP) formulation used by the scheduling algorithm to place the entire cluster workload. This
can be problematic under high load, as either the scheduling latency or the placement quality gets
compromised.

2.3.5 Cluster scheduler architectures

Higher-quality container placement using sophisticated scheduling in general has proven to be essential
for achieving higher cluster utilisation [31, 137], more predictable application performance [39, 153]
and increased application resilience [117]. However, to satisfy the LRA requirements and global
objectives described above, a cluster manager must be able to capture and support complex constraints
as part of its scheduling logic that can significantly increase placement latency.

In reality, sophisticated cluster schedulers implement complex algorithms with single- or multi-
dimensional resource fitting to support special constraints. Yet, the higher placement latency, which
may be in the order of seconds, is unacceptable for particular types of workloads such as batch jobs
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Figure 2.13 Overview of cluster scheduler architectures (Circles represent tasks/containers while
colours correspond to different task types e.g., LRA, batch; white boxes represent cluster machines.)

with shorter container runtimes. As a result, prevailing cluster scheduler architectures today usually
trade off between low scheduling latency and high quality container placement even though the ideal
scheduler should achieve both. Figure 2.13 provides a high-level view of popular cluster scheduling
architectures used by existing systems.

Centralised. In this architecture, schedulers use the same scheduling logic to choose placements
for all workloads in the cluster. They maintain cluster state information in a centralised component
including pending containers, running containers and machine utilisation. Centralised schedulers
achieve high quality placement by implementing sophisticated scheduling algorithms and using
up-to-date cluster state information.

However, complex scheduling algorithms can increase container placement latency and limit their
scalability [100]. Therefore, existing approaches either use simple scheduling heuristics or early-
termination techniques. For instance, Google’s Borg [137] and its open-source variant Kubernetes [82],
build complex multi-resource models for each node in the cluster but perform greedy scoring to choose
the final placement across randomly sampled nodes, accounting for constraints and load balancing.
In a similar manner, Facebook’s Bistro [56] runs expensive scoring and path selection computations
asynchronously but performs placement using simple heuristics to reduce placement latency.
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TetriSched [133] and Alsched [132] are two centralised schedulers that use MILP to place containers
in the cluster. They support complex placement and time constraints but they require the exact
machines/racks to be defined as part of their constraints exposing the cluster infrastructure. As
workloads have to be holistically placed using the MILP algorithm, when clusters grow larger or they
are under high-load, scheduling with MILP can take tens of seconds. As a result, these schedulers
follow an early-termination approach using the best placement they have thus far, trading placement
quality for scheduling latency.

Other centralised schedulers such as Quincy [71] and Firmament [57] choose not to compromise on
placement quality. They both consider the entire cluster workload when placing containers using a
graph based approach. However, adding more constraints or nodes in their scheduling graph could
lead to increasing scheduling latencies. Quasar takes into account both resource heterogeneity and
interference during placement. Even though it can lead to near-optimal placement for long-running
applications, it can also impact the latency of other shorter jobs [39].

Two-level. The two-level scheduling architecture utilises a simpler resource manager that allocates
containers, and a number of application specific schedulers on top of it that are aware of their
independent needs. The application schedulers implement the scheduling logic of workloads with
diverse requirements such as batch, streaming and machine learning but these applications are only
aware of their own allocated resources i.e., they do not have a view of the whole cluster state
information (see Figure 2.13).

Apache Mesos [65] is a popular two-level scheduler, first developed to accommodate the deployment
requirements of Apache Spark [150]. In Mesos, resources are still managed centrally but scheduling
decisions are delegated to framework schedulers. Frameworks receive resource offers from the central
component that can be either accepted or turned down. Framework schedulers can implement their
own complex scheduling algorithms without affecting the latency or the scalability of other workloads
running in the cluster. However, they are only aware of the resources they hold or they have been
previously offered that can be problematic in cases in which, for instance, we are optimising for global
objectives.

Shared-state. The shared-state architecture shares some similarities with the two-level schedulers
as they were both designed to support independent and diverse workloads sharing compute clusters.
Unlike two-level schedulers, they allow multiple application schedulers with different scheduling
logic to have a complete view of cluster state, which is not always up-to-date.

Omega is such a scheduler introducing partially distributed shared state [117]. It supports multiple
schedulers that can run simultaneously in the cluster with each one of them dealing with a fraction of
the total cluster workload. They may follow different implementations and they use an optimistic
concurrency control model to update shared cluster state with the latest resource allocations. Every
scheduler can mutate the state by issuing concurrent transactions that can either succeed or fail.
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Failures lead to extra resource allocation attempts (retries). As state can be out-of-date leading
to several retries, this model works best for workloads that maintain their container allocation for
reasonably long durations.

Distributed. The distributed architecture includes schedulers that want to achieve extreme scalability
and low-latency allocations following a decentralised approach. Such distributed architectures lack
state sharing or expensive coordination and leverage worker nodes that either pull tasks directly from
distributed schedulers or maintain a queue of tasks locally to minimise the period that machines
remain idle.

Sparrow is a scheduler following a fully distributed architecture [100]. It intentionally uses a simple
scheduling logic that can choose container placements at scale utilising randomly sampled information.
Apollo is another example of a distributed scheduler that maintains a local queue of tasks assigned
to each node [18]. It estimates wait times for each node and lazily propagates node future resource
availability to schedulers in the form of a wait-time matrix. However, distributed schedulers usually
achieve poor quality placement as their simple scheduling logic is bound by partial and often stale
cluster state information.

Hybrid. Finally, there are scheduling architectures that try to achieve the best of both worlds: the high
quality placement of centralised schedulers and the low scheduling latency of distributed schedulers.
They split cluster workloads across a centralised component and multiple distributed ones based on
job requirements or job historical information (see Figure 2.13).

Mercury is a hybrid cluster scheduler that offers two types of containers, guaranteed and opportunis-
tic [77]. Applications deployed using Mercury can use a mixture of guaranteed containers that incur
no queueing delays and are never preempted, and opportunistic containers that land in a special node
queue, are lower priority and provide no queueing delay guarantees. Yaq is a cluster scheduler built
on top of Mercury that uses task runtime statistics to reorder worker queues and reduce short-running
container latency [111].

The Hawk hybrid scheduler utilises historical data to assign workloads to schedulers. Long-running
containers are higher priority and are assigned to the centralised scheduler in order to achieve better
quality placement while short-running containers are assigned to one of the distributed schedulers [35].
To avoid possible queueing delays for shorter workloads, Hawk dedicates a portion of the cluster to
short-running containers. Eagle is an extension of Hawk hybrid scheduler that utilises state probing
techniques to improve the latency of the lower priority workloads by lazily propagating cluster state
information [36].

It is clear that scheduler architectures trade off between placement quality and fast allocation decisions.
Even the more advanced hybrid architectures such as Yaq [111] and Hawk [35] offer quality placement
only to a part of the cluster workload based on historical information. Unfortunately, obtaining such
historical runtime information has proven to be a non-trivial task [102] and only works if workloads
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are recurring. As we show in Chapter §5, using a centralised architecture with a two-scheduler design,
it is possible to scale and achieve both low allocation latency and high quality placement where it
matters the most without relying on historical data.

2.3.6 Cluster scheduling summary

To sum up, there are several practical use cases of LRAs in production environments that require
complex high-level placement constraints. In particular we observe that precise control of container
placement is key for optimising LRA performance (§2.3.1) and resilience (§2.3.2) while simple
affinity and anti-affinity constraints are not enough. Moreover, when placing containers, the cluster
scheduler must achieve the global optimisation objectives defined by the operators that are important
for the healthy operation of the cluster (§2.3.3).

Existing schedulers only offer rudimentary support to LRAs (see §2.3.4), following different schedul-
ing architectures choosing between low allocation latency and high quality placement (§2.3.5). In
Chapter §5, we propose MEDEA, a new cluster manager with a novel two-scheduler design that en-
ables the placement of both long- and short-running containers. MEDEA can achieve both high-quality
placement for LRAs and low placement latency for task-based jobs that are traditionally running in
large shared production clusters consisting of thousands of machines.

2.4 Chapter summary

To conclude, in this chapter we introduced basic concepts and terminology related to long-running
applications, a popular workload type utilising long-running containers running in big data clusters
today. We traced the advancements of data processing systems, a popular type of LRAs, and we
described their programming and execution model. We also focused on cluster management systems
that are responsible for allocating resources to long-running applications in shared compute clusters
and categorised them based on their architectures.

Using data and use-cases from a production environment within a large internet company, we
experimentally demonstrated that expressive container placement is crucial both for LRA performance
and resilience. We described how existing cluster schedulers offer limited support to LRAs and
trade-off between allocation latency and placement quality. Experimenting with a data-intensive
application running on a cloud environment, we showed that data processing frameworks that evolved
to support the heterogeneous jobs of modern long-running applications fail to satisfy application
requirements and effectively utilise cluster resources. Based on our observations, we described the
requirements of modern data processing and cluster scheduling systems targeting the new era of
long-running applications in shared compute clusters.



Chapter 3

Unified Dataflows with Placement
Constraints

In the previous chapter, we discussed the mismatch between the growing class of long-running appli-
cations and the systems that support their placement and execution in shared compute clusters. Unlike
traditional workloads with short-running containers, long-running applications require precise control
of their container placements to satisfy their performance and resilience needs and global cluster
objectives. At the same time, modern long-running dataflow applications that execute heterogeneous
computation tasks within long-lived containers in the cluster need to capture and satisfy their diverse
requirements at runtime.

In this thesis, we introduce a unified execution model for the new era of long-running applications
with explicit placement constraints that enables developers to: (i) combine data-parallel computation
with different execution requirements as part of the same application; and (ii) control the placement of
their long-running containers in the cluster. This chapter describes the new abstraction called unified
dataflows with placement constraints.
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Figure 3.1 Overview of the unified dataflow model with placement constraints
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A unified dataflow graph can represent complex applications that combine computation jobs with
diverse requirements in a single dataflow. Figure 3.1 shows a stream dataflow and a batch dataflow as
part of a single unified application. Unified dataflow graphs execute within long-running containers
and also express their strict container placement requirements to optimise their performance and
resilience. A cluster manager is responsible for their container placement in shared compute clusters.
The goal of unified dataflows with placement constraints is twofold: (i) achieve efficient execution of
dataflows within containers by taking into account their requirements during execution (see §3.2);
and (ii) achieve effective placement across long-running containers in shared compute clusters by
capturing container interactions during placement (see §3.3).

In this chapter, we present the unified dataflow model and explain with examples dataflow requirements
and placement constraints. Our model is realised as part of two systems: NEPTUNE and MEDEA.
Chapter §4 presents NEPTUNE, a novel execution framework for unified dataflow applications that
can satisfy diverse job execution requirements within containers, and Chapter §5 presents MEDEA, a
cluster manager with explicit support for complex, high-level placement constraints that can effectively
capture interactions across containers.

We first provide an overview of the unified dataflow model with placement constraints (§3.1). We
then define unified dataflows more formally (§3.2), describe their execution model (§3.2.1), and API
(§3.2.2). Using a running example, we describe the semantics of our placement constraints (§3.3)
as part of constraint expressions (§3.3.1) utilising container tags (§3.3.2), and node groups (§3.3.3).
Finally, we discuss the limitations of our model in (§3.4)

3.1 Overview

A unified dataflow graph represents a unified application that consists of one or more dataflow jobs.
Each dataflow job is a graph formed by task elements that express computation, represented as
circles in Figure 3.1. Task elements receive collections of input data, also called dataflows, do some
processing over the data, and produce output that is in turn sent downstream. Edges in the left part
of Figure 3.1 represent the flow of the data between tasks. Dataflow jobs can also have state elements,
representing the state of computation. State is depicted as a highlighted rectangle in the figure. A
state element is associated with a specific task element in a dataflow job, but can be shared across
tasks of different dataflow jobs that are part of the same unified application.

Unified dataflow graphs by design allow jobs to share computation logic and state without relying on
external systems, however, different jobs of the same unified dataflow may have different latency and
throughput requirements. Each job in a unified dataflow can be thus tagged with a priority representing
these requirements. For example, in Figure 3.1, the stream dataflow in red represents a high priority
job while batch in blue represents a lower priority one. Priority is automatically propagated to each
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task element of the job (see §3.2). Priorities are then used by the runtime responsible for dataflow
task execution to efficiently share resources across jobs depending on their needs.

Unified dataflow graphs are also designed to scale their computation as part of large shared compute
clusters. To that end, jobs that are part of unified dataflow graphs, submit requests to a resource
manager (or scheduler) to execute their computation tasks. The scheduler allocates cluster resources
in the form of long-running containers that can be used for the execution of multiple task elements
across jobs within the same unified application e.g., allocate 2 containers with 2 CPUs and 4 GB of
RAM each.

To optimise application performance and resilience, unified dataflows require precise control of their
container placements, and they achieve that by using complex constraints. Placement constraints can
capture interactions between containers, both within and across applications in the cluster using the
concept of container tags and node groups (see §3.3).

In Figure 3.1, a typical placement constraint would be to place HBase (HB) key/value store containers
on the same node as the unified dataflow application (DF) which is a consumer of HBase records in
order to reduce network traffic. Resource requests, along with placement constraints submitted by
the application are handled by the cluster manager that can schedule applications with long-running
containers and achieve high-quality placement.

3.2 Unified dataflows

Next, we formally define unified dataflow graphs, each consisting of one or more dataflow jobs, and
each job forming a sub-graph of task and state elements.

Definition 3.2.1. Unified dataflow graph. A unified dataflow graph involves a number of dataflow
jobs, d. Every dataflow job consists of task elements, c, expressing computation, and state elements, e,
representing computation state. Dataflows, f , are edges between task elements, f = (ci,c j) that
propagate data. Within the same dataflow, a task element can be connected with a single state
element e in a way that if (ci,e j) ∈ F , and (ci,ek) ∈ F , then e j = ek.

Every dataflow can be associated with a priority that is then propagated to its tasks. We define the
priority function πd(c)→ N where πd(c) is the priority of a specific task c of a dataflow job D. Using
the priority function πd(c), we can compare the priorities of task elements across jobs within a unified
dataflow which is necessary for satisfying their diverse requirements.

Example: A unified application consists of a stream dataflow d1 with low latency requirements, and
shares state with a batch dataflow d2 with high throughput requirements. During unified dataflow
execution, for any task element c: πd(cd1)> πd(cd2).
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Figure 3.2 Unified dataflow application example for a real-time malicious behaviour detection service
(A batch job trains a model using historical data; a stream job performs inference to detect malicious
behaviour in real-time.)

3.2.1 Execution model

Figure 3.2 shows a unified dataflow application example for a real-time malicious behaviour detection
service, as implemented in Listing 3.1. It consists of two dataflow jobs, a stream and a batch job, each
with a number of task elements performing computation. The lower-priority blue batch tasks receive
historical training data as input and perform model training, while the latency-sensitive red stream
tasks receive real-time data from Kafka and perform inference to detect malicious behaviour.

The unified application maintains the trained model as state. The model is periodically updated
by the batch job and is shared with the stream job that uses the latest model to perform real-time
detection with the most up-to-date data. State sharing, along with application logic sharing, facilitates
application development and management. In addition, by combining different job types as part of
the same unified dataflow, cluster resources can be used more efficiently. Instead of being statically
partitioned, they can be shared across jobs depending on their needs and their priority.

For efficiency reasons, instead of instantiating a new container for launching each task element, unified
dataflows follow an executor model in which task elements are dispatched to long-running containers.
A cluster manager is usually responsible for the allocation and placement of the executor containers
on worker nodes in a shared cluster. Long-lived executors typically run for the entire lifetime of a
unified dataflow application.
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Listing 3.1: Unified application for real-time malicious be-
haviour detection
1 val trainData = context . read("malicious−train−data")

B
atch

2 val pipeline = new Pipeline () . setStages (Array(
3 new OneHotEncoderEstimator(/* range column to vector */ ) ,
4 new VectorAssembler(/* merge column vectors */ ) ,
5 new Classifier ( /* select estimator */ ) ) )
6 val pipelineModel = pipeline . fit ( trainData )
7 val streamingData = context

Stream

8 . readStream("kafkaTopic")
9 .groupBy("userId") /* some aggregations omitted */

10 . schema() /* input schema */
11 val streamRates = pipelineModel
12 . transform (streamingData) /* apply model to input */
13 streamRates . start () /* start streaming */

3.2.2 API

Unified dataflows can be expressed using existing unified dataflow APIs such as Spark’s Structured
Streaming or Flink’s Table API [9, 49]. To illustrate unified dataflows, we implement the application
described above using Spark’s Structured Streaming API. Listing 3.1 thus implements the real-time
malicious behaviour detection service depicted in Figure 3.2, which is a production service at a
popular e-commerce company [88]. The service is realised as a unified stream/batch application
consisting of two dataflow jobs. A batch job that performs model training by iterating over the
historical training data to reflect the latest changes in the model (or pipelineModel) which is kept
as state in-memory (lines 1–6). The state is then shared in memory with the second job which is
a real-time streaming job using the model for real-time prediction (lines 7–13). The streaming job
computes a series of aggregations on the real-time Kafka input and then queries the model to detect
malicious behaviour (line 12).

In terms of requirements, the output of the latency-sensitive streaming job must be computed with
low latency to ensure fast reaction times. At the same time, the latency-tolerant batch job must run
with high throughput to efficiently utilise the remaining resources and reflect the most recent state
in the model, as the training data is continuously updated. In unified dataflows these requirements
can be captured as priorities. Even though omitted from Listing 3.1 (as it not part of the standard
Structured Streaming API), we could mark the batch priority as “low” (line 6), and the stream priority
as “high”(line 13) using appropriate positive integer numbers. This will enable the execution engine
of the dataflow to share resources across tasks depending on their needs.
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Figure 3.3 Container placement scenario, with a unified application (DF), HBase (HB), a key/value
store (KV) and streaming job (S1)

3.3 Placement constraints

Placement decisions for long-lived executors or long-running containers in general, have a sustained
impact on applications and cluster resources due to their long lifetimes. Thus, our model explicitly
supports powerful placement constraints that capture container interactions. Container interactions are
taken into account during placement by the cluster manager that is also responsible for maintaining a
global view of all the active constraints in the cluster — more details about the constraint management
are provided in §5.4. Our constraints rely on the notion of container tags (see §3.3.2) and node
groups (see §3.3.3) to be expressive and high-level without requiring knowledge of (or exposing) the
underlying cluster configuration (see §3.3.1).

Figure 3.3 shows a toy cluster consisting of 2 racks and 4 nodes per rack shared across 2 upgrade
domains (groups of nodes that are upgraded together). HBase and KV are deployed key/value store
applications with data partitioned across multiple containers in the cluster. S1 is a streaming application
with three containers spread across racks. The HBase application instance is using 2 containers, and
is deployed along with a unified dataflow application, DF. The unified dataflow application instance
DF is directly consuming data from HBase while resources used by other workloads in the cluster are
marked with red.

In this simple scenario, some of the applications have specific requirements that can be translated to
explicit container placement constraints. For instance, to lower the chances of multiple containers
failing together and increase resilience, each container of the key/value store KV should be placed
across different fault and upgrade domains (groups of nodes that fail or are upgraded together e.g., a
rack), a typical anti-affinity constraint. To reduce network traffic and improve performance, all DF
containers should be placed on the same node (collocated) as the HB containers from which they are
consuming data from, a typical affinity constraint. To achieve low latency, no more than 2 latency
sensitive streaming S1 containers should be placed on the same node, a more generic cardinality
constraint.
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3.3.1 Expressing constraints

To accommodate such constraints, our model relies on container tags and node groups, both main-
tained centrally as part of cluster state (see §5.3.1). Container tags enable users to refer to containers
in the same or different applications that are possibly not even yet deployed in the cluster (see §3.3.2).
Node groups enable users to target specific node sets that can be either physical, such as a rack, or
logical, such as a fault or upgrade domain (see §3.3.3). Using container tags and node groups together,
application developers can define constraint expressions that are high-level and expressive. These
expressions rely on placement constraints that use a single cardinality constraint type with a lower
(cmin) and an upper (cmax) threshold to capture a variety of cases (e.g., affinity, or cardinality) both
across and within applications running in the cluster. Even though in this subsection we focus more
on the semantics of the placement constraints, §5.2 provides a detailed explanation of their syntax
using several real-world examples.

Definition 3.3.1. Placement expressions. As part of the unified dataflow model, we support con-
straint expressions of the following form:

C = {subject_tag, tag_constraint, node_group}

where subject_tag is a tag or conjunction of tags that identifies the containers subject to the constraint
(see §3.3.2); tag_constraint is a generic cardinality constraint of the form {c_tag, cmin, cmax} where
c_tag is a container tag (or conjunction of tags), and cmin, cmax are positive integers; and node_group

is a node group (see §3.3.3). The tag_constraint can also be a boolean expression of multiple tag
constraints — currently we do not support negation.

Example: In Figure 3.3, we can use a placement expression to specify constraints of the form: “place
containers with tag DF of a unified dataflow application in the same node as HBase memory critical
containers”, like: Cexample={df, {hb ∧ memory_critical, 1, ∞}, node}

Definition 3.3.2. Placement constraints. The semantics of a constraint C is that each of the contain-
ers with subject_tag should be placed on a node belonging to a node set S ∈ node_group, such
that cmin ≤ γS (c_tag) ≤ cmax holds for the tag cardinality function of tag S as defined in §3.3.2. In
words, each of the containers with subject_tag should be placed on a node of a particular logical set
of nodes such that the cardinality of the c_tag is greater or equal to cmin and less or equal to cmax.

As we explain in more detail in §5.2, this generic cardinality constraint type is sufficient to express a
wide range of intra- and inter-application constraints. Unlike existing approaches that rely on static
machine attributes (see §2.3.4), our constraints are high-level and expressive utilising the abstractions
of node groups and container tags that change as part of the application life-cycle. Our model
also allows expressing more complex placements by combining arbitrary constraints with boolean
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operators — for more specifics in regard to treating such complex constraints or resolving constraint
conflicts see §5.3.2.

3.3.2 Container tags

Each container request r of an application is associated with a set of tags Tr. Tags are a simple yet
powerful mechanism for constraints to refer to containers of the same or different, possibly not yet
deployed, applications in the cluster. For example, a constraint can use tag hb to refer to a current or
future container of an HBase application.

More precisely, in our model we allow application owners to attach tags to containers, which is more
expressive than existing models for container placement that attach attributes only to cluster machines
(see §2.3). Without container tags, application owners would have to request specific machines that
satisfy their requirements before even deploying their applications to the cluster which is cumbersome
and in some cases not even possible (as in cloud environments).

Example: An HBase Master container can have the following tags: appID:00231 to denote the ID of
the application; hb for the application type which in this cases is HBase; hb_m for the container’s
role which is master; and memory_critical as a resource specification.

Definition 3.3.3. Tag sets. Tags of running containers on nodes form sets that are called node tag
sets. A tag set of a node Tn is the union of tags of the containers running on node n at a given
moment. The node tag set is dynamic in the sense that when a container is allocated on node n, its
tags are automatically added to Tn and when the container finishes execution, the associated tags are
automatically removed.

Given that each tag in Tn can be associated with multiple containers on node n, we also define the tag
cardinality function γn : Tn→ N, where γn(t) is the number of occurrences of a tag t ∈ Tn on node n.

Example: Consider two HBase containers deployed on a node n1: one master with tags {hb,hb_m}
and one region server with tags {hb,hb_rs}. Then, Tn1={hb, hb_m, hb_rs}, with γn1(hb)=2 and
γn1(hb_m)=γn1(hb_rs)=1.

Note that the fact that dynamic tag sets are more flexible, allows us to define a subset of a node tag
set statically, e.g., to identify nodes with specific hardware capabilities, such as GPUs or FPGAs.
Therefore, our tag model can also express the static machine attributes offered by existing container
placement approaches [65, 135].

1To avoid naming conflicts, namespaces can be used in tags, such as the predefined appID that defines the namespace
of application IDs.
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Definition 3.3.4. Node-group tag sets. In a similar manner, to capture the associated container tags
within a group of nodes (logical or psychical), we define the tag set TS of a set of nodes S, such as a
data-centre rack, or an upgrade domain, to be the union of tag sets of the nodes that are part of S.

Example: Let nodes n1 (from the above example) and n2 belong to rack r1, and assume
Tn2={hb, hb_rs} with γn2(hb)=γn2(hb_rs)=1. Then, Tr1={hb, hb_m, hb_rs}, with γr1(hb)=3,
γr1(hb_m)=1, and γr1(hb_rs)=2.

3.3.3 Node groups

As we briefly mentioned above, nodes in the cluster are part of node groups, with the simplest
predefined node groups being a node and a rack.

Definition 3.3.5. Node groups. Cluster operators can register node groups to specify logical, possibly
overlapping, categories of node sets. A node group KP is thus defined as a set of nodes P like a rack,
or an upgrade domain, formed by the union of nodes that are part of set P.

A node set belonging to the node group node includes a single element that corresponds to a cluster
node; a rack node set contains all nodes of a physical rack. Other node group examples are fault and
upgrade domains, nodes that are failing together and that are being upgraded together respectively.

Example: In Figure 3.3, node sets {n1,n2,n3,n4} and {n5,n6,n7,n8} belong to the same rack node
group, while node sets {n1,n2,n5,n6} and {n3,n4,n7,n8} belong to the same upgrade domain node
group.

Node groups allow constraints to be expressed independently of the cluster’s underlying organisation.
They thus allow operators to not reveal their cluster infrastructure. For example, a constraint requiring
to “place hb containers of the same application in different upgrade domains” does not need to be
aware of the cluster’s upgrade domains or perform any actions when upgrade domains change. Node
groups also allow for more succinct constraint definitions—in their absence, the above constraint
would have to enumerate all possible node combinations through a disjunction.

Node groups together with tags play a key role in enabling high-level constraints.

3.4 Discussion

The model of unified dataflows with placement constraints described in this chapter is generic, and
can be realised as part of existing production systems as we explain in more detail in the subsequent
chapters. We now discuss some of the limitations of our model.



50 Unified Dataflows with Placement Constraints

Unified dataflow priorities. Unified dataflow graphs allow jobs to express their computation and
latency requirements as priorities. These dataflow priorities can be used to effectively allocate
resources to jobs during execution. Although our model relies on users to define dataflow priorities,
by supporting just two distinct job categories, stream and batch, we can tackle well-known priority
scheduling issues such as indefinite blocking, or starvation. For instance, in a unified application
with a latency-sensitive stream job that can utilise all the available resources, a latency-tolerant batch
job could be waiting for resources indefinitely. In Chapter §4, we describe a simple anti-starvation
policy, guaranteeing the progress of jobs, that can lead to more fair resource sharing in scenarios
where applications consist of both shorter- and longer-running jobs.

Even though operating system schedulers have been dealing with arbitrary priority levels across users
and processes for decades [79], supporting more than two job priorities in the context of unified
dataflows could be challenging. As dataflow jobs with higher priority levels need their share of
resources, they can cause frequent switching (or preemption) across jobs with lower priority levels
with the latter being blocked indefinitely. A solution to this problem is job ageing, where priorities of
job tasks increase the longer they wait. However, as dataflow tasks are not as fine-grained as processes,
they can spend significant time (several milliseconds) switching from running to suspended state,
eventually ending up spending more time changing state than doing useful work. More importantly,
an ageing mechanism causing frequent state switching would make it substantially harder to argue
about job response times even for the higher-priority jobs that have strict latency requirements. This
is the main reason we ended up using just two priority levels for our unified dataflow implementation,
high and low, for stream and batch jobs respectively, reducing scheduling complexity while covering
all of our production use cases (see §4.3).

Placement constraint expressiveness. Even though in our placement constraint model we wanted
to make sure we can express all their practical use cases, there are some specific cases that can not be
directly expressed. A particular limitation of our constraint model is that we cannot express constraints
of the form “spread all spark containers across 3 racks”, i.e., impose cardinality on the number of
node sets rather than the number of containers per node set. However, as we explain in more detail
in §5.2.1, given that we can indirectly achieve similar placements using the cardinality constraints
i.e., place up to 3 spark containers on each rack, we decided to not complicate our syntax to support
these constraints.

3.5 Summary

To sum up, this chapter introduced unified dataflow graphs with placement constraints, a new execution
model that enables developers to combine diverse data-parallel computation as part of the same
application and control the placement of their long-running containers in the cluster. Unified dataflow
graphs with placement constraints capture: (i) dataflow execution requirements using explicit dataflow
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priorities; and (ii) complex container placement constraint expressions using tags and logical node
groups.

Implemented as part of an novel execution framework, unified dataflows can achieve efficient execution
of computation tasks within long-running containers. Using application-specific preemption mecha-
nisms an execution framework scheduler can dynamically prioritise tasks based on their requirements
while efficiently utilising container resources (Chapter §4).

Exposing the expressive constraints of our model as part of a cluster manager can enable the effective
placement of long-running containers respecting application requirements. Using a novel cluster
scheduler that can capture complex container interactions during placement can lead to higher-quality
container placement in shared compute clusters (Chapter §5).





Chapter 4

Neptune: An Execution Framework for
Suspendable Tasks

In the previous chapter, we described unified dataflow graphs with placement constraints, an ab-
straction that represents execution requirements explicitly as part of the dataflow model and also
captures the placement of containers with expressive high-level constraints. Similar to existing unified
APIs exposed by modern dataflow frameworks [7, 13, 20, 41, 150], unified dataflows allow users
to combine latency-sensitive stream and latency-tolerant batch jobs as part of the same dataflow.
However, unlike existing approaches, by capturing execution requirements, they allow the dataflow
engine to achieve efficient task execution within long-running containers.

This chapter focuses on the system aspects of unified dataflow graphs and more precisely on how to
realise unified dataflows as part of a distributed execution framework. Supporting unified stream/batch
applications with unified dataflows that share the same runtime presents several challenges. In
particular, the stream jobs of these applications must be executed with minimum delay to achieve low
latency, which means that batch jobs may have to be preempted. At the same time, the throughput
of batch jobs should not be compromised in favour of the stream jobs that could potentially lead to
batch job starvation. Finally, resources managed by the execution framework, usually in the form of
long-lived executors, must be efficiently shared across jobs depending on their needs, maintaining
high resource utilisation.

As discussed in §2.2.4, prior to unified stream/batch applications, stream and batch jobs had to be
deployed separately in a cluster and cooperate with each other through general-purpose resource
managers such as YARN [135] or Mesos [65]. This approach often resulted in: (i) low utilisation of
resources when dedicating parts of the cluster to each system using static resource allocations [65,
135, 137]; (ii) loss of progress when having to kill batch jobs to prioritise stream ones using non-work
preserving preemption [30]; (iii) or high and unpredictable preemption times when checkpointing the
state of preemptable jobs [23, 37].
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Opportunity. In this chapter, we argue that the fact that batch and stream jobs can now be part of a
single long-running application and share the same execution runtime provides a unique opportunity
that was not available when using multiple engines or separate applications. By employing application-
specific preemption mechanisms and efficient scheduling policies, a scheduler can dynamically
prioritise stream jobs without unduly penalising lower-priority batch jobs. Existing schedulers for
stream/batch applications, such as Spark’s FAIR scheduler [124], do not take advantage of this
opportunity and only prioritise jobs based on static priorities (see §2.2.5). Static priorities may
introduce unpredictable queueing delays for latency-sensitive tasks, a limitation that is well-known by
the community [120, 121, 122].

Requirements. However, to adequately support unified stream/batch applications as part of the same
runtime, an execution framework must address several challenges:

1. Capture diverse requirements of stream and batch jobs regarding latency1 and throughput. First
and foremost, users should be able to express their unified stream/batch applications using
existing unified APIs and only use simple configuration to disseminate job requirements to the
execution framework.

2. Minimise queueing delays for latency-sensitive jobs, even under high resource utilisation. When
all resources are occupied, a streaming job may have to wait for other tasks to finish before
starting processing, which leads to increased latency due to queueing delays. An execution
framework should thus dynamically prioritise latency-sensitive tasks to avoid delays.

3. Ensure high throughput and resource utilisation despite the heterogeneity of job types. At the
same time, the throughput of batch jobs should not be compromised in favour of higher-priority
stream jobs. Lower-priority batch jobs should also make progress, efficiently utilising the
remaining resources and avoid starvation.

In this chapter, we describe how NEPTUNE, a new execution framework for unified stream/batch
applications addresses these challenges. In §4.1 we give an overview of NEPTUNE, while in §4.2
we describe how unified applications are expressed, scheduled, and executed. Subsequently, in §4.3,
we introduce suspendable tasks, an efficient preemption mechanism for suspending tasks and re-
suming them without loss of progress. In §4.4, we discuss how suspendable tasks enable NEPTUNE

to dynamically prioritise latency-sensitive jobs while achieving high resource utilisation using a
novel scheduling policy and leveraging real-time cluster metrics. In §4.5, we describe NEPTUNE’s
implementation details on top of Apache Spark, one of the most widely used distributed dataflow
frameworks today. Our experimental evaluation demonstrating the benefits of NEPTUNE on a 75-node
Azure compute cluster follows in §4.6. Finally, in §4.7, we discuss NEPTUNE’s limitations.

1In a dataflow system, latency is the time between receiving a new record and producing output for this record.
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4.1 Overview

Similar to modern dataflow frameworks, NEPTUNE allows users to express unified application jobs in a
variety of lower- and higher-level APIs that share the same runtime for their execution. Unlike existing
dataflow frameworks, users also express their execution requirements by tagging specific application
jobs as lower or higher priority using a simple job configuration property. We make the decision
of treating job execution priorities as an explicit unified dataflow property that the data processing
system is aware of and hence can use when making scheduling decisions. Unified applications along
with their requirements are submitted to a centralised scheduler that builds an execution plan for each
job and then executes its tasks. The scheduler in NEPTUNE also enacts policies that suspend and
resume preemptable tasks according to their user-defined requirements and higher-level objectives
such as balancing executor load. We now give an overview of NEPTUNE’s main components.

API. NEPTUNE allows users to express unified stream/batch applications by combining latency-
sensitive stream jobs with latency-tolerant batch jobs that are represented as unified dataflows. It
supports a variety of APIs that users can leverage to express their computation logic, as we explain
in §4.2.1. In addition to that, users can define their diverse job execution requirements by explicitly
tagging dataflow jobs with a single line of extra configuration per job. The distinct execution
requirements of the dataflow jobs, part of the unified dataflow, are used by NEPTUNE when scheduling
(see §4.2.2) and executing (see §4.2.3) computation tasks within long-lived executors.

Runtime. NEPTUNE uses suspendable tasks to minimise the queueing delays for the latency-sensitive
tasks of stream/batch applications during execution. Suspendable tasks are preemptable tasks that can
preserve their work when interrupted without losing execution progress. They employ lightweight
coroutines to pause and resume execution within milliseconds. Using coroutines, simple or more
complex processing tasks can be implemented as suspendable tasks efficiently while being transparent
to the user. In §4.3, we show how processing tasks can be implemented with coroutines and briefly
describe the benefits of this mechanism over other approaches.

Scheduler. NEPTUNE uses a centralised scheduler to assign the suspendable computation tasks of
a unified dataflow to long-running executors. The scheduler is aware of the diverse task execution
requirements and enacts scheduling policies that trigger task suspension and resumption, which are
executed locally on each executor. To improve scheduling decisions, the centralised scheduler in
NEPTUNE also takes into account executor metrics describing the current state. Metrics are periodically
transmitted to the scheduler by the executors in the form of heartbeats. In §4.4, we describe in detail
how the locality- and memory-aware scheduling policy, our best performing scheduling policy, takes
into account executor metrics to guarantee job requirements and satisfy higher-level objectives such
as balancing cluster load.
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4.2 Unified dataflow applications

In §2.2, we discussed how distributed dataflow frameworks allow users to develop scalable and fault
tolerant applications. They simplify data processing by hiding the underlying complexity of parallel
code execution and fault-tolerance. For application development, these frameworks usually allow
the mixture of higher-level relational queries with lower-level functional or imperative code. Lately,
we also observe an effort towards the unification of APIs. Unified APIs enable users to combine
latency-sensitive stream jobs with latency-tolerant batch jobs as part of the same unified application
using a single API. Unified APIs in existing frameworks include Spark’s Structured Streaming, and
Flink’s Table API, as well as the external unified API of Apache Beam [13].

In this section, we describe how NEPTUNE leverages such APIs to represent stream/batch applications
as unified dataflows while treating their execution requirements as first-class citizens. This enables
the dataflow framework to utilise more evolved scheduling policies that can take into account task
execution requirements and utilise resources more efficiently. Below, we describe how unified dataflow
applications in NEPTUNE are expressed, scheduled, and executed.

4.2.1 Expressing stream/batch applications

NEPTUNE allows users to express unified stream/batch applications represented as unified dataflows
using both lower-level and higher-level APIs. As NEPTUNE is implemented on top of Apache Spark,
applications can be expressed with Spark’s lower-level Resilient Distributed Dataset (RDD) API
or its higher-level DataSet, DataFrame and unified Structured Streaming APIs (see §2.2.2). Using
these APIs, users can define computation jobs that are part of the same application and share a
common execution environment, also known as a context. The context maintains the connection to
the application executors and it is used to submit application jobs and broadcast variables. Executors
are responsible for running computation tasks that are scheduled for execution and not continuously
running. At any point in time, each executor can only be assigned to a single active application
context.

NEPTUNE also enables users to specify their execution requirements for a stream/batch application
by tagging each dataflow job using a simple local job property. At job submission time, a job is
configured with a neptune.priority property, which is set to a high or low value. For instance,
the stream jobs of a unified dataflow are marked as high while the batch as low, expressing their
execution priority. This and other local properties, for example to select a job resource pool/queue
under FAIR scheduling, are inheritable variables, maintained at the job level and are automatically
transmitted to each child stage and task. The property propagation is achieved through the common
application context when submitting a job, which passes the properties down to the job scheduler that
is responsible for stage execution.
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Figure 4.1 NEPTUNE architecture (Executors maintain separate queues for running and suspended
tasks, and periodically send heartbeats to the central scheduler. The scheduler assigns tasks to
executors and decides to suspend already-running ones according to its scheduling policy.)

4.2.2 Scheduling stream/batch applications

The NEPTUNE scheduler builds an execution plan for each dataflow job and also implements policies
that suspend and resume tasks according to their requirements. The scheduler is comprised of two
main components as shown in Figure 4.1: the DAG Scheduler and the Task Scheduler.

The DAG Scheduler computes the execution plan of each dataflow job in the form of a directed
acyclic graph (DAG) (step 1). The compilation step that translates a user-submitted application to
a set of DAGs is omitted from the figure. Each DAG vertex represents a stage, which groups tasks
that can execute the same computation in parallel. During the execution of the application, the DAG
Scheduler keeps track of the tasks that are already completed. When all data dependencies of a stage
are met, it adds the tasks of that stage to a priority queue of tasks ready to be executed next (step 2).
Within the task queue, tasks are ordered based on whether they are stream or batch, as dictated by
their user-defined execution priority (step 3). For example, a stage of a latency-sensitive stream job
is always placed before a stage of a latency-tolerant batch job in the queue. For stages that are not
tagged by the user, NEPTUNE uses by default a FIFO ordering policy, prioritising tasks based on their
submission time. However, a different ordering policy for these stages can be used instead, such as
FAIR, by changing a configuration parameter.

Tasks that are ready-to-execute are then passed to the Task Scheduler. To execute tasks of stream
stages without delay, tasks in NEPTUNE are implemented as suspendable (see §4.3). Any task that
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is suspendable can be interrupted and later resumed with no loss of execution progress. When a
new task arrives, it is immediately executed if there are sufficient free resources available in the
executors (step 4). Otherwise, lower-priority batch tasks that are already running may be suspended,
as dictated by the scheduling policy (see §4.4), to free up resources for higher-priority stream tasks to
start their execution immediately (step 5).

To avoid losing the progress made by a preempted task, when a stream task terminates, the oldest
suspended task is scheduled for execution. Suspended tasks in NEPTUNE are maintained locally on
the same worker because using them on different workers would require task migration. This would
incur the extra costs of transferring input data or intermediate outputs and would also require a policy
to decide when and where to migrate. Since NEPTUNE preempts batch tasks (which are of arbitrary
length) to prioritise the execution of stream tasks (which are typically short) and reacts in milliseconds
to maintain high resource utilisation, it does not support task migration by design.

4.2.3 Executing stream/batch tasks

Task execution in NEPTUNE is performed by a set of executors with each one of them running as
part of a long-lived container. Executors are also responsible for task suspension and resumption, as
dictated by the job scheduler. A typical executor runs for the entire lifetime of an application, while
under dynamic resource allocation mode, executors can be scaled up or down in a coarse-grained
manner e.g., scale up when the application is in need for extra resources or scale down when executors
are being idle for a long (configurable) period of time. Each executor has c CPU cores and can run
up to c concurrent tasks. Periodically, executors also send heartbeats back to the scheduler with
information about their task state and performance metrics such as memory usage, CPU utilisation,
garbage collection, and disk spilling activity. As we describe in §4.4, this information can be used by
the centralised scheduler to make more involved scheduling decisions.

Executors maintain two separate task queues, one for the running and one for the suspended tasks, as
shown in Figure 4.1. For executing tasks, each executor has a thread pool that by default contains the
same number of threads as the available cores on the executor. When a task is assigned to an executor,
it is added to the running task queue and is immediately executed by a thread of the local thread
pool assuming that there are available cores in the executor. Otherwise, when a stream task preempts
a lower-priority running task, the executor first marks the batch task as paused, moves it from the
running to the suspended queue, and prepares the new task for execution with low delay. As tasks
complete and resources are freed, the scheduler resumes suspended tasks that reside in the suspended
queue. For resumption, the oldest suspended task is picked to be resumed first. The executor then
moves the tasks from the suspended to the running queue and continues computation without losing
any execution progress.
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4.3 Suspendable tasks

In the previous section, we discussed how NEPTUNE supports unified stream/batch applications
as part of its’ high-level system design and capture their execution requirements. To minimise
execution delays for higher-priority dataflow jobs in a work-preserving manner, tasks in NEPTUNE are
implemented as suspendable. Now, we describe the implementation details of these preemptable tasks
and how existing computation tasks can be translated to suspendable tasks while being transparent to
the user.

One of the main requirements of NEPTUNE is to minimise the queueing delay for stream jobs while
having a low impact on lower-priority batch jobs. To achieve that, we need an efficient preemption
mechanism that: (i) suspends and resumes tasks fast and without loss of execution progress; (ii)
is transparent to users, i.e., does not force users to use specific APIs for their applications or to
re-implement their computation jobs; and (iii) does not require a bespoke programming model, e.g.,
that requires users to trigger periodic checkpoints within tasks [44].

First, we considered a classical approach that would rely on thread synchronisation primitives for
task suspension. In this approach, worker threads that execute tasks would use the wait and notify
primitives to suspend and resume their computation. These thread synchronisation primitives typically
rely on system calls. The actual preemption is performed by the OS scheduler, which moves threads
between a wait and a running queue in kernel space. The wait call asks the OS scheduler to move
the current task thread to the wait queue, while the notify call asks the scheduler to move one of the
waiting threads from the wait queue to the run queue to be scheduled when possible. However, as
in similar studies under different context [138], we noticed that, as the number of threads increases,
thread synchronisation with OS involvement becomes a bottleneck and introduces extra scheduling
delays (see §4.6.4).

func

Valuecaller
stack

coroutine
stack

yield

call

Figure 4.2 NEPTUNE coroutine mechanism (Caller initiates a coroutine using the call method.
Coroutine is using a separate stack to store state and variables and can yield control back to the caller
during execution.)
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As a scalable and efficient mechanism for task suspension, we decided to use stackful coroutines
instead [108]. Coroutines are resumable functions that generalise traditional functions or subroutines
by having the ability to suspend during their execution and then resume later on without losing any
progress. They can be used in combination with subroutines and thus selectively mark only parts of a
program as suspendable. Similar to traditional functions, coroutines are invoked by a caller but have
the ability to yield back values to the caller before completion, explaining why they suspended. A
regular function without yield points can thus be considered a special case of a coroutine that does not
suspend execution and returns to the caller only after completion.

Unlike traditional functions, coroutines maintain their own stack holding local variables that is separate
from their caller’s (caller stack) as shown in Figure 4.2. This stack allows separately written or nested
coroutines to be able to call each other and yield back to the same caller. To create a new coroutine,
the caller uses a special call keyword that creates a new coroutine instance with a new stack that can
be automatically started. A started coroutine instance can then suspend execution at yield points that
are part of its computation. When a coroutine suspends execution, it returns a status handle back to
the caller, reporting the reason of the suspension. The status handle can be later used by the caller to
resume execution from the previous execution frame without loss of progress.

Unlike checkpointing mechanisms used by existing systems to suspend execution [23, 37], coroutines
can suspend tasks quickly (in milliseconds) because the state of execution is saved on the coroutine
stack represented as arrays in memory (managed by the runtime). A coroutine call stack is a series of
execution frames, each storing a pointer to the coroutine object, the position in the coroutine where
the last yield occurred, the local variables and the return values. In fact, as the implementation is
constrained by the JVM platform where arrays may contain either object references or primitive
values (not both), coroutines in NEPTUNE use both a reference and a value stack to store coroutine
descriptors, program counters and local variables based on their type. As mentioned above, stackful
coroutines also support method composition, meaning they can call each other and return to the same

Listing 4.1: Collect coroutine task

1 val collect : (TaskContext , Iterator [T]) −> (Int , Array[T]) =
2 coroutine {( context : TaskContext , itr : Iterator [T]) => {
3 val result = new mutable.ArrayBuffer[T]
4 while ( itr .hasNext) { /* iterate records */
5 result .append( itr . next) /* append record to dataset */
6 if ( context . isPaused () ) { /* check task context */
7 yieldval (0) /* yield value to caller */
8 }
9 }

10 result . toArray /* return result dataset */
11 }
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resume site. This is important for implementing computation tasks composed of functions that call
each other (e.g., shuffle tasks, as explained below). More importantly, coroutines can directly replace
existing subroutine tasks by maintaining the same API, offering task preemption transparently to the
users.

NEPTUNE uses stackful coroutines to implement suspendable tasks, which have a yield point after the
processing of each record. As an example, Listing 4.1 shows the implementation of the collect task
that returns all elements of a distributed dataset. Notice the yield point in line 7. The coroutine task
receives the taskContext and a record iterator as arguments (line 2). In the iteration loop (lines 4–7),
the new record is first appended to the result dataset (line 5). Every task is associated with an individual
task context, which determines whether the task will be suspended, as dictated by the scheduling
policy. If the task context is marked as paused, it returns a value back to the caller to express whether
the task was suspended gracefully (line 7). Otherwise, the task continues execution. In a similar
manner, coroutines can implement simple task logic, such as aggregations, or more complex logic,
such as nested coroutine calls. Since yield points are only triggered sporadically when lower-priority
tasks are marked as paused, they introduce a negligible overhead to the overall task computation time.

The component responsible for running the suspendable tasks is the executor. Figure 4.3 shows
how an executor creates a more complex suspendable ShuffleMapTask compared to the collect task
described above. A shuffle operation in general is redistributing the data of a distributed dataset so
that they can be grouped differently across partitions. It is usually triggered when sorting or changing
the grouping of data, and consists of ShuffleMapTasks followed by reduce tasks. A ShuffleMapTask

writes out a shuffle file for every logical block (or partition) of the data across executors. Then, every
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Figure 4.3 NEPTUNE coroutine composition (The executor runs a coroutine ShuffleMapTask, which
instantiates a coroutine SortShuffleWriter. Both can yield to the executor when the TaskContext is
paused.)
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partition is fetched by a reduce task that will perform the shuffle aggregation (e.g., joining on a key).
A suspendable ShuffleMapTask instance in NEPTUNE is created by invoking a call function (step 1).
The suspendable task uses a coroutine stack to store its context, local variables, and state, including
the jobId and partition needed for the functionality of the shuffle computation. Depending on the
number of output partitions, type of aggregation and serializer, the ShuffleMapTask internally calls a
Writer method either from a serialized sorted (i.e., BypassMergeSortShuffleWriter) or deserialized
and sort (i.e., SortShuffleWriter) ShuffleWriter class (step 2). The Writer is another coroutine
with a separate stack storing its local variables, and state, including the ShuffleId, mapId and the
record iterator. The Writer coroutine can return to the same caller as the ShuffleMapTask. Once
launched, the Writer instance executes up to a point and then receives a pause call from the executor
(omitted from the figure). The Writer then yields a value back to the executor, indicating the reason
for its suspension (step 3). The executor can then resume the same task instance (up to the next yield
point or to completion) or invoke another function (step 4).

The above is a typical example of function composition that can be expressed with stackful coroutines.
Coroutine composition enables both the calling and called coroutines to yield back to the same base
caller, adding multiple suspension points. This functionality is necessary for suspending complex
tasks like the ones needed for dataflow computation.

4.4 Locality- and memory-driven scheduling

The previous section introduced suspendable tasks, a mechanism that can provide efficient task
preemption. In this section, we describe the logic controlling this mechanism, the scheduler component
responsible for deciding which suspendable tasks to preempt and when. These scheduling decisions
are crucial to: (i) achieve low latency for stream tasks i.e., guarantee that stream tasks can bypass
batch tasks; (ii) cause minimum disruption to batch tasks; (iii) satisfy task locality preferences; and
(iv) balance cluster load.

As NEPTUNE builds on top of Apache Spark, it also inherits its execution model. An application
submitted for execution in Spark maps to a single driver process and a set of executors that are
distributed across nodes in a cluster. The driver translates the application jobs to stages of tasks based
on their dependencies and data locality preferences while it is also responsible for formulating an
execution plan for those tasks. The executors perform work by running computation tasks, and they
also store cached (task) data locally. The task scheduler component of the driver launches tasks on
executors based on their available resources as soon as their dependencies are met. Tasks are operating
on micro-batches, meaning that they processes larger streams of data as a series of smaller batches of
data. Scheduling decisions in Spark are limited to launching a task (or stage of tasks) when there are
enough available resources (and task dependencies are met), and killing a task when there is a failure
we can not recover from. To keep the execution state up-to-date and make progress, executors notify
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the scheduler about task completion or failure asynchronously while they also send usage metrics
periodically back to the driver in the form of heartbeats.

NEPTUNE extends the scheduling logic described above with decisions about which tasks to suspend
and when as the tasks we introduced are suspendable. Moreover, to improve such decisions, it
captures a plethora of executor metrics that are now stored over configurable time windows (not
just the latest values), as described in §4.4.1. The locality- and memory-aware (LMA) policy, our
best performing scheduling policy, uses these metrics to avoid task suspension on executors with
high-memory pressure and improve task performance, as described in §4.4.2.

4.4.1 Metric windowing

In NEPTUNE, the centralised scheduler component receives executor metrics via periodic heartbeats
that capture their state including the status of the tasks running within executors. Heartbeats are
reported at configurable time intervals, determined by the user using an application-level configuration
parameter. Typically, a few seconds interval is recommended to capture the most up-to-date metrics,
but this value may increase with cluster size to avoid heartbeat congestion. When a heartbeat reaches
the scheduler, the executor measurements are added to the appropriate metrics window following a
validation step checking for incorrect or missing values.

From the executor side, a heartbeat triggers the collection of all the metric measurements as exposed
by the executor metrics provider service. At any point in time, an executor metric yields a single value,
with some values being cumulative, and others offering a snapshot view at the time of collection. For
example, the heap memory usage is the amount of memory used by the executor at that specific point
in time. On the other hand, the time spent doing garbage collection is the time spent doing garbage
collection since the launch of the executor process. For cumulative values, we also perform a metric
unrolling step in order to determine the change since the last recorded measurement at the scheduler
side.

Once metrics are captured and unrolled they are stored per executor in a metrics window data structure.
Each executor metrics window maintains a sliding-window per metric of the last w valid values, with w
also being configurable. The metrics data structure simplifies operations over sliding-windows such
as exposing the moving average of each metric. The scheduling policy then utilises such operations to
prioritise executors based on, for instance, memory-pressure, using the percentage of memory used or
the percentage of time spent doing garbage collection on each executor.

Metric challenges. Capturing metrics can also be challenging as metric values can occasionally be
incorrect or inconsistent. Figure 4.4 shows how a complex metric, reporting executor task duration,
can occasionally report decreasing values. The duration of a running task is the amount of time spent
in computation. Time periods, such as the task deserialization should not be included in the task
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Figure 4.4 Task runtime metric captured over time (The executor reports inconsistent values between
the first and second heartbeats as task runtime depends on deserialization time.)

duration. The deserialization time is the amount of time taken to unpack task dependencies before
starting the actual computation.

As shown in Figure 4.4, in the event of a heartbeat received while deserialization is still happening
(step 1), the duration of the task will be reported as the difference between the heartbeat’s timestamp
and the task deserialization start timestamp. The reason is the executor has not finished deserializing
the task and thus does not know how much time it should consider as duration. At the arrival of
a second heartbeat (step 2), the task has already been deserialized and has started computation.
However, the reported duration of the task may be lower than the duration value of the first heartbeat,
as the executor will now deduct the task deserialization time. This can lead to cases where the
executors report decreasing task durations that is not feasible. This could potentially lead to wrong
scheduling decisions if, for example, we use task runtime as an indication of executor load. To
avoid such inconsistencies without extra complex logic on the executor side, we address the issue by
ignoring decreasing values of the specific metric in the scheduler validation step. This allows values
to eventually catch up, which in the above example will occur when the third heartbeat is reported
(step 3) and the task duration becomes greater than the first heartbeat.

4.4.2 Scheduling policy

In NEPTUNE, scheduling policies can take advantage of the executor metrics stored over configurable
time windows when deciding where (in which executors) to preempt tasks. By default, NEPTUNE

uses the LMA (locality- and memory-aware) scheduling policy described below to less aggressively
preempt tasks on executors with high memory-pressure. As suspendable tasks use coroutines that
keep state in memory, they can cause increased memory pressure, which may have an impact on task
and thus application performance [101].



4.4 Locality- and memory-driven scheduling 65

Algorithm 1: LMA scheduling policy
Input: List Executors, // In descending preference order

1 List ExecutorsMetricsWindow // Executor metrics

2 Upon event HEARTBEAT hb from EXECUTOR e do
3 ExecutorsMetricsWindow[e].push(hb.metrics)
4 Executors.updateOrdering
5 return

6 Upon event SUBMIT Task t do
// Cache local executor

7 Executor texec← hostToExecutor.get(t.cacheLocation)
8 if texec is None or texec.freeMemory < threshold then

// Executor with the least pressure
9 texec ← Executors.head

10 if texec has availableCores then
// Launch task t on free cores

11 texec.Launch(t)
12 else

// Suspend task tp and launch t
13 Task tp← texec.tasks.filter(LowPriority)
14 texec.PauseAndLaunch(t, tp)
15 return

In more detail, users develop stream/batch applications, represented as unified dataflows with several
computation jobs. As described in §4.2.2, when a new job stage of a dataflow is submitted, it is
first added to a queue of tasks pending execution. Once the stage dependencies are met, a list of
tasks is submitted to run. Batch tasks run immediately as long as there are enough free resources on
the executors, otherwise they wait for resources to become available. For stream tasks, NEPTUNE’s
scheduler uses the LMA scheduling policy, outlined in Algorithm 1.

The locality- and memory-aware (LMA) scheduling policy primarily considers the stream task’s
locality preferences2 (shown as cacheLocation) and the executors’ memory conditions (stored as
part of ExecutorsMetricsWindow). To detect executors with high memory pressure that may have a
negative impact on task performance, it uses metrics such as memory usage, disk spilling, and garbage
collection activity. These metrics are stored per executor and based on their values the executors are
sorted in ascending order. For each of the above metrics, if the mean value on executor A is lower
than the mean of the same metric on executor B, we will prefer the former. Memory usage is the
metric that is representing the latest state of each executor and is thus considered first, while disk
spilling and garbage collection metrics are considered second as they describe activities that happened
in the past. These metrics are collected periodically through the heartbeats between the executors and

2These are locality preferences to nodes that already hold locally the data that will be used for computation.
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the scheduler (line 2) and are smoothened over configurable windows (line 3). When a heartbeat is
received, it triggers an update on the metrics data structure that maintaining a preference order of
executors to be used for preemption as explained below (line 4).

When deciding where to place a task, LMA first checks whether the task has a preference to a specific
executor. If so, and the executor’s free memory is above a threshold (we use twice the task’s memory
demand to make sure there is sufficient memory in the executor), this executor is picked; otherwise,
LMA selects the executor with the least memory pressure (lines 7–9). If the selected executor has
available CPU cores, the algorithm sends a launch message to the executor (line 11); otherwise, it
selects a batch task to preempt (line 13), and sends a pause & launch message (line 14). This message
suspends the batch task and starts the new one in a single network round trip.

In a unified dataflow with a large number of higher-priority stream tasks that can fully utilise the
executors, the lower-priority batch tasks could completely starve waiting for resources. To prevent low
priority jobs from being suspended indefinitely, NEPTUNE also implements a simple anti-starvation
mechanism (omitted from the pseudo-code). For each task, NEPTUNE tracks the number of times
that it has been suspended. If the task has been paused more than a given number of times, it is run
uninterrupted for a period of time, ensuring progress of every stage. Note that the same mechanism,
along with application-specific knowledge, can be used to bound the delay incurred by important
batch tasks, such as tasks that update shared state.

4.5 Implementation

In this section, we describe how our unified dataflow execution approach can be realised in a system
implementation as part of an existing distributed data processing system.

We implemented NEPTUNE by extending Apache Spark version 2.4.0, one of the most widely-used
data processing frameworks, while our changes also apply to more recent Spark versions that maintain
the same architecture (e.g., Spark 3.0). Suspendable tasks in NEPTUNE are implemented as coroutines
using an open-source Scala library-extension: https://github.com/storm-enroute/coroutines. Our
changes are in the Spark scheduler and execution engine, while NEPTUNE’s code is publicly available
as open-source at: https://github.com/lsds/Neptune. NEPTUNE’s integration with Spark is depicted at
Figure 4.5 with the modified Spark components and the new ones in blue.

Spark includes a Driver that runs on a master node and an Executor on each worker node, all running
as separate processes. The Executor uses a thread pool for running tasks. An application consists of
stages of tasks, scheduled to run an independent set of executors that run tasks and store data for that
application. Every application maintains a unique SparkContext, the entry-point for job execution.
In a specific SparkContext, multiple parallel jobs can run simultaneously if they are submitted from
separate threads.

https://github.com/storm-enroute/coroutines
https://github.com/lsds/Neptune
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Figure 4.5 NEPTUNE integration in Spark (As part of the master node, the NEPTUNE scheduler assigns
tasks to worker nodes. On each worker node, NEPTUNE maintains a queue of running and suspended
tasks.)

DAG scheduler. On application submission, the application’s SparkContext hands over a logical
plan to the DAGScheduler, which translates it to a directed acyclic graph (DAG). Each DAG is split
into stages at shuffle boundaries. The DAGScheduler maintains which RDDs and stage outputs are
materialised, determines the locations for running each task, and decides on an execution schedule.
NEPTUNE extends the DAGScheduler to allow stages with different requirements, expressed as priority
levels (see §4.2.1). NEPTUNE currently supports two levels, high and low, for stream and batch jobs,
respectively.

Task scheduler. Each DAG stage consists of a set of tasks and these tasks are submitted for execution
by the TaskScheduler. New tasks ready for execution are serialized and sent to workers using an
RPC. NEPTUNE extends the TaskScheduler to support the suspension of running tasks and the launch
of new ones (through a pause & launch task message).

Scheduling policy. NEPTUNE uses Spark’s existing policy for scheduling batch tasks and the LMA
policy, described in §4.4.2, to determine where to place stream tasks and when to suspend running
batch tasks. In the LMA policy, stream tasks suspend batch tasks based on their cache locality
preferences and also avoid preemption on executors with high memory pressure based on real-time
cluster metrics. As tasks terminate and the paused task queue in a worker node is not empty, the oldest
suspended task is resumed, as long as there are no stream tasks pending.
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Metric name Description
1. JVMHeapMemory The memory available in the JVM heap at runtime

2. JVMOffHeapMemory
The memory available in the JVM off-heap space and is not subject to
garbage collection

3. OnHeapExecutionMemory
The portion of the reserved part of the JVM heap which is currently
used to store execution information

4. OffHeapExecutionMemory
The portion of the reserved part of the JVM off-heap space which is
currently used to store execution information

5. OnHeapStorageMemory
The portion of the reserved part of the JVM heap which is currently
used for storage memory

6. OffHeapStorageMemory
The portion of the reserved part of the JVM off-heap space which is
currently used for storage memory

7. OnHeapUnifiedMemory The sum of OnHeapExecutionMemory and OnHeapStorageMemory
8. OffHeapUnifiedMemory The sum of OffHeapExecutionMemory and OffHeapStorageMemory

9. DirectPoolMemory
The memory shared between the OS and the JVM so that objects are
not copied into the JVM (a costly operation)

10. MappedPoolMemory The memory which is occupied by files used by the JVM
11. ProcessTreeJVMVMemory The virtual memory a JVM process believes it has controls
12. ProcessTreeJVMRSSMemory The physical memory a JVM process currently controls
13. ProcessTreePythonVMemory The virtual memory a Python process believes it controls
14. ProcessTreePythonRSSMemory The physical memory a Python process currently controls
15. ProcessTreeOtherVMemory The virtual memory non-JVM-or-Python processes believe they control
16. ProcessTreeOtherRSSMemory The physical memory non-JVM-or-Python processes currently control
17. MinorGCCount The cumulative count of how many times a minor garbage collections
18. MinorGCTime The cumulative time taken by all minor garbage collections to this point
19. MajorGCCount The cumulative count of how many times a major garbage collections
20. MajorGCTime The cumulative time taken by all major garbage collections to this point
21. ExecutorGCTime The amount of time finished executor tasks spent collecting garbage
22. ExecutorDuration The amount of time finished tasks ran for

23. ExecutorAndTasksGCTime
The amount of time finished tasks, currently running and paused tasks
spent collecting garbage

24. ExecutorAndTasksDuration The amount of time finished tasks ran and paused for
25. ExecutorAndTaskMemory
BytesSpilled

The number of bytes from main memory spilled by finished,
currently running and paused tasks

26. ExecutorAndTaskDisk
BytesSpilled

The number of bytes actually written out to disk by finished,
currently running and paused tasks

27. OnHeapTotalMemory The total size of on heap memory available

Table 4.1 Summary of all the executor metrics provided in NEPTUNE. Some of the metrics provide a
cumulative and others provide a snapshot value.
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Cluster state. Our LMA scheduling policy (see §4.4.2) requires additional information from each
executor such as disk spilling and garbage collection activity to take memory pressure into account.
NEPTUNE augments Spark’s cluster state by having executors piggyback such metrics onto the
heartbeat messages. A detailed list of the metrics captured in NEPTUNE is provided in Table 4.1. On
the first column of the table we list the names of the provided metrics, while on the second column we
provide a description of the metrics, reporting either a cumulative or a snapshot value. Framework’s
cluster manager, that is part of the centralised scheduler, maintains a sliding-window moving average
per metric.

Executor. On a new task launch, an executor deserializes the task content that is a stream of bytes,
creates a TaskMemoryManager, initialises a runner, and finally executes the task on a thread pool.
NEPTUNE extends the executor with an extra suspended task queue and the transition logic between
task states. A pause & launch call suspends a running task and marks the TaskContext as paused,
yielding in the next record iteration. The executor then adds the task in the paused queue and frees the
unused resources from the TaskMemoryManager. For cached data partitions and intermediate shuffle
outputs, executors provide a local cache via the CacheManager and the BlockManager components.
The CacheManager is responsible for caching tables and query results for subsequent executions.
It utilises the BlockManager that acts as a lower-level local cache providing interfaces for putting
and retrieving blocks of data both locally and remotely. These blocks may represent partitions,
intermediate shuffle outputs, or broadcasts.

Suspendable tasks. A task is the smallest unit of execution associated with an RDD partition running
on the executors. Every task in Spark, and consequently NEPTUNE, has the notion of locality, inherited
by the implementation of the underlying RDD. For example, when using HadoopRDDs to read data
from HDFS, the locality preferences are based on the nodes where the HDFS blocks reside. A task
can be either: a ResultTask that executes a function on the RDD partition records and sends the
output back to the driver; or a ShuffleMapTask that computes records on the RDD partition and
writes the results to the BlockManager for use by later stage tasks. To support suspendable tasks in a
way that is completely transparent to the user, NEPTUNE re-implements all basic ResultTask and
ShuffleMapTask functionality in Spark across programming interfaces using coroutines (see §4.3).

4.6 Evaluation

In this section, we evaluate NEPTUNE, the prototype implementation of our execution framework for
unified stream/batch applications. NEPTUNE is based on our new execution model, unified dataflows,
a new model to perform efficient execution of dataflows within long-running containers respecting
explicit dataflow requirements. First we provide an overview of the section.
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Overview of evaluation. We compare NEPTUNE with existing distributed dataflow systems and
various scheduling policies that are described in detail along with our evaluation set-up in §4.6.1.
Then we analyse the performance of our system focusing on our execution requirements including:
minimising queueing and thus latency for latency-sensitive jobs of a stream/batch application; ensuring
high throughput regardless the job type; and achieving high resource utilisation and thus resource
efficiency. We study the performance of NEPTUNE under different scenarios:

• We first compare the execution performance of stream/batch applications with NEPTUNE

and with existing solutions. We use typical application benchmarks including a machine
learning (ML) training/inference application [67], similar to the one depicted in Figure 3.2, and
the YSB streaming benchmark [24] (§4.6.2)

• We then measure the performance impact in terms of throughput and latency with varying
resource demands. By increasing the resource demands of our higher-priority stream tasks we
observe how NEPTUNE adapts to the new requirements and to what extent lower-priority jobs
are affected (§4.6.3)

• Finally, using TPC-H, a decision-support benchmark as micro-benchmark [131], we explore
the efficiency and scalability of NEPTUNE’s task suspension mechanism using coroutines.
We also compare with alternative task preemption approaches based on traditional thread
synchronisation primitives (§4.6.4).

4.6.1 Experimental set-up

Cluster set-up. For our experiments, we use a cluster of 75 Azure E4s_v3 virtual machine (VM)
instances. Each VM has 4 CPU cores, 32 GB of memory, and 60 GB of SSD storage. On each cluster
VM, we run executors that use 4 slots for executing tasks, the same as their number of cores. Note
here that in a production setting, at least one core of each VM would be dedicated to monitoring,
reporting, or storage services. As we did not use any extra services for our experiments, we decided
to use all available cores for task execution. We deploy Apache Spark version 2.4.0 as the baseline
for our experiments. Apache Spark supports defining stream/batch application using its Structured
Streaming API, but its execution engine is unaware of the various dataflow execution requirements.
For all our experiments, we use the same JVM, heap size, and garbage collection flags. Finally, before
taking measurements, we also warm up the JVM.

Workloads. We employ the following workloads:

1. The Yahoo Streaming Benchmark (YSB) models an ad-account environment that runs analytics
on a stream of ad impressions [24]. In this environment, a producer inserts records in a stream
and the benchmark groups the events into 10-second windows per ad campaign. It then measures
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how long it takes for all events in the window to be processed. Our stream/batch application
combines two concurrent instances of YSB, a latency-sensitive and a latency-tolerant one.

2. The machine learning (ML) training/inference application uses online Latent Dirichlet Alloca-
tion (LDA) to perform topic modeling and inference, similar to our unified dataflow example
of Figure 3.2. LDA is an unsupervised machine learning method that uncovers hidden seman-
tics (“topics”) from a group of documents, each represented as a group of tokens. Each token
wi j in the document is associated with a latent topic assignment zi j ∈ {1, . . . ,K}, where K is
the number of topics, i indexes the documents and j indexes each token in the document. We
use the NYTimes dataset for training and a small subset for inference [67]. The dataset has
300k documents, 100k words, 1k topics and 99.5 million tokens. We use the online variational
Bayes LDA algorithm with parameter values miniBatchFraction=0.05 and maxIterations=50.
Gibbs sampling is used to infer document topic assignments zi j, as implemented in Spark
MLlib [125]. Similar to YSB, our stream/batch application has a latency-sensitive inference
job and a latency-tolerant training job.

3. TPC-H [131] is a decision support benchmark with 22 analytical relational queries that address
several “choke points” as part of their computation logic such as aggregates, large joins and
arithmetic computations [17]. For the data generation, we use a scale factor of 10 (SF10) and
data stored in the Parquet format [103].

Comparisons. We compare the following systems:

• NEPTUNE (or NEP): This is our system using the locality and memory-aware (LMA) scheduling
policy, as described in §4.4.2. The LMA scheduling policy respects task locality preferences
and load-balances preempted tasks across nodes in the cluster.

• NEP-LB: This is NEPTUNE with a simpler scheduling policy that load balances task preemption
across nodes based on the nodes’ memory condition but ignores task data locality prefer-
ences. As a result, high-priority tasks using such data may have to perform a remote fetch from
another executor.

• FIFO and FAIR: These are the two non-preemptive policies available in Spark. FIFO prioritises
tasks based on job submission time while FAIR assigns resources to jobs proportionally to their
weight. For FAIR, we configure the weight for stream jobs to be equal to the job parallelism
(higher-priority) and for batch jobs to be equal to one.

• KILL: This is a preemptive scheduling policy that we implemented on top of Spark, combined
with the FAIR scheduling policy. It allows lower-priority batch tasks to be preempted (killed)
in order to minimise queueing delays for higher-priority stream tasks. Killed tasks can reuse
any input data cached on the executor, but they lose any progress that they have done as they
are restarted.
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• DIFF-EXEC: This policy represents how Spark runs different priority tasks in separate executors
for isolation similar to static resource allocation. We deploy two executors per machine, each
using half the CPU cores. One executor is used for high-priority tasks and the other for
low-priority ones.

• PRI-ONLY: We execute only the stream tasks of a unified stream/batch application. This provides
the ideal latency scenario for higher-priority stream tasks, as they can execute in complete
isolation.

Our implementation of NEPTUNE is based on Apache Spark 2.4.0.

4.6.2 Application performance

First, we want to study the effect of NEPTUNE on end-to-end application performance in terms
of latency and throughput for different applications. For this experiment, we use the 75-instance
Azure cluster described above and run two different stream/batch applications: the Yahoo Streaming
Benchmark with two job instances, a latency-sensitive one and a latency-tolerant one, and the ML
application consisting of a latency-tolerant training job and a latency-sensitive inference job.

The goal for NEPTUNE is to minimise end-to-end latency for higher-priority stream tasks with the
least impact on the throughput of latency-tolerant tasks. At the same time, NEPTUNE should be able
to a scale to a significant number of machines without introducing extra overhead.

Yahoo Streaming Benchmark (YSB). We use the YSB application to measure end-to-end latency
and throughput as used by others to evaluate similar system properties [136]. We measure latency for
each window as the difference between the last event processed and the window end time; throughput
is the total number of records processed over time. Our stream/batch application consists of two YSB
jobs. The latency-sensitive stream job has a parallelism of 44 occupying 15% of cluster resources and
generating thousands of events per second. The latency-tolerant batch job has enough parallelism to
occupy all cluster resources and generates millions of events per second.

Figure 4.6 shows the end-to-end latency for the stream job of the unified stream/batch application
using different systems and scheduling policies. For this figure, we use box plots in which the
lower/upper parts of the box represent the 25th/75th percentiles, respectively; the middle line is the
median; and the whiskers are the 5th and 99th percentiles, respectively.

We can observe that, from the default Spark scheduling policies (FIFO and FAIR), FAIR has a lower
and tighter distribution. In more detail, the FAIR scheduling policy reduces the 75th percentile latency
for the stream job by 5%, and the 99th percentile latency by 37% compared to FIFO. However, the tail
latency still remains more than 2× higher than for PRI-ONLY where the stream jobs run in complete
isolation.
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Figure 4.6 Yahoo Streaming Benchmark (streaming + batch) streaming query latency

A source of extra latency for the FAIR policy is queueing, with tasks waiting for resources to become
available. To minimise queueing for stream tasks, we implemented the preemption-enabled KILL

scheduling policy on top of Spark that is allowed to kill lower-priority tasks in favour of stream tasks.
By preempting batch tasks, KILL reduces the median latency by 54% compared to the non-preemptive
FAIR, but the 99th percentile is almost 2× higher than FAIR. The reason for the high tail latency is
twofold: (i) KILL cannot preempt more than a weighted share of resources as inherited by the FAIR

weight configuration, which is ineffective when too many stream tasks wait for execution; and (ii) the
housekeeping process of killing tasks in a Spark executor involves releasing locks and cleaning up
allocated memory and pages in the block manager, which is time-consuming. It is thus clear that,
with KILL, we can not achieve end-to-end latencies that are close to ideal, which is running the stream
job in isolation.

NEPTUNE with the LMA scheduling policy (NEP) achieves latencies comparable to PRI-ONLY. The
simpler NEP-LB policy that does not consider cache preferences achieves 61% worse latency compared
to NEP for the 99th percentile. The reason behind the worse latency is cache preferences that affect
task latencies for jobs that rely on executors to store data, especially at the higher percentiles. Finally,
DIFF-EXEC which represents the static allocation scenario where each job runs on a different executor,
reduces the median latency but increases the tail latency. We observe high tail latencies when executors
on the same machine interfere with each other competing for the same resource such as memory
bandwidth or network. NEPTUNE does not face resource interference by having a single executor per
machine and using an effective task scheduling policy.

As scheduling policies prioritise or preempt job tasks over others, they also affect job throughput
as shown in Figure 4.7. The throughput of the batch query over different scheduling policies is
depicted in Figure 4.7a. The default Spark scheduling policy, FIFO, that is unaware of priorities and
fairness, achieves the highest throughput, as batch jobs consume all cluster resources when scheduled.
Spark’s FAIR policy improved stream latency compared to FIFO comes at the cost of decreased batch
throughput by 10% due to the prioritisation of stream over batch tasks. As expected, due to the
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Figure 4.7 Yahoo Streaming Benchmark (streaming + batch) throughput

termination of batch tasks and loss of their execution progress, KILL achieves the worst throughput,
namely 32% lower than FIFO and 25% lower than FAIR.

As shown in Figure 4.7a, even though DIFF-EXEC runs the batch jobs on separate executors, it
experiences a 24% lower throughput than FIFO. This is because DIFF-EXEC relies on a static allocation
of resources with up to 85% of executors used for batch jobs while FIFO can use 100% of the executors.
However, DIFF-EXEC throughput is still 12% higher than KILL, meaning that restarting tasks without
preserving their progress has the worst impact in terms of throughput. Finally, both the NEP and
NEP-LB policies achieve a throughput comparable to the best performing FIFO policy (within 5%).

For the streaming job, Figure 4.7b shows identical throughput for all configurations. The reason
for the identical results is the micro-batching model Spark uses by default. The micro-batching
model accumulates streaming events and periodically triggers processing for all available data. As a
result, over time the non resource-demanding stream job computation is amortised, resulting in fixed
throughput but varying latency. Thus, for a share of resources, Spark can achieve similar throughput
whether tasks are scheduled immediately or queued.

ML training/inference application. The next stream/batch application that we evaluate performs
topic modeling and consists of a training and an inference job. The training job uses the online
variational Bayes LDA algorithm to generate a new model and, after a number of iterations, it stores
the model in HDFS distributed storage using all available resources. The inference job loads the latest
trained model in cache and infers topics for the received documents using Gibbs sampling, consuming
up to 15% of all cluster resources.

Figure 4.8 shows the latency distribution achieved for the inference job across different configurations.
As LDA training tasks are computationally intensive, queueing inference tasks behind training tasks
has a significant impact on task latency. We observe that the FAIR scheduling policy reduces the 99th

percentile latency by 13% compared to FIFO. However, FAIR still yields almost 3× higher latency
than running the inference job in isolation (PRI-ONLY) for the 99th percentile. Note that the preemptive
KILL policy is able to reduce the median latency by 18% compared to FAIR and 20% compared to
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Figure 4.8 LDA NYTimes dataset (training + inference) inference latency

FIFO, but its 99th percentile latency is 55% higher than running the job in isolation (PRI-ONLY).
As explained above for the YSB application, KILL cannot preempt more than a weighted share of
resources and faces the extra overhead of housekeeping terminated tasks.

NEP with the LMA scheduling policy achieves a latency that is just 6% and 13% higher than PRI-

ONLY for the median and the 99th percentiles, respectively. NEPTUNE without cache awareness
(NEP-LB) has a 29% worse latency for the 99th percentile compared to NEP. For the LDA stream/batch
application, it is again obvious that task cache preferences are affecting the task tail latency. Finally,
although running the jobs in different executors (DIFF-EXEC) reduces median latency by 23% and
21% compared to FIFO and FAIR, respectively, it incurs high tail latencies due to executor interference
that are almost 2× higher than NEP for the 99th percentile.

The effect of scheduling policies in terms of job throughput is shown in Figure 4.9. More precisely,
Figure 4.9a reports the achieved throughput for the training job. Similar to the YSB application, FIFO

yields the highest throughput by entirely ignoring job priorities. FAIR achieves 10% lower throughput
compared to FIFO by prioritising inference tasks over training using static job priorities that are
expressed as weights. KILL that is based on the static priorities of FAIR achieves throughput that
is 15% lower than FIFO. KILL has 5% lower throughput than FAIR, as tasks have to be restarted
after preemption. DIFF-EXEC, which uses only up to 85% of available executors, achieves a 34%
lower throughput compared to FIFO. Unlike YSB, in this application, DIFF-EXEC performs worse than
KILL because reduced resources have more impact on computationally intensive training jobs. Finally,
both NEP and NEP-LB achieve throughput comparable to the best performing FIFO policy, with an
overhead of just 1%.

Figure 4.9b shows the inference throughput across configurations which is identical, similar to
the YSB application above. As Spark uses a micro-batching model that accumulates events and
periodically triggers processing over all available data, over time, the less resource-demanding stream
job computation is amortised, resulting in fixed throughput but with varying latency.
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Figure 4.9 LDA NYTimes dataset (training + inference) throughput

In summary, in a cluster of 75 Azure nodes, NEPTUNE is able to scale and achieve latencies that are
comparable to the ideal PRI-ONLY policy for the latency-sensitive jobs. At the same time, NEPTUNE

reduces the throughput of latency-tolerant jobs by less than 5% compared to the best performing FIFO

policy.

4.6.3 Varying resource demands

Next we want to evaluate the performance of NEPTUNE in terms of throughput and latency under
varying resource demands. We explore how the increasing resource demands of higher-priority
stream jobs affect system performance and memory utilisation, as more lower-priority tasks have
to be suspended concurrently. We also focus on a memory constrained environment to evaluate the
effectiveness of our locality- and memory-aware (LMA) scheduling policy.

The goal for NEPTUNE is to maintain low latency for higher-priority stream jobs even when it has
to suspend the entire cluster. At the same time, the LMA scheduling policy should be able to avoid
memory-constrained executors that can potentially hurt end-to-end job latency.

Different job resources. The applications evaluated in §4.6.2 only use part of the cluster resources
for the stream jobs (15% of the entire cluster). In this experiment, we use the same stream/batch
applications deployed in a cluster of 4 Azure VMs, while we increase the stream job resource demands
from 0% to 100% of cluster resources. Batch jobs in our experiment still use all available resources.
We use NEPTUNE to execute jobs and measure latency, throughput, and memory consumption.

Stream latency. We run the YSB application with increasing resource demands, and we observe that
NEPTUNE maintains low latency across all percentages as shown with box plots in Figure 4.10a. As
the lower-priority tasks that must be suspended increase, up to the point that the entire cluster must be
suspended for 100% cores used, the low latency maintained by NEPTUNE shows the effectiveness
of our preemption mechanism. The higher number of preempted tasks, however, incurs a penalty in
batch job throughput, depicted as a dashed line in the figure. For instance, when stream tasks ask for
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Figure 4.10 Performance impact of varying demands

40% and 100% of the cluster, batch throughput drops by 0.8% and 1.1%, respectively, compared to
optimal (0%).

Similarly, increasing inference resources in the LDA application from 0% to 100% does not affect
latency in NEPTUNE, as shown in Figure 4.10b. However, when inference tasks demand 40% and
100% of the cluster, training throughput drops by 17% and 26%, respectively. As inference tasks of
this application have longer runtimes compared to YSB stream tasks, they have a higher impact on
lower-priority jobs in terms of throughput.

Memory overhead. We also explore the effect of task preemption in NEPTUNE by measuring memory
usage. As suspendable tasks in NEPTUNE use coroutines that maintain a stack of execution frames
in-memory, it is important to validate that their state is efficiently garbage collected and does not lead
to significant memory-pressure that could cause job slowdowns.

For this experiment, we compare two systems as shown in Figure 4.11: NEPTUNE with LMA
scheduling policy and plain NEPTUNE without preemption, depicted as Neptune-NPRE. As shown
in Figure 4.11a, when the YSB streaming tasks are first introduced in the system, the task scheduler
schedules fewer batch tasks. As a result, memory usage drops by 25% for the 99th percentile when
cores used for streaming are 20%, for NEPTUNE, both with and without preemption. It then steadily
increases in line with the stream job demands from 40% to 100%. Across the full range, however,
NEPTUNE’s memory usage is no more than 2% for the 99th percentile compared to Neptune-NPRE.

In a similar manner, for the machine learning training/inference (LDA) application that is shown
in Figure 4.11b, even though there is no drop in memory usage when inference tasks are first introduced
in the system, the increase is no more than 1.5% for the 99th percentile compared to Neptune-NPRE.

Taking into account the memory usage distributions across increasing stream job demands with and
without preemption enabled, we conclude that NEPTUNE’s suspension mechanism only introduces a
modest memory overhead and thus cannot directly lead to job slow-downs.
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Figure 4.11 Memory impact of varying job demands

Memory pressure. In the next experiment, we investigate the effectiveness of NEPTUNE under
memory pressure. To achieve this, we synthetically create a memory-constrained environment where
some executors have limited available memory and selecting these executors to run high-priority tasks
could hurt their performance. For this experiment we use the same 4 Azure VMs, and we reduce
each worker’s JVM size to 1 GB. We use a single YSB stream instance utilising 30% of the cluster
resources and, as the batch workload, we use an increasing number of joins, joining millions of rows.
In this memory-constrained environment, the worker’s average memory utilisation increases from
20% to 40% and 80% with 2, 4, and 6 joins, respectively.

Figure 4.12 shows the end-to-end latency for the streaming (higher-priority) job across different
scheduling policies, including the default Spark FIFO and FAIR policies, our enhanced KILL policy
with preemption, and NEPTUNE with (NEP) and without (NEP-LB) cache locality awareness.

In more detail, with 2 concurrent joins and low memory pressure (20% average memory utilisation),
all policies achieve similar mean latencies of around 100 ms (Figure 4.12). As we increase the number
of joins to 4, with almost half of each worker’s memory utilised on average by batch tasks, NEPTUNE

achieves 99th latencies that are 1.9× lower than FIFO and 2.8× lower than KILL, respectively. Finding
the least memory-constrained executor in NEPTUNE helps higher-priority tasks achieve lower and
more predictable tail latencies (thus the tighter latency distribution).

The effect is even more pronounced with 6 joins — NEPTUNE achieves 99th percentile latencies
that are 3× lower than FIFO and 2× lower than FAIR, respectively. NEP-LB, ignoring individual
task locality preferences but taking into account executor memory conditions, performs similar to
NEPTUNE in this context, with 99th latencies that are just 2% and 12% higher for 4 and 6 joins,
respectively. On the other hand, FIFO and FAIR scheduling policies that ignore cluster state when
scheduling tasks can lead to the highest tail latencies of the experiment, with values of 4 and 3 seconds,
respectively.
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Figure 4.12 Latency impact of increasing memory use

We conclude that using real-time executor metrics, NEPTUNE manages to predict accurately the
memory pressure of each individual executor in the cluster, thus reducing memory bottlenecks to
obtain lower tail latencies for the tasks for which it matters the most.

4.6.4 Task suspension

Finally, we want to evaluate the effectiveness and efficiency of NEPTUNE’s coroutine-based task
suspension mechanism. Using the TPC-H workload [131] consisting of 22 analytical queries with
different complexity and computation needs and using solely batch tasks we first measure how fast
coroutines can yield, and then compare how coroutines scale as the parallelism increases compared to
traditional thread synchronisation suspension primitives.

For our suspension mechanism, we want to be able to pause and resume tasks with low latency
regardless the computation task complexity. Moreover, it should possible able to scale to machines
with a large number of cores and not be heavily affected by the increasing parallelism within an
executor.

Suspension latency. First, we run the TPC-H benchmark on a cluster of 4 Azure VMs and measure the
task duration distribution for each query. Using a custom TaskEventListener that we implemented,
we re-run the benchmark and continuously transition tasks from PAUSED to RESUMED states until
completion, while measuring the latency for each transition. As coroutine tasks can yield after each
record iteration, a task that does heavy per-record computations takes longer to get suspended. By
continuously triggering yield points, we measure the worst case scenario in terms of transition latency
for each query task.

Figure 4.13 shows the task runtime and pause/resume latency distributions for all 22 queries; whiskers
represent the 5th and 99th percentiles, respectively. We observe that, although queries have different
task runtimes (grey boxes) ranging from 100s of milliseconds to 10s of seconds, NEPTUNE can pause
(red boxes) and resume (blue boxes) tasks with sub-millisecond latencies, showing the effectiveness
of our mechanism.
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Figure 4.13 NEPTUNE task suspension mechanism latency breakdown using TPC-H queries

An exception is Q14 with a 75th percentile pause latency of 100 ms. After a deeper investigation,
we observe that this query reads from the lineitem table and has no filters other than on the date.
Given that this table is partitioned by date, the Parquet reader that operates at the partition level has to
consume full partitions before the corresponding Spark tasks can yield. So in this particular case, the
pause latency is affected by the partition size or, more precisely, by how fast NEPTUNE can ingest the
data partition.

In general, when dealing with file partitions, the less selective the query, the longer it takes to consume
each partition (less/no filters are pushed down to the reader), which results in increased suspension
times. This problem can be mitigated by re-partitioning the table, increasing the task parallelism, or
improving readers to be more fine-grained which is orthogonal to our approach.

Coroutines vs. thread synchronisation. Finally, we want to compare NEPTUNE’s coroutine-based
task preemption with an alternative approach based on traditional thread synchronisation primitives,
depicted as ThreadSync. Thread synchronisation relies on the preemption performed by the OS
scheduler and is implemented in NEPTUNE using thread wait and notify calls. As discussed in §4.3,
with wait and notify calls, the actual preemption is performed by the OS scheduler, which moves
threads between a wait and a running queue in kernel space.

In Figure 4.14, we compare the preemption mechanism of NEPTUNE using Coroutines with the
alternative mechanism of ThreadSync. We run TPC-H queries on a 32-core Azure VM using the cus-
tom TaskEventListener used in the previous experiment, alternating tasks from PAUSED to RESUMED

states, while increasing the parallelism of the executor from 2 to 64 (double the number of cores).

The results for the first TPC-H query are shown in Figure 4.14, with a similar behaviour for the rest
of the queries. With up to 8 parallel tasks, both Coroutines and ThreadSync mechanisms can achieve
low pause latency. However, as the parallelism increases, the overhead of ThreadSync rises: the 99th

percentile of yield latency increases by 2.6× for 16 threads compared to Coroutines. The reason for
the jump in latency is the OS scheduler that must continuously arbitrate between wait/run queues,
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Figure 4.14 Latency of task suspension mechanisms

which is similar to the results from other studies [138]. ThreadSync exhibits worse scaling compared
to coroutines, which completely bypasses the OS.

Note here that each stream task typically has a runtime of a few 10s of milliseconds. At the
same time, the gains from Coroutine task suspension compared to ThreadSync are in the range
of a few milliseconds and can be as high as 600 ms for the 99th percentile for 64 threads (omitted
from Figure 4.14). Therefore, the overhead of suspending a task with thread synchronisation primitives
can be a significant part of a stream task’s runtime (up to orders of magnitude higher in the worst-case),
considerably affecting its latency. Moreover, as stream jobs consist of multiple tasks, potentially
triggering 100s of task suspensions, the overheads accumulate.

4.7 Limitations and discussion

In the following paragraphs, we highlight some of NEPTUNE ’s current limitations and initiate a
discussion on their significance and how they can be addressed as part of future work.

Memory pressure. Although suspendable tasks in NEPTUNE are both efficient to suspend/resume and
transparent to users, they keep state in memory, which may increase memory pressure on executors.
However, we observe that typical production clusters today tend not to be constrained by memory.

Figure 4.15 shows the available machine memory in a Microsoft production cluster comprised of
tens of thousands of machines. We took measurements every few seconds over the course of four
days, and we plot the CDF of the available machine memory, grouped by machines with the same
hardware configuration. The available memory in 90% of the machines is at least 75 GB and in
some configurations over 150 GB. In addition to that, tasks in this cluster typically require less than
10 GB of memory each, which means that several more tasks can be started at each machine in terms
of memory. Similar trends hold at other companies. For example, in production Spark clusters at
Facebook, 95% of the machines utilise no more than 70% of the machine’s memory [2].
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Figure 4.15 Available machine memory in a Microsoft production cluster (The cluster is comprised of
tens of thousands of machines with each group corresponding to different hardware configurations.
Data is over four days.)

In cloud deployments, it is common for users to over-provision their memory resources [27] and, if
not, they can always allocate more memory to their VMs. NEPTUNE takes advantage of this flexibility
in terms of memory availability to reduce the latency of higher-priority tasks that would otherwise
have to face extra queueing delays. Moreover, as NEPTUNE limits the number of tasks simultaneously
suspended on each executor by the number of CPU cores and not the amount of memory, running
out of memory is rarely an issue in practice. In cases when memory does become the bottleneck,
NEPTUNE’s LMA scheduling policy, described in §4.4.2, can ensure that machines with the least
memory pressure are picked for task suspension. In memory-constrained environments, NEPTUNE

could also utilise a checkpointing alternative that, even though it is slower than coroutines, it does not
keep any state in memory.

Checkpointing. NEPTUNE adds preemption support to Apache Spark, which is an in-memory
framework, but does not currently support suspended task checkpointing. The main reason is that
whenever there is checkpointing to disk, task latency will be affected significantly, which defeats
NEPTUNE’s main goal of providing millisecond-latency preemption. Note that, by design, NEPTUNE

can suspend tasks of different jobs, as long as they belong to the same application and share executors.

In the future, we could employ existing techniques to checkpoint NEPTUNE’s suspended tasks to
release memory under high memory pressure conditions [96]. An alternative system design, relying
on coarser-grained checkpointing, would be to have separate JVMs per task and use OS containers to
suspend and resume tasks.

Coroutine efficiency. Another noteworthy point is how fast coroutines can pause and resume. Several
recent systems in the context of databases [74, 109] and machine learning [110] use coroutines to
reduce the latency of operations but NEPTUNE is the first system to do so for a distributed dataflow
framework. In NEPTUNE, coroutine pause latency is determined by the amount of processing per
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data record before the coroutine is able to yield. Although task optimisations such as function pipe-
lining in Spark can increase yield times, we find that the difference is typically negligible in practice
(see §4.6.4).

In our experiments, we only observe increased yield times for the handling of large file partitions when
queries are less selective. As we explained in the previous section, this is caused by the file reader
mechanism in Spark and can be mitigated. NEPTUNE could automatically detect such problematic
tasks and avoid potential issues, for example by re-partitioning data or increasing task parallelism.

Applicability. Even though NEPTUNE is built on top of Apache Spark, we believe that our design,
as shown in Figure 4.1, is applicable to other dataflow frameworks for stream/batch applications,
such as Apache Flink [20] and Storm [127]. These dataflow systems follow a similar architecture
to NEPTUNE. We opted to have Neptune’s first implementation on Spark, hence we cannot claim
concrete gains on other systems. However, we expect Flink, which uses a continuous-operator
execution model, to benefit even more from task suspension, as operators typically run for longer
durations compared to scheduled tasks in Spark. By introducing dynamic scheduling decisions and
suspending continuous tasks we could utilise resources more efficiently (e.g., the idle periods of
continuous operators could be used to run lower-priority training tasks).

Extending NEPTUNE and integrating the unified dataflow model with other execution engines is
thus another future direction towards the goal of developing an architecture for general-purpose
unified dataflow execution. Unified dataflow architectures would expose unified APIs similar to the
ones supported today for Spark’s Structured Streaming, Flink’s Table API, as well as the external
unified API of Apache Beam, but would also respect the diverse execution requirements of unified
applications, efficiently utilising cluster resources.

4.8 Summary

In this chapter, we presented NEPTUNE, an execution framework that realises unified dataflows on top
of Apache Spark. It supports stream/batch applications that share long-running executors and can
dynamically prioritises latency-critical jobs, while effectively utilising application resources. With its
suspendable task implementation based on coroutines and smart scheduling policies, the design of
NEPTUNE paves the way for truly unified stream/batch applications.

Our experimental evaluation demonstrates the benefits of NEPTUNE for stream/batch applications. On
a 75-node Azure cluster using machine learning and streaming benchmarks, NEPTUNE reduces end-
to-end latencies by up to 3× compared to Spark and increases the throughput by up to 1.5×. Using the
locality- and memory-aware (LMA) policy, NEPTUNE achieves close to optimal performance for both
latency-critical and latency-tolerant tasks with a modest memory impact. Through micro-benchmarks,
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we confirm that suspendable tasks can efficiently pause and resume with sub-millisecond latencies
and that, in scenarios with memory pressure, LMA scheduling policy can better utilise resources.



Chapter 5

Medea: A Cluster Scheduler with Rich
Placement Constraints

As we have shown in the previous chapter, the explicit execution requirements of unified dataflows as
part of a novel dataflow framework enable users to define jobs with diverse computation in the same
application and achieve efficient task execution within the same shared executors. One remaining
question is how to support the rich placement constraints of our model expressing the placement of an
application’s long-running executors. Our goal is to enable users and cluster operators achieve more
effective, high-quality placements of long-running workloads in shared compute clusters.

This chapter describes the system aspects of our placement constraints and more precisely how
to realise high-level and expressive constraints in a scalable and performant manner at the cluster
manager level. Since cluster schedulers are application-agnostic, they have enabled the consolidation
of a plethora of diverse workloads onto thousands of machines. However, supporting placement
constraints for these workloads as part of a production-hardened cluster manager presents several
challenges. Simply adding complex constraints to the cluster manager could introduce delays that are
unreasonable for traditional batch analytics workloads focusing on low-latency allocations. On the
other hand, workloads that run for longer periods of time (LRAs) can tolerate some scheduling delays
and would actually benefit from higher-quality container placement. In addition to constraints, cluster
schedulers must satisfy their own global cluster objectives ranging from sharing policies and fairness
to load-balancing and packing. At the same time, configuring them in a production setting is a time
and labour intensive process.

As we discussed in §2.1, cluster schedulers that handle a variety of diverse data-intensive workloads
at a data-centre scale are increasingly common [31, 77, 137]. Their workloads range from batch,
that typically benefit from short-lived containers running for durations in the order of seconds,
to long-running such as unified dataflows that utilise long-lived containers running for hours to
months. For workloads with longer durations, container placement is especially important for
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satisfying requirements such as application performance, resilience and global cluster objectives
(see §2.3.1–§2.3.3). As part of our unified dataflow model, we capture container interactions within
and across applications that, if properly utilised, can lead to an effective placement of their long-
running containers in the cluster.

Opportunity. In this chapter, we argue that for the effective placement of long-running containers,
there is a need for a cluster scheduler with explicit support for complex high-level constraints. The
scheduler should achieve high-quality placements for LRAs in general within shared infrastructures
without impacting the scheduling latency of traditional jobs with short-lived containers. Despite
the fact that long-running workloads occupy a significant portion of cluster resources in production
clusters today, support for LRAs in existing schedulers is rudimentary [10, 78, 82, 137]. Existing
schedulers such as Mesos [65] and Borg [137] only support constraints implicitly through static
machine attributes, which prohibits defining constraints without revealing the underlying cluster
infrastructure. Kubernetes [82] supports explicit intra- and inter-application high-level constraints
between containers, but it does not support cardinality, which is critical to control the level of container
collocation and thus resource interference (see §2.3.1). As a result, in existing cluster managers, the
scheduling requirements of LRAs remain largely unsupported.

Requirements. In order to efficiently support the container placement of long-running applications, a
cluster manager must meet several requirements (summarised as R1-R4 in §2.3.4):

1. Support powerful and high-level constraints to capture interactions between containers and
unlock the full potential of applications. Precise control of container placement is key for
optimising the performance and resilience of LRAs. Simple affinity and anti-affinity constraints
such as collocating containers to reduce network costs, or separating them to minimise resource
interference or chance of failure, are necessary but not sufficient. Constraints should also be
agnostic of the underlying cluster organisation (requirements R1 and R2).

2. Achieve high-quality placement and allow cluster operators to optimise for cluster objectives.
When placing LRA containers, the cluster scheduler must achieve global optimisation objectives,
such as minimising the violation of placement constraints, the resource fragmentation, any load
imbalance, or the number of machines used. The cluster operator should be able to determine
the objectives to be used and define their relative importance (requirement R3).

3. Not impact system scalability or scheduling latency of the traditional applications that use
short-lived containers in shared production clusters. Due to their long lifetimes, LRAs can
tolerate longer scheduling latencies than batch jobs, but their complex placement should not
impact the scheduling latency of applications with short-lived containers that are running in the
cluster (requirement R4).
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In this chapter, we describe MEDEA, a new cluster scheduler motivated by the above requirements,
which enables the placement of both long- and short-running containers in shared compute clusters
in a scalable manner. We start with an overview of MEDEA and its components in §5.1. In §5.2,
we discuss how MEDEA enables application developers to express powerful placement constraints
across LRA containers with formal semantics using container tags and node groups. In §5.3, we
describe how MEDEA schedules LRAs achieving high-quality placement and global objectives by
formulating the placement of LRAs with constraints as an integer linear program (ILP) (§5.3.2). We
also investigate heuristic alternatives that can trade placement quality for lower scheduling latency in
§5.3.3. In §5.4, we describe MEDEA’s open-source implementation on top of Apache Hadoop YARN,
one of the most widely deployed cluster schedulers used by companies such as Microsoft, Yahoo!,
Twitter, LinkedIn, EBay, Hortonworks, and Cloudera. Our experimental evaluation of MEDEA on a
400-node pre-production cluster follows in §5.5. Finally, in §5.6, we discuss MEDEA’s limitations.

5.1 Overview

Similar to existing cluster managers, MEDEA supports the scalable and low-latency scheduling of
“traditional” applications with short-running containers, also referred to as task-based jobs. Unlike
existing schedulers, MEDEA fully supports the scheduling requirements of LRAs (R1–R4 in §2.3.4),
including their complex high-level constraints that are crucial for achieving effective and high-quality
placement for long-lived containers.

To support both LRAs and traditional applications in shared compute clusters, MEDEA uses a two-
scheduler centralised design for placing containers consisting of: (i) a dedicated LRA scheduler; and
(ii) a traditional task-based scheduler, as shown in Figure 5.1. In MEDEA, the dedicated LRA scheduler
is responsible for placing long-running containers, while accounting for constraints and achieving
placements that satisfy global cluster objectives, such as balancing cluster load or minimising the
number of used machines. Constraints are stored in the constraint manager component that provides
a central view of all the enabled constraints in the cluster. At the same time, the traditional task-
based scheduler places task-based jobs with low latency, reusing existing task-based scheduler
implementations and facilitating the adoption of MEDEA in production settings without the need for a
labour-intensive system reconfiguration. Next we discuss the key components of our design.

LRA interface. When an application owner submits a request to MEDEA, similar to other schedulers,
they specify the required containers (e.g., “10 containers with 2 CPUs and 4 GB RAM each”). These
resource demands, along with some simple constraints (e.g., data locality) are sufficient for task-based
jobs. For LRAs, MEDEA introduces a rich API for expressive placement constraints that can capture
interactions between containers satisfying requirements R1–R2. Applications that use the more
evolved constraints API are handled by the LRA scheduler, while the ones using the simpler container
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Figure 5.1 MEDEA scheduler design

request API are handled by the traditional task-based scheduler. A description of our supported
constraints is given in §5.2.

LRA scheduler. The LRA scheduler uses an online optimisation-based algorithm that, given the
current cluster condition, including already running LRAs and task-based jobs, determines the
efficient placement of newly submitted LRA container requests. The scheduler is invoked at regular
configurable intervals to place all LRAs submitted during the latest interval. Our scheduling algorithm,
described in §5.3, takes into account multiple LRA container requests at once to satisfy their placement
constraints and attain global optimisation objectives (requirement R3). By considering multiple
containers at once, MEDEA achieves placements that lead to significantly fewer constraints violations
compared to considering only a single container request at a time (see §5.5.4).

Task-based scheduler. MEDEA’s two-scheduler design removes the burden of handling complex
placement decisions as part of the scheduling logic from the task-based scheduler. As a result,
the scheduling latency for task-based jobs remains low without extra overheads (requirement R4).
Moreover, this design allows the reuse of existing production-hardened task-based schedulers. This
minimises the changes required in the existing scheduling infrastructure and is crucial for adopting
MEDEA in production.

Constraint manager. To manage placement constraints, we introduce a new central component in
which all constraints—both from the application owners and cluster operators—are stored. This
allows MEDEA to have a global view of all active constraints and to expose them to application owners
or cluster operators that can add, remove or modify constraints.

Scheduling life-cycle. The scheduling life-cycle of an LRA in MEDEA can be summarised in the
following steps: users submit LRAs along with their placement requirements to the LRA scheduler
through the LRA interface (step 1 in Figure 5.1). The LRA scheduler makes placement decisions
considering cluster state and existing constraints stored as part of the constraint manager. Then, the
placement decisions made by the LRA scheduler are passed to the task-based scheduler (step 2).
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Finally, the task-based scheduler performs the actual resource allocations on cluster machines in the
form of containers (step 3).

This approach avoids the challenge of conflicting placements faced by existing multi-level [65, 117]
and distributed [18, 77, 100, 111] schedulers. In these designs, different schedulers operating on
the same cluster state may arrive at conflicting decisions. They then resolve scheduling conflicts by
pessimistic [65] or optimistic [117] concurrency control, or by queueing tasks at worker nodes [18,
77, 100, 111], MEDEA bypasses this problem by having a single scheduler performing the actual
allocations. We further discuss placement conflicts in §5.6.

Performing all allocations through the task-based scheduler also allows us to achieve (weighted)
fairness and respect application priorities across both LRAs and task-based jobs.

5.2 Expressing placement constraints

In §2.3, we discussed how container placement is important for the performance and the resilience
of applications, especially ones with long-lived containers. We also showed that simple affinity and
anti-affinity constraints, albeit beneficial, are not enough to control the level of container collocation
in the cluster. We finally argued that, besides being expressive, placement constraints should also be
high-level, not revealing the cluster infrastructure.

We presented our approach to provide high-level and expressive constraints in §3. It can capture
container interactions as part of a unified dataflow model based on the notion of container tags and
logical node groups. As described in more detail in §3.3, container tags provide a mechanism to refer
to containers in the same or different LRAs (see §3.3.2), while node groups are used to target specific
node sets in the cluster (see §3.3.3).

In this section, we describe how MEDEA, our novel cluster scheduler, can enable powerful placement
constraints leveraging container tags and node groups. Below, we explain the syntax and semantics of
our constraints, followed by a discussion of our constraint model (§5.2.1).

MEDEA allows application owners and cluster operators to specify placement constraints of the
following form:

C = {subject_tag, tag_constraint, node_group}

where subject_tag is a tag of the containers subject to the constraint, tag_constraint is a constraint
of the form {c_tag, cmin, cmax} where c_tag is a container tag, and cmin, cmax are positive integers,
and node_group is a logical node group. To support more complex scenarios, the tag_constraint

can also be a boolean expression formed by multiple tag constraints (we do not support negation yet).

For a constraint C to be satisfied, each of the containers with a subject_tag should be placed on a
node belonging to a node set S ∈ node_group, such that cmin ≤ γS (c_tag) ≤ cmax holds for the tag
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Figure 5.2 LRA placement scenario, with two key/value store instances (KV1, KV2), a streaming
application (S1) and Spark job instances (Spark)

cardinality function of S (see §3.3.2). The number of containers of a target tag c_tag in a particular
node group should be in the range between cmin and cmax for the constraint to be satisfied.

Figure 5.2 shows a small 2 rack cluster with 8 nodes split across 2 upgrade domains. Two instances
of HBase (with tags hbase, KV1, memory sensitive mem), each using 2 containers, deployed, along with
a Storm streaming job, S1, consuming data from KV1. Spark analytics jobs are also utilising resources
in the cluster. Marked with red are the resources used by other workloads in the cluster.

As we demonstrate with several examples below, using a single generic cardinality constraint type
and properly configuring the cardinality range variables cmin and cmax, we can express a wide range of
intra- and inter-application LRA constraints and effectively place a variety of applications running in
our cluster example:

1. We can express affinity constraints with cmin=1 and cmax=∞:

Example: Constraint Caf ={storm, {hbase ∧ mem, 1, ∞}, node} requests each container with
tag storm to be placed in the same node with at least one container with tags hbase and mem.
If we want to restrict the constraint to a specific application instance, for example KV1 with
application1 ID 0023, we would use Caf ′={appID:0023 ∧ storm, {appID:0023 ∧ hbase ∧
mem, 1, ∞}, node}. This constraint is particularly useful to a storm application communicating
with hbase and mem applications; collocating their containers will reduce network costs.

2. We can express anti-affinity constraints with cmin=0 and cmax=0:

Example: Caa={KV2, {KV2, 0, 0}, upgrade_domain} requests each hbase container from
application instance KV2, to be placed in a different upgrade domain from all its other containers.
The anti-affinity constraint here is used to separate containers of applications and minimise the

1For convenience, we automatically attach some predefined tags to each container, e.g., the ID of the LRA that it belongs
to.
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chance of them competing with each other for the same machine resources causing resource
interference.

3. Using other values for cmin and cmax allow us to express generic cardinality constraints:

Example: Cca={storm, {spark, 0, 5}, rack} requests each storm container to be placed in
a rack that has no more than five spark containers deployed. With affinity and anti-affinity
being the two extremes, cardinality allows to define the level of container collocation in a
specific node group. Cardinality is particularly useful in cases in which collocating containers
up to a point is known to be beneficial for the applications.

An interesting additional feature is that we can choose subject_tag to be a static tag, such as
FPGA or GPU, to denote machines equipped with FPGAs or GPUs, respectively.

Moreover, if we want to specify constraints within the same group of containers (for instance
from the same framework) the subject_tag and tag_constraint can use the same tags:

Example: Ccg={spark, {spark, 3, 10}, rack} can be used by the cluster operator to allow no
fewer than three and no more than five Spark containers in a rack. This type of constraint can
be particularly useful when we know that a specific range of collocated containers in a node
group yields the best performance results.

Constraint dependencies. Expressed constraints make extensive use of tags, which depend on
already deployed containers and that do not have to be statically predefined. As a result, both intra-
and inter-application constraints can be expressed. Note, however, that if a constraint must target
a specific container of another deployed application, its application and container ID are required.
To address this problem, application owners can submit the two applications together. Otherwise, an
independent service that exposes the deployed applications, their tags and their containers can be
used.

Compound constraints. To express more complex placements, multiple constraints can be combined
with boolean operators. Such constraints are specified in disjunctive normal form (DNF), allowing
any arbitrary combination of constraints.

Soft constraints and weights. Each constraint can be associated with a weight. An application can
use different weights to determine the relative importance of its constraints, e.g., to request node
or rack affinity, with a preference for the former. By default, the constraints in MEDEA are soft,
i.e., the scheduler will try to satisfy the constraint but will not deny placement in case of constraint
violations (see §5.3). In our encountered practical scenarios, soft constraints capture better the
expected allocation behaviour by users. MEDEA can emulate hard constraints through the use of
weight values.
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5.2.1 Discussion

The constraint syntax above is the result of discussions with multiple companies such as Microsoft
and Hortonworks, and the open-source community. In our model, we wanted to make sure that we
could express all their practical use cases.

Even though we cannot express constraints of the form “spread all spark containers across 3 racks”,
(see §3.4) we can indirectly achieve similar placements using the cardinality constraints i.e., place
up to 3 spark containers on each rack. We decided to not complicate our syntax to support these
constraints.

MEDEA currently only allows constraints on LRAs. However, in §5.6, we discuss how we could allow
task-based jobs to express constraints targeting LRAs, e.g., to have a map/reduce job be placed on the
same rack as a Memcached application.

Note also that in MEDEA we focus on building the scheduling infrastructure that enables place-
ment constraints. Automatically inferring the most appropriate and beneficial constraints for each
application and cluster is the focus of future work.

5.3 Scheduling long-running applications

The previous section introduced the syntax of our placement constraints, relying on the notion of
container tags and node groups to be expressive and high-level. In this section, we describe our
heuristic- and optimisation-based scheduling algorithms that receive resource requests utilising the
constraint syntax as input and provide high-quality container placements as output.

We first give an overview of our scheduling approach in §5.3.1, and then present our ILP-based
scheduling algorithm for LRAs. As we discussed in §2.3.3, container placement is crucial to satisfy
global cluster objectives, such as balancing cluster load and reducing resource fragmented machines.
Our ILP scheduling algorithm optimises placements for such cluster objectives, as we describe
in §5.3.2. Finally, in §5.3.3, we consider heuristic-based algorithms that trade placement quality for
scheduling latency.

5.3.1 Overview

When the LRA scheduler is invoked (at configurable intervals), it considers the following information:
(i) the container requests along with the placement constraints of the newly submitted LRAs; (ii) the
constraints of already deployed LRAs and the cluster operator constraints that are accessible via the
constraint manager component (see Figure 5.1); and (iii) the available resources at each node such as
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Symbol Description
k Number of LRAs to be placed
N Number of cluster nodes
Ti Number of containers of LRA i

R f
n , Ru

n Free, used resources of node n2

m Total number of constraints
wi Weights of components in objective function

Bn,Dn Sufficiently large integers, used in inequalities
Si 1 if all containers of LRA i are placed; 0 otherwise

Xi jn 1 if container j of LRA i placed at node n; 0 otherwise
ri j Resource demand of container j of LRA i

rmin Minimum resource demand
cl,v

min, cl,v
max Violation of cardinalities cmin, cmax for constraint Cl

vl
c Violation for constraint Cl

zn 1 if free resources ≥ rmin after placement; 0 otherwise

Table 5.1 Notation used in ILP formulation (constants appear above the dashed line, variables below)

memory and CPU in the cluster. It then determines the cluster node at which each LRA container
should be placed.

When determining the LRA container placement, our scheduling algorithm attempts to: (i) place
all the containers of an LRA (no half-placed applications); (ii) satisfy the placement constraints of
the newly submitted LRAs as well as the constraints of the previously deployed ones, and the ones
submitted by the cluster operator; (iii) respect resource capacities of all the nodes in the cluster; and
(iv) optimise for global cluster objectives such as balancing cluster load and minimising resource
fragmentation (see §2.3.3).

As mentioned in §5.1, the LRA scheduler is invoked at regular intervals that are configured by the
cluster operator. Longer intervals may increase the scheduling latency for LRAs, but can allow
multiple LRAs to be considered together and achieve better container placements, thus improving
placement quality. We experimentally study this trade-off between scheduling latency and placement
quality in §5.5.

5.3.2 ILP-based scheduling

LRA placement is an optimisation problem under a set of constraints, and can thus be expressed
as an integer linear programming (ILP) problem. For completeness, Figure 5.3 provides the ILP
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Figure 5.3 ILP formulation

formulation, relying on the notation from Table 5.1. Below, we give a more intuitive description of
the optimisation problem.

Consider k LRAs that are submitted by application owners in the latest scheduling interval and must
be scheduled on a cluster that consists of N-nodes.

Objective. Our objective function as defined by Equation 5.1 and has three components: (1) it aims
to place as many of the k LRAs as possible; (2) it minimises the number of constraint violations of

2For simplicity, we use a single scalar value for the cluster resources. However, our model can be extended to use a
vector of resources instead, i.e., having separate equations for each resource type.
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these LRAs (more on this below); and (3) it avoids cluster resource fragmentation by minimising the
number of nodes left with too few resources (Equation 5.5).

Note that in order to combine these components linearly, independently of their range or units, we
normalise each component to take values from 0 to 1. We also use weights (w1–w3) to assign different
priorities to components. The cluster administrator is responsible for setting these weights based
on the desired cluster behaviour. In Equation 5.1, we include the components that we use in our
evaluation clusters within Microsoft, but additional ones can be easily added, such as load imbalance
or minimising the number of nodes used for placement.

We also make sure that each container of an LRA is placed at most once, respecting node capacities.
More importantly, we make sure that we place either all or none of an LRA’s containers, as it would
be more challenging to deal with half-placed applications (Equation 5.2 to Equation 5.4).

Placement constraints and violations. For each placement constraint that belongs to a newly
submitted or already deployed LRA or to the cluster operator, we use two inequalities to impose the
constraint semantics (see §5.2): one for the minimum cmin and one for the maximum cmax cardinality
(Equation 5.6 and Equation 5.7). In case of a constraint violation, which is more common in heavily
utilised clusters or when dealing with restrictive constraints, we also quantify the extend of the
violation relative to the values of cmin and cmax using Equation 5.8. By minimising the extend of
constraint violation of an LRA, we can guarantee that even when the ideal placement cannot be
achieved, our algorithm provides the best placement alternative.

Resolution of constraint conflicts. When placing an LRA, the set of constraints considered may
include conflicts, e.g., one constraint requesting no more than three Spark containers in a rack, and
another one at least four. In such cases, cluster operator constraints are always considered higher-
priority and override the application constraints, as long as they are more restrictive. In case of
conflicting application constraints that are of the same priority, our ILP formulation favours the
placement that minimises the number of violations.

Compound constraints. To support more complex, compound constraints that are expressed in
disjunctive normal form, or DNF (§5.2). MEDEA treats each DNF conjunct as a separate constraint
and adds an extra inequality in the formulation. As a result, MEDEA can guarantee that at least one of
these constraints is finally met.

5.3.3 Heuristic-based scheduling

Even though MEDEA uses the ILP scheduling algorithm only to place the LRA containers that are
associated with placement constraints, as the cluster size or the constraint complexity increases or
under high cluster load, the integer linear problem complexity may lead to high scheduling latency.
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To avoid compromising placement quality by terminating the ILP solver early [133], we also consider
simpler scheduling approaches using heuristics.

We experiment with our heuristics in order to examine whether simpler approaches than ILP are
sufficient to achieve high quality LRA placements. Next, we discuss the ones that gave us the best
results in practice. An experimental comparison between the heuristics and the ILP scheduling
algorithm is given in §5.5.

The tag popularity heuristic prioritises the placement of containers that are associated with tags

appearing in the largest number of constraints. In this heuristic, we track the number of times each tag
is associated with existing constraints across the whole cluster, as stored in the constraint manager
component. When new LRA container requests are received, they are ordered based on their most
popular tag (highest number of occurrences) and the top ones are satisfied first. The intuition is that
such container requests with popular tags often have more complex constraints and are thus harder to
place in a cluster.

The node candidates heuristic first calculates the number of nodes Nc on which a given container

is allowed to be placed, subject to all placement constraints. Then, it places the container with the
smallest Nc, as that container has the least placement flexibility. Note that Nc values need to be
recalculated after each container placement. We avoid this by recalculating Nc only for containers
whose placement opportunities were affected in the previous iteration. We keep track of the affected
containers by their tags, so a container placed in the previous iteration only triggers the recalculation
of node candidates for the containers with tags in common.

5.4 Implementation

In this section, we describe how our two-scheduler design with support for placement constraints can
be realised in a system implementation as part of an existing cluster manager. Our implementation of
MEDEA is built as an extension to Apache Hadoop YARN [135], following the design described in
§5.1. Moreover, we open-sourced our implementation, which is now included in the Apache Hadoop
3.1 release with the detailed open-sourcing effort tracked in [145].

We start by describing the main components of YARN’s architecture, as shown in Figure 5.4. YARN
follows a centralised architecture where a single logical component, the Resource Manager (RM),
allocates resources on Node Managers (NMs) for applications submitted to the cluster. Applications
submit generic resource requests that are handled by the RM, while any specific scheduling logic
required by each application is implemented as part of the Application Master that any framework
can extend. This enables YARN to support a wide variety of applications using the same centralised
resource management component with generic scheduling logic.
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Figure 5.4 MEDEA architecture

Resource Manager. The main role of the RM is to arbitrate resources among submitted applications.
RM usually runs on a dedicated cluster machine, while for high-availability multiple RMs can be
deployed, with one of them serving as the master. The node managers periodically report their status
to the RM through a heartbeat mechanism for scalability. At any point in time, the RM maintains
all the pending resource requests of all submitted applications. Given the cluster state and based on
application demand, priorities, and sharing policies (e.g., fairness), the RM scheduler is responsible to
find the best match of cluster machines to application requests. It then hands leases on containers to
applications. A container forms a package of resources on a particular node (e.g., 4 GB of RAM and
2 CPU on NODE_1).

YARN includes two publicly available scheduler implementations, the FAIR Scheduler [147] and the
Capacity Scheduler [146]. The FAIR Scheduler imposes fairness across applications; the Capacity
Scheduler focuses on ensuring predefined shares of cluster resources to groups of users (capacity
planning). When applications are submitted to the RM and before they are considered by the
scheduler, they also go through an admission control phase. During that phase, the user credentials of
an application are validated and a variety of operational checks are performed.

Application Master. Each submitted application initiates an AM, which acts as the resource orches-
trator for the application. The AM manages all the resource life-cycle aspects of the application,
including managing the execution flow e.g., initiating reducer containers after map tasks are done,
dynamically increasing and decreasing resource consumption according to the application needs,
and handling faults. The AM can run arbitrary user code, written in a plethora of programming
languages. By delegating the above functionality to the AM component, YARN’s architecture can
achieve significant flexibility and also scalability. Complex logic can be part of the AM.
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To run an application, an AM typically utilises resources from multiple nodes in the cluster. To obtain
containers, the AM issues resource requests to the RM via the heartbeat mechanism. When the RM
scheduler assigns a resource to the AM, it also generates a lease. The AM is then notified and presents
the container lease to the NM for launching the container on that machine. The NM authenticates the
lease and initiates the container localisation and execution process.

Node Manager. Each worker node in the cluster runs a daemon process called a node manager. Node
managers are responsible for: (i) launching containers and managing their life-cycle including start,
end, status, and killing of containers on each machine; and (ii) monitoring resource availability at the
host machine such as available CPU, disk and memory metrics, while reporting possible faults.

MEDEA. To implement MEDEA, we mainly extend YARN’s resource manager. Figure 5.4 shows
in blue the new components added to YARN’s RM, namely the constraint manager (CM) and the
LRA scheduler. The CM component is responsible for storing container tags and node groups, along
with application-specific and cluster-wide placement constraints as described in §5.2. The LRA
scheduler determines the placement of LRA containers to nodes, given the placement constraints and
the cluster condition. To this end, it uses either the ILP-based (relying on the CPLEX solver [28])
or the heuristic-based scheduling algorithms from §5.3. For the task-based scheduler that handles
applications with no placement constraints, we use YARN’s Capacity Scheduler [146]. The FAIR
Scheduler [147] can be used instead to ensure fairness across applications, simply by changing a
configuration parameter.

LRA life-cycle. Figure 5.4 also shows the life-cycle of an LRA in MEDEA:

1. The client first submits an LRA to the cluster, including a set of tags for its containers and a set
of placement constraints.

2. When the Resource Manager receives the LRA, the Constraint Manager validates and stores
the associated constraints, and then the job-specific application manager (AM) is initialised.

3. The AM petitions the RM for cluster resources based on the resource requirements of its
containers: These LRA requests are intercepted by a special pre-processor component (omitted
from the figure) and are then forwarded to the LRA scheduler.

4. The LRA scheduler takes into account the relevant constraints, the cluster’s node groups and
the current container tags stored in the CM, as well as the available resources in the cluster. It
finds the best placement for the LRA containers based on the pre-configured objective function
(see §5.3.2). This placement is then passed to the task-based scheduler that performs the actual
allocation (see §5.1).

5. When the task-based scheduler performs the actual container allocation, the RM notifies the
AM about the new container leases.
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6. The AM finally uses the leases to dispatch the containers of an application for execution to the
node managers.

5.5 Evaluation

In this section, we evaluate MEDEA, our cluster manager prototype with explicit support for rich
placement constraints that can achieve high-quality container placement for LRAs as well as fast
container allocations for traditional task-based jobs. MEDEA is the first cluster manager that provides
support for the expressive constraints of our unified dataflow model to effectively place its long-
running containers. We first give an overview of the section.

Overview of evaluation. We first describe the experimental set-up of our evaluation along with
the different systems, workloads, and placement constraints used for our comparisons (§5.5.1). We
then study the impact of MEDEA in a real cluster environment and analyse the benefits in terms of
application performance and resilience compared to existing state-of-the-art systems (§5.5.2–§5.5.3).
We also focus on MEDEA meeting our pre-defined global cluster objectives including resource
fragmentation, load balancing and high placement quality, as LRAs occupy an increasing amount
of resources in the cluster, as constraints grow in complexity, or as we increase the period of our
scheduling actions (§5.5.4). Finally, using simulations, we investigate whether MEDEA can maintain
low scheduling latency as clusters grow in size and as cluster utilisation increases (§5.5.5). In the
experiments below, we want to study:

• the impact of MEDEA on LRA performance (§5.5.2) and resilience (§5.5.3) as part of a real
production environment with shared cluster workloads;

• the achieved global objectives of MEDEA (§5.5.4) and the different trade-offs between our
optimisation based algorithm and the variety of heuristic-based ones; and

• the scheduling latency of our LRA scheduler as we increase the percentage of LRAs in the
cluster and as we scale the simulated cluster size up to 5000 machines (§5.5.5).

5.5.1 Experimental set-up

Cluster set-up. To evaluate MEDEA on a real deployment, we use a pre-production cluster within
Microsoft consisting of 400 machines grouped into 10 racks. Each machine has a dual quad-core
Intel Xeon E5-2660 CPU with hyper-threading (HT), 128 GB of RAM, and ten 3 TB data drives, not
configured in a RAID (JBOD). The network supports 10 Gbps within and 6 Gbps across racks.

Simulation. To experiment with multiple configurations and an even higher number of machines,
we use a simulator that executes MEDEA with simulated machines, merely ignoring RPCs and
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task execution. To drive the simulations, we use GridMix [59], an open-source benchmark that
uses workload traces for generating synthetic jobs for Hadoop clusters. We extend its synthetic
workload functionality to produce LRAs with custom constraints. For the simulation, we are also
using Tez [129] as the execution framework for the short-running batch jobs.

Workload. To emulate a real shared cluster workload, we use the following applications:

• HBase [62] application instances, with ten workers each. We use the YCSB benchmark [26]
with one billion records, for a total of 1 TB of data, and submit six YCSB workloads, A–F,
using one YCSB client per HBase instance. YCSB can be configured to produce specific access
pattern, I/O size, and read/write ratios, and performs 1 KB accesses from a single table with
configurable read/write ratios using: Zipfian (featuring record popularity), Latest (featuring
record freshness), or Uniformly-random probability distributions. The details of the particular
workloads (A–F) can be found in Table 5.2.

• TensorFlow [1] framework instances, each with 8 workers and 2 parameter servers. For
TensorFlow, we run machine learning workloads that involve one million iterations per run.

• Batch Tez [129] task-based jobs, generated using the GridMix synthetic workload generator [59],
resembling some production workloads within Microsoft. For the generation of production
workloads, we are using traces similar to the ones used in the evaluation of Yaq [111] cluster
scheduler, each consisting of 100 tasks per job.

For the deployment of the above applications, we use <2 GB, 1 CPU> containers for the HBase and
TensorFlow workers, <4 GB, 1 CPU> containers for the TensorFlow master-workers, and <1 GB,
1 CPU> containers for the rest.

Workload Operations Distribution Application

A-Update heavy Read: 50%
Update: 50%

Zipfian
User session store recording

user’s recent actions

B-Read heavy Read 95%
Update 5%

Zipfian
Photo tagging: add a tag is an update,

but most operations tag reads

C-Read only Read 100% Zipfian User profile cache, where profiles
are constructed elsewhere

D-Read latest Read 95%
Insert 5%

Latest
User status updates, people want

to read the latest statuses

E-Short ranges Scan 95%
Insert 5%

Zipfian
Uniform

Threaded conversations, each scan
is for the posts in a given thread

F-Read write Read 50%
Write 50%

Zipfian
User database, user records are read-

modify or store user activity

Table 5.2 YCSB workload properties (A–F) [26]
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Placement constraints. For the deployment of the LRAs, we also assume some specific placement
constraints. Unless otherwise specified, we use the following placement constraints when deploying
the HBase and TensorFlow LRA instances.

• To minimise network traffic and reduce network costs, we use the intra-application affinity
constraint that all workers within the same HBase or TensorFlow application instance should
reside on the same rack.

• To minimise resource interference across applications that compete for the same resources, we
impose the inter-application cardinality constraint that no more than two HBase, and no more
than four TensorFlow workers, are placed on the same node.

• For the HBase application, we request an extra node affinity constraint between the HBase
Master and the Thrift Server to reduce network communication costs. We also request a
node anti-affinity constraint between the HBase Master and Secondary to increase application
resilience.

Note here that the maximum cardinality used for each application was decided empirically after
experimenting with different values. Our goal in MEDEA is to build the scheduling infrastructure for
expressive placement constraints and not infer them (see also the discussion in §5.2.1 on automatically
inferring constraints).

Comparisons. In our evaluation, we compare the following systems:

• Medea-ILP (or Medea): This is our optimisation-based (ILP) scheduling algorithm, as
described in detail in §5.3.2. For the objective function (Equation 5.1), we use weights w1=1,
w2=0.5 and w3=0.25, i.e., we give higher priority to maximising the number of scheduled
LRAs and then to minimising constraint violations and resource fragmentation. For triggering
the scheduling algorithm, we use an interval of 10 secs.

• Medea-NC and Medea-TP: These are our heuristic-based algorithms as described in §5.3.3.
For the heuristic-based scheduling algorithms, we still consider multiple LRAs at once, similar
to Medea-ILP, using a 10 sec scheduling interval.

• Serial: This is another heuristic-based algorithm that, unlike Medea-NC and Medea-TP,
does not order the LRA container requests when making scheduling decisions. This algorithm
is also using the 10 sec scheduling interval.

• YARN: This is our constraint-unaware production-ready baseline. We use YARN, the default
container scheduler within Microsoft’s analytics clusters. Our novel scheduler, MEDEA, is also
implemented on top of YARN.
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• J-Kube: Kubernetes [82] is the most complete system to date for supporting placement
constraints (see Table 2.2). As it follows a different architecture than MEDEA, to have a fair
comparison, we implement its scheduling algorithm as part of MEDEA’s LRA scheduler. The
main differences with MEDEA is that: (i) Kubernetes considers one container request at a time
during scheduling; and (ii) supports affinity and anti-affinity but no cardinality constraints.

• J-Kube++: This is the same scheduler implementation as J-Kube above, but we extend its
functionality to support cardinality constraints. Unlike affinity and anti-affinity constraints,
cardinality can control the level of container collocation and interference, as we showed
in §2.3.1, and are thus particularly important.

Our implementation of MEDEA is based on Apache Hadoop 2.7.2 [5]. For the deployment of LRAs
in the cluster, we use Apache Slider 0.92.0 [118].

5.5.2 Application performance

We first want to study the impact of MEDEA on end-to-end application performance as part of a
real environment. For this experiment, we use the 400-node pre-production cluster described above
and deploy 45 TensorFlow and 50 HBase LRA instances using YARN, J-Kube, J-Kube++, and
MEDEA. At the same time, we submit GridMix task-based jobs using production traces that account
for 50% of the cluster’s memory total.

The goal for MEDEA is to achieve high-quality placement for the containers of long-running applica-
tions that can improve the performance and thus reduce the total runtime of those applications. At the
same time, the improved LRA placement and runtime should not affect the traditional task-based jobs
that are running in the cluster.

The runtimes for LRAs are shown in Figure 5.5a to Figure 5.5f; Figure 5.5g shows the runtimes for
task-based jobs. In more detail, Figure 5.5a illustrates the runtimes for our machine learning workflows
on TensorFlow; Figure 5.5b shows the runtimes for data insertion on HBase; and Figure 5.5c to
Figure 5.5f show the runtimes of Workload A to Workload D on HBase, respectively. To visualise
the distribution of runtimes, we use box plots in our figures in which the lower/upper part of the box
represents the 25th and 75th percentiles, respectively; the middle line is the median; and the whiskers
are the 5th and 99th percentiles, respectively.

As we can observe in Figure 5.5a–Figure 5.5f, for all LRA workloads, Medea consistently outper-
forms J-Kube across all percentiles. This is mainly due to J-Kube’s lack of support for cardinality
constraints — anti-affinity constraints alone are not sufficient to achieve the best application perfor-
mance (see §2.3.1). For instance, the median runtime is 32% longer on J-Kube for TensorFlow and
23% longer for HBase Workload A compared to Medea, while the rest of the HBase workloads yield
similar benefits.
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Figure 5.5 Application performance (lower is better)
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To further study whether cardinality is the only reason for Medea s’ benefit, we extend J-Kube

with support for cardinality constraints but still consider a single container request at a time. The
resulting system with support for cardinality is J-Kube++. In Figure 5.5a–Figure 5.5f, we observe
that Medea still has improvements of up to 28% when compared to J-Kube++. More importantly,
J-Kube++ leads to significant variability in runtimes, which is a detrimental issue in production
clusters [75]. Even thought the 5th percentile of the distribution in J-Kube++ is similar to Medea,
the 99th percentile is up to 54% higher. By considering only one container request at a time, J-

Kube++ often leads to placements with many constraint violations (see §5.5.4), which are also not
consistent across application instances. For instances with many violations, the benefit of Medea is
higher.

Medea’s benefits are even more pronounced when compared with the production-ready YARN

configuration, that does not support constraints. MEDEA can achieve a runtime that is up to 2.1×
shorter for the median and up to 2.4× shorter for the 99th percentile compared to YARN. More
importantly, YARN leads to high runtime unpredictability, as some constraints are randomly satisfied
for some LRAs and violated for the majority of them.

Finally, one of the main requirements for MEDEA was that the high-quality placement for LRAs
should not come at the expense of task-based jobs running at the cluster. Figure 5.5g shows that
Medea’s benefits do affect task-based jobs, as the runtimes of task-based jobs from production
workloads are consistently similar across all schedulers.

Overall, in a 400-node pre-production cluster, MEDEA significantly improves both the performance
and the predictability of LRAs compared to state-of-the-art schedulers such as YARN and Kubernetes,
without affecting the performance of task-based jobs.

5.5.3 Application resilience

Next, we want to assess the effectiveness of MEDEA for improving application resilience. Using
MEDEA, we want to achieve high-quality placements for LRAs that guard them from losing multiple
containers at once a situation that can potentially affect their performance and recovery.

For this experiment, we use real unavailability data from a Microsoft production cluster that is used
by analytics applications. The cluster comprises a few tens of thousands of machines with similar
hardware characteristics that are grouped into 25 logical node groups, also known as service units
(see §2.3.2).

For each service unit we collect the number of unavailable machines due to failures, machine upgrades,
maintenance, etc. We collect data for each hour over a period of 15 days. Then we generate LRAs,
with 100 containers each, and place them with the simple intra-application anti-affinity constraint
that containers of the same LRA should be spread across service units, using the MEDEA and J-
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Figure 5.6 Application resilience over 15 days

Kube schedulers. Given the machine unavailability captured in our collected data and the container
placements achieved by the schedulers, we pick for each hour the LRA with the highest percentage
of unavailable containers. The intuition here is that a scheduler that can achieve a good placement
without violating the anti-affinity constraint will not place more than 4 container on the same service
unit. As a result, when a service unit fails, the LRA will not lose more than 4 containers at once.

As shown in Figure 5.6, unlike J-Kube, MEDEA maintains a maximum unavailability of containers
close to 4, even for higher percentiles. In general, MEDEA’s placement leads to fewer anti-affinity
constraint violations compared to J-Kube, and this leads to lower container unavailability across all
percentiles. MEDEA improves the median and maximum unavailability percentage by 16% and 24%,
respectively, compared to J-Kube, which is crucial for a production environment.

5.5.4 Global cluster objectives

We now focus on MEDEA’s ability to satisfy global cluster objectives, as described in §2.3.3, using
our scheduling algorithms presented in §5.3. In this experiment, we want to study the behaviour of
various scheduling algorithms under different scenarios varying: LRAs and task-based jobs running in
the cluster, LRA algorithm periodicity, and LRA constraint complexity. We compare the scheduling
algorithms by their ability to reach global objectives such as balancing cluster load, minimising cluster
resource fragmentation, and constraint violations.

For the experiments below, we use a simulated cluster of 500 machines with 8 CPU cores and 16 GB
RAM each, split across 10 racks. We generate HBase instances using the constraints mentioned
in §5.5.1 (intra-application rack affinity across workers, inter-application cardinality of 2 workers
within nodes, intra-application master-thrift server node affinity, intra-application master-secondary
node anti-affinity). We conduct five experiments and observe for each scheduling algorithm: (i) the
percentage of containers that violate constraints; (ii) the percentage of nodes that are fragmented (i.e.,
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Figure 5.7 Load balance with varying LRA utilisation

have less than 1 core/2 GB RAM and are not fully utilised); and (iii) the coefficient of variation of
nodes’ memory utilisation as a proxy for load imbalance.

First, we vary the number of submitted LRAs, accounting for a total cluster memory utilisation
ranging from 10% to 90% — no task-based jobs are used in this experiment. Our results are shown
in Figure 5.7a, Figure 5.7b, and Figure 5.8a. The scheduling interval for our Medea algorithms
with periodicity including Medea-ILP, -NC, and -TP is such that two LRAs are considered on each
scheduling cycle.

As we can observe in Figure 5.7a, all MEDEA algorithms, as well as J-Kube, lead to a low number
of fragmented nodes, except under high utilisations (90% of cluster resources). An exception is the
Serial scheduling algorithm that consistently faces an increased number of fragmented nodes. In our
experiments, we notice that, by considering requests sequentially (one at a time), it is not uncommon
to end up in a situation in which the algorithm is forced to place a container in a machine that is close
to fragmentation. This happens, for example, when the container to be placed is marked with an
affinity constraint and the target container is already running on the highly utilised machine.

As shown in Figure 5.7b, all algorithms, apart from Serial, perform similarly in terms of cluster
load imbalance. Again, considering container requests sequentially can lead the algorithm into a
situation which it is forced to choose a machine that is over-utilised based on (bad) previous scheduling
decisions. Notice here that load imbalance is more pronounced for low utilisations — each scheduling
decision has more impact compared to higher utilised clusters where the load evens out.

Medea-ILP, thanks to its objective function and the consideration of multiple container requests
at a time, leads to almost no constraint violations, even for 90% utilisation, as we can observe
in Figure 5.8a. In contrast, our heuristic algorithms result in 10%–20% of violations, even for low
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Figure 5.8 Constraint violations

utilisation, despite also considering multiple requests at a time. J-Kube, handling one request
at a time, exhibits even more violations. Note that, for all schedulers, constraint violations do not
significantly increase with utilisation, as most of our constraints in this experiment are intra-application
i.e., placements mostly violate the stricter intra-application constraints.

We also measure constraint violations using the the same simulated cluster as above and LRAs with a
stable utilisation of 10%. At the same time, we use task-based jobs with varying utilisation from 10%
to 60%. In Figure 5.8b, we observe similar trends for constraint violations as above: Medea-ILP

yields less than 10% of violations even for the higher utilisation; the other scheduling algorithms lead
to more than 15% and up to 40% of violations. Even though J-Kube effectively balances cluster
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load and minimises node fragmentation, it cannot optimise the placement of containers and leads to
increased constraint violations compared to Medea-ILP.

In the next experiment, we use the simulated cluster and vary the scheduling interval, keeping a
stable 10% LRA utilisation. By changing the scheduling interval, we affect the number of LRAs
considered at each scheduler invocation (periodicity in the figure). With periodicity of 1, similar to the
other scheduling algorithms, Medea-ILP also exhibits violations, as shown in Figure 5.8c. However,
increasing periodicity reduces violations for Medea-ILP and -NC. This observation highlights the
importance of periodicity — considering multiple container requests at a time for satisfying inter-
application constraints.

Finally, we perform an experiment using the simulated cluster and LRAs that consistently utilise
10% of the cluster. We gradually increase the complexity of LRA placement constraints (complexity
X means that we have affinity or cardinality inter-application constraints involving up to X LRAs).
Figure 5.8d reports the violations for constraints, as we vary the constraint complexity. We can
observe in the figure that, even with constraints involving 10 LRAs, Medea-ILP results in less than
10% of violations. Medea-NC and -TP heuristics also perform relatively well with less than <20%
of violations. In contrast, J-Kube has more than 20% of violations. By considering only one request
at a time, it is difficult to satisfy the increasing complexity of inter-application constraints.

5.5.5 Scheduling latency

Finally, we want to investigate how our LRA scheduler scales in terms of scheduling latency and how
it affects the scheduling of short-running jobs. We first use different scheduling algorithms to place
LRAs and vary the simulated cluster size from 50 to 5000 machines.

Then, we focus on our best-performing Medea-ILP algorithm and schedule LRAs, as we increase
the fraction of resources used by LRAs in the cluster. To conclude, we study how MEDEA impacts
the scheduling of short-running containers using the publicly available Google cluster trace [139].

For MEDEA, we want the LRA scheduler to maintain low scheduling latency even at an increasing
number of placed LRAs, or numbers of machines in the cluster. At the same time, the scheduling
latency of short-running jobs should remain unaffected.

First, we use an increasing cluster size from 50 to 5000 machines, and we generate LRAs to consume
20% of the total cluster resources each time. Then, we measure the average scheduling latency
for placing all containers of an LRA, as shown in Figure 5.9. As we can observe in the figure, our
heuristic algorithms achieve the lowest latencies, with Medea-NC being more expensive. J-Kube

leads to higher latencies, due to the frequent scoring of nodes, even though we believe we can further
optimise our implementation via smart caching of node scores. Although Medea-ILP has the highest
latency, even with 5000 machines, the average latency is 850 ms, which is low compared to the typical
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Figure 5.9 Varying cluster size

execution times of LRAs (hours, days or months). For larger clusters in which lower scheduling
latency is a requirement, Medea-NC and J-Kube can yield reasonable compromises in terms of
latency and quality. In practical scenarios, Medea-ILP is the better choice because it combines
relatively low latency with better placement quality.

Our two-scheduler approach in MEDEA is different from existing schedulers such as TetriSched [133]
that use an ILP scheduling algorithm to place all requests and not just the ones with constraints. As
we discuss below, this can be problematic under high load because the scheduling latency or the
placement quality gets compromised. The Firmament [57] scheduler also follows similar logic using
a single graph-based scheduler to support placement constraints and place all container requests.
However, adding more machines or constraints would require (an exponential number of) additional
vertices in the scheduling graph, consequently increasing scheduling latency.

In the following experiment, we want to assess the benefit of our two-scheduler design. For this
purpose, we compare Medea-ILP using with a modified version that uses the solver for scheduling
both long- and short-running containers in the cluster. We call this modified scheduler version ILP-ALL.

To study the benefit our two-scheduler design, we use a 256-machine simulated cluster and generate
LRAs and task-based jobs that result in a fully-utilised cluster. At the same time, we increase the
percentage of resources occupied by LRAs from 0% to 100% — 0% practically means that all cluster
resources are fully occupied by task-based jobs and 100% that all resources are used by long-running
applications.

As we vary the fraction of cluster resources used by LRAs, we measure the total scheduling latency
for LRAs, as shown in Figure 5.10. The single-scheduler design (ILP-ALL) using the ILP scheduler
to place both short- and long-running containers, results in an increased scheduling latency. More



110 Medea: A Cluster Scheduler with Rich Placement Constraints

0 20 40 60 80 100
Percentage of services

0

2

4

6
To

ta
ls

ch
ed

ul
in

g
la

te
nc

y
(s

ec
) ILP ALL

MEDEA

Figure 5.10 Two-scheduler benefit

precisely, the scheduling latency of ILP-ALL is 9.5× worse than MEDEA when LRAs utilise 20% of
the cluster, while it is less than half when LRAs occupy 90% of cluster resources. This justifies the
rationale behind MEDEA’s use of the more expensive ILP solver to schedule only for the applications
that affected by container placement the most, LRAs.

Finally, we study the impact of MEDEA’s two-scheduler design on scheduling short-running containers
using the Google cluster trace [139]. The goal of this experiment is to show that the LRA scheduler is
not on the critical path of the task-based scheduler, and thus does not affect the scheduling latency
of task-based (non-LRA) applications. To this end, we use the Google trace, which we speed up by
a factor of 200× to increase the load on the scheduler in terms of scheduling decisions per second.
Another reason for speeding up the trace is to examine whether the scheduler can keep up with this
load in the same way as the original YARN scheduler. For this experiment, we simulated a 12,500
node cluster, as dictated by the trace.

In Figure 5.11, we report the scheduling latency achieved by Medea-ILP and YARN when placing
the trace tasks using box plots in which the lower/upper part of the box represents the 25th and
75th percentiles, respectively; the middle line is the median; and the whiskers are the 5th and 99th

percentiles, respectively. In the case of MEDEA, we add an additional 10% scheduling load coming
from LRAs (scheduled by the ILP algorithm). As we can observe in the figure, despite the additional
LRA load, MEDEA achieves scheduling latencies similar to those of YARN. For the lower percentiles,
the latency distributions are similar for MEDEA and YARN while for the upper 99th percentile the
difference is less than 20%. This shows that MEDEA’s LRA scheduler does not impact the operation
of the underlying task-based scheduler.
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5.6 Limitations and discussion

In the next paragraphs, we highlight some of the limitations of MEDEA and discuss how they can be
addressed as part of future work.

Placement conflicts. Given MEDEA’s two-scheduler design described in §5.1, the cluster state may
have changed from the moment an LRA is submitted until its containers are allocated, not allowing
the placement of the LRA due to conflicting allocations by task-based jobs. Possible solutions to
this problem are: (i) killing containers of task-based jobs to free up resources for LRAs; (ii) relaxing
some LRA constraints, e.g., by placing an LRA container on the corresponding rack instead of the
specified node; and (iii) allowing LRAs to reserve cluster resources with constraints in advance.
Given that these approaches could significantly impact the execution of task-based jobs and increase
the scheduler’s complexity. In the current version of MEDEA, we opt for the simpler approach of
resubmitting the LRA in case of conflict. However, we can easily support container preemption or
reservations in the future.

Container migration. Another interesting future direction is extending the ILP formulation to
also allow container migration. This direction shares commonalities with some VM scheduling
approaches that address resource overload and interference issues or non-viable placements through
VM migration [63, 140]. To do so, the extended ILP algorithm will have to take into account the
migration cost of existing long-running containers and their state. The objective function will include
a new component with a separate weight targeting to minimise the number of executing long-running
containers that will have to be migrated.
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Container migration could be used as a reactive mechanism combined with MEDEA’s proactive
approach in achieving high quality LRA placements. This mechanism can be particularly useful under
high cluster load, when LRAs enter and leave the system at high rates or when their resource demands
change over time. As part of future work, we can extend our ILP formulation to enable migration and
account for the extra migration cost in our objective function.

Constraints for task-based jobs. Our focus in MEDEA is on supporting placement constraints and
providing high-quality placement for LRAs. However, task-based jobs may also require placement
constraints to increase their performance (see also §5.2.1). These constraints can refer either to other
task-based jobs or LRAs. We can address this by extending the task-based scheduler in MEDEA to
support our expressive placement constraints in a heuristic fashion with no optimality guarantees. As
a result, neither the scheduling latency of task-based jobs nor overload the (ILP-based) LRA scheduler
would be affected.

Resource isolation. Collocated containers running on the same machine can still interfere with
each other, even when achieving the most optimal container placement with MEDEA. Existing
schedulers mitigate interference between collocated workloads by throttling low priority jobs in
favour of LRAs [153], detecting interference though profiling [38, 39, 40], or using hardware-based
isolation mechanisms [86]. In MEDEA, we are currently isolating containers on the same machine
using cgroups [84]. However, in the future, several of the above techniques can be combined with
MEDEA to achieve even better resource isolation.

5.7 Summary

In this chapter, motivated by the largely unexplored long-running application placement requirements,
we presented MEDEA, a system for efficiently scheduling applications with long-running contain-
ers (LRAs). MEDEA is the first system to fully support complex high-level constraints that capture
interactions both within and across LRAs. Placement constraints are crucial for the performance
and resilience of applications. MEDEA follows a two-scheduler design, using an optimisation-based
algorithm for high-quality placement of LRAs with constraints, and a traditional scheduler for placing
task-based jobs, utilising shorter-running container, with low scheduling latency.

Our experimental evaluation highlights the benefits of MEDEA when placing LRAs. On a 400-node
pre-production cluster, MEDEA reduces median runtime of HBase and TensorFlow workloads by
up to 32% compared to our implementation of Kubernetes’ scheduling algorithm (J-Kube) and by
2.1× compared to YARN production-ready scheduler, while significantly reducing workload runtime
variability too. At the same time, MEDEA improves application unavailability by up to 24% compared
to J-Kube. MEDEA leads to constraint violations of less than 10%, even for complex inter-application
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constraints involving 10 LRAs. More importantly, it does not affect the scheduling latency or the
performance of task-based jobs.





Chapter 6

Conclusions and future work

Over the past years, several distributed processing systems were developed by large internet companies
and the community to facilitate the increasing data processing needs. These big data systems were
used to analyse large volumes of data using clusters of commodity machines. Today, similar big
data technologies are widely adopted by a variety of sectors, ranging from finance and healthcare to
research and entertainment. As these technologies are becoming an integral part of our daily lives by
predicting climate change and extreme weather, helping people with disabilities live better, or even
assisting epidemiologists detect, analyse and treat deadly diseases, this wide adoption is only expected
to grow in the future [95]. This growth will stress the limits of existing big data systems that will have
to efficiently utilise compute resources and process even greater volumes of data.

The broad applicability of data-parallel processing systems has enabled scientists across a variety of
domains ranging from systems and database research to artificial intelligence, machine learning and
statistics to speed up computation and perform experiments at scale. As a side effect, it also led to the
evolution of processing systems from single purpose engines to unified data processing platforms,
combining large-scale data processing with state-of-the-art machine learning, query optimisation and
artificial intelligence as part of a single data processing system [123]. Modern unified processing
systems now expose user-friendly programming interfaces for developers to express a variety of
computation as part of the same processing engine and then execute in the cluster as part of shared
long-running containers.

At the same time, data processing platforms entail large compute clusters to be able to scale and
accommodate the increasing processing demands putting more pressure in existing cluster infrastruc-
tures. Cluster managers that were traditionally carrying out the on-demand allocation of resources
to simple analytics jobs, now have to deal with a plethora of different workloads, including the
increasingly popular LRAs. LRA workloads comprise of modern applications and services that utilise
long-running containers and have a sustained impact on cluster resources. Workloads with longer- or
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shorter-lived containers are now consolidated on shared compute clusters to increase the effective
utility extracted from existing resources.

Even though over the past few years big data systems and technologies have evolved to support an
increasing variety of workloads, there are still many opportunities to further improve the abstractions,
features, performance and efficiency of these systems. In this thesis, we argued that to efficiently
support modern cluster workloads and more precisely the growing class of LRAs, we need to bridge
the gap between the needs of modern data-centre applications and traditional big data system designs.
Big data systems can be general purpose and application-agnostic but at the same time they should
be able to provide the right abstractions and logic to effectively accommodate modern application
requirements.

LRA workloads require precise control of their container placement to improve performance and
resilience. However, existing cluster managers that consolidate a variety of workloads in shared
compute clusters ignore the complex placement needs of modern applications. Unified dataflow
applications, a particular type of LRAs, combine heterogeneous computation as part of the same
application while utilising the same shared long-running containers during execution. Current data
processing frameworks for unified applications lack complete support and understanding of their
diverse execution requirements.

This thesis proposed a new model for data processing, unified dataflow graphs with placement
constraints. Our model permits the execution of applications with diverse computation demands
by efficiently exposing dataflow requirements as first-class citizens to the system. In addition to
execution requirements, our model can capture expressive and high-level container interactions across
and within applications running in shared compute clusters. This permits unified dataflow applications
or LRAs in general to concisely express the placement requirements of their long-running containers
in the cluster.

To evaluate the ideas described in this thesis we implemented NEPTUNE, a data processing framework
for unified applications, and MEDEA, a cluster manager with explicit support for powerful placement
constraints. Utilising unified dataflows with rich placement constraints, complex heterogeneous appli-
cations with diverse execution requirements optimise for high-throughput or low latency according the
application needs. At the same time, applications achieve high-quality placement of their containers
in shared compute clusters, leading to better application performance and resilience.

Unified dataflows with placement constraints is an effective way of unifying data-parallel processing
for the new era of long-running applications scaling to large shared compute clusters.
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6.1 Thesis summary

This thesis began by describing the significance of big data analytics and the increasing connection of
big data with our everyday lives (Chapter §1). The explosive growth of big data created new ways of
storing and managing large volumes of data and led to the development of several novel and scalable
data storage technologies. Big internet companies that wanted to improve their services and increase
their revenues, used user-generated content stored in their clusters and focused on providing more
efficient processing of their invaluable data.

This triggered a new wave of innovation in the big data ecosystem with a plethora of data processing
frameworks targeting a variety of workloads and use cases. Even though earlier implementations of
those systems were targeting a specific type of computation such as batch processing and streaming,
more recent data processing frameworks evolved to support different types of computation as part of
the same engine and often exposing unified programming interfaces.

All these data processing frameworks are designed to scale their throughput by following a scale out
approach, using the aggregate power of many commodity machines. In order to accommodate their
needs, organisations operate large clusters managed by cluster schedulers that are shared across a
number of users and applications. As cluster managers are application-agnostic, they enabled the
consolidation of a variety of workloads in shared compute clusters to increase the resource efficiency
of these infrastructures.

In the background chapter, we described the different workloads that execute in shared compute
cluster today (Chapter §2). Using real production data we performed an analysis of the types of
cluster workloads within Microsoft and identified particular application scenarios of the growing
class of long-running workloads. After explaining the differences and similarities of container and
task scheduling, we focused on data processing systems and described the computational model
as well as the programming abstractions that they offer and finally showed their evolution. These
systems are now expressive enough to capture heterogeneous types of computation within the same
execution engine. Despite this evolution, by completely ignoring computation requirements, these
systems face well-known limitations in terms of scheduling and execution that we demonstrated with
experiments. We also traced the advancements in cluster management systems and demonstrated
with experiments the limitations of existing cluster schedulers when dealing with the placement of
long-running applications. Finally we categorised them based on their features and system architecture
and provided a summary of identified missing of partially supported requirements in cluster scheduling
systems.

To overcome these shortcomings, we introduced unified dataflow graphs with placement constraints
in Chapter §3. In particular, we propose a new abstraction for efficient data processing in shared
data-centres that can explicitly represent dataflow computation requirements in the dataflow graph as
well as expressive and high-level placement constraints. The chapter also introduces the abstractions
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of node groups and container tags in order to provide powerful and high-level placement constraints
for containers in the cluster management level.

The new abstraction of unified dataflows has to respect user-defined computation requirements and also
utilise container resources efficiently. Within a single unified application, a part of the computation
might require high-throughput processing while another one low-latency responses. To address this
challenge, we make dataflow execution requirements explicit. This means that the system is aware of
the execution requirements of the application and can make more involved scheduling decisions. For
example, it can dynamically prioritise computation based on the execution requirements while fully
utilising given resources.

To effectively deploy unified dataflows within large compute clusters and satisfy their performance
and resilience requirements, unified dataflows capture expressive and high-level placement constraints
using node groups and container tags abstractions. In our model, placement constraints are also
first-class citizens. The container allocation system utilises the placement constraints of our model to
place long-running containers in the cluster respecting application requirements. At the same time, the
container allocation system further optimises placement for global cluster objectives such as balancing
cluster load, or minimising the number of machines used in the cluster.

In Chapter §4, we showed how we can implement unified dataflows with user-defined execution
requirements as part of a novel computation framework, NEPTUNE. NEPTUNE uses suspendable
tasks and novel scheduling policies to prioritise computation dynamically based on captured dataflow
requirements and efficiently utilise container resources. In a range of experiments we demonstrated
that the NEPTUNE execution framework is flexible and can achieve close to optimal performance in
terms of both throughput and latency, while better utilising long-running container resources in the
cluster. Our system is built on top of Apache Spark, a widely used data processing framework, and is
publicly available as open-source.

Then, in Chapter §5, we showed how we can implement our rich placement constraints as part of
MEDEA, a cluster manager that supports the placement of both short- and long-running containers in
shared production clusters. MEDEA follows a novel two-scheduler design and a powerful constraints
API that can support our expressive constraint model. We evaluated the implementation of MEDEA

on top of Apache Hadoop YARN, a popular open-source cluster manager. In a range of experiments
on a 400-node pre-production cluster, we showed that our YARN-based implementation of MEDEA

can achieve placement of long-running containers that yield significant performance and resilience
benefits compared to state-of-the-art systems, while not impacting the scheduling of traditional
analytics workloads with short-running containers. Our system is open-sourced and available as part
of Apache Hadoop 3.1 release.
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6.2 Future work

During the writing of this thesis, we have also identified a number of opportunities for future work.

• Data-driven scheduling. In this thesis, we focused mostly on building the abstractions and the
scheduling infrastructure that enables the effective placement and the execution of LRAs in
modern shared compute clusters. However, automatically inferring application requirements
could be an interesting future direction. For example, an alternative approach would be to
utilise the historical knowledge on application behaviour. Unlike traditional trial-and-error
approaches for finding the best placement constraints, such as the ones used in MEDEA, for
each application we would use the application knowledge that is accumulated over time by the
system through data collection.

By using such historical information and applying data mining and machine learning principles,
we could significantly improve the practicality of large-scale scheduling, as less user input
would be needed, without compromising on the quality of the scheduling decisions [38, 39, 40].
In order to achieve that, we would have to avoid machine learning or data mining techniques
with large computational overheads that would be unable scale to the large numbers of servers or
applications that comprise modern data-centres. Moreover, for previously-unseen applications,
this data-driven approach would still have to use some default values.

• Hardware heterogeneity. While both MEDEA and NEPTUNE have focused on workload
heterogeneity, large clusters also suffer from hardware heterogeneity that occurs because
servers are populated and replaced over time [38, 143]. Heterogeneity in hardware may cause
performance variability to applications and is a well known issue in large production data-
centres [90, 97, 143]. For example, a particular workload may run faster on an a specific
generation processor, CPU architecture or CPU clock speed while another one might require a
machine with a GPU or an FPGA.

The main challenge here is to assign the most suitable resources to each workload, given the
various requirements of applications, machine characteristics and cluster constraints. Thus,
we would like to further focus on heterogeneity aware scheduling and the integration of both
workload and cluster heterogeneity in a more generic model. This model could capture hardware
requirements as an extra level of constraints.

• Dynamic scalability in the cloud. We proposed an execution model with explicit data pro-
cessing and container placement requirements that operates in pre-defined cluster environments,
however, our model could also benefit systems in more elastic environments. For example,
systems that scale their capacity dynamically could also benefit from high quality placements
using MEDEA’s cardinality constraints as they are generic and provide an upper bound on the
number of containers that are placed on the same group of nodes. Even though the constraints



120 Conclusions and future work

are generic enough to support this scenario, an extended placement algorithm would be needed
to natively support scaling (up or down) requests modelled as container migration decisions
(see §5.6). Moreover, NEPTUNE’s dynamic scheduling decisions during execution could di-
rectly benefit such systems, by more efficiently utilising resources and lowering job latency
where it matters the most.

As step further, we could also focus on public clouds where computation is sold as utility and
thus container allocation and application scalability can bring important cost benefits. We can
extend MEDEA, our resource manager that is able control the amount of resources allocated to
each applications, to change allocation decisions dynamically. For these dynamic decisions to
be correct, input by the applications will be needed because they know precisely when they
require more or less resources e.g., when they detect spikes in their load, or when they have too
many unused containers.

For example, NEPTUNE could notify MEDEA when executor resources are over-utilised
and MEDEA would decide the type (spot or on-demand instance), family (general, mem-
ory_optimised, etc.) and the size (small, medium, large) of the cloud instances to allocate.
NEPTUNE would use the newly allocated resources to scale out and balance executor load.
Thus, there should be a close interaction between the applications and the resource manager.
We plan to investigate ways to coordinate them in a scalable and efficient manner.
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